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Abstract—A mempool is a security-critical subsystem in a
public blockchain. Recent mempool attacks, notably asym-
metric DoS, have shown their ability to severely damage
the Ethereum network. This paper tackles the open research
problem of designing principled and non-intrusive defenses
against asymmetric mempool DoSes with provable security. It
presents the first mempool economic-security definitions based
on mempool-observable conditions. It then presents SAFERAD,
a framework of secure mempool designs with provable security
against asymmetric DoSes. To defend against dual attacks by
evicting and locking a victim mempool, SAFERAD adopts a
non-trivial design of enforcing an upper bound of the attack
damage under the locking attacks and a lower bound of
the attack cost under the eviction attacks. With a prototype
implementation on Geth and evaluation under real transaction
traces, the results show SAFERAD has low overhead in latency
and block revenue, implying non-intrusiveness and practicality.

1. Introduction

In public blockchains, a mempool is a data structure
residing on every blockchain node, and its job is to buffer
unconfirmed transactions before they are included in blocks.
On Ethereum, mempools are present in various execution-
layer clients serving public transactions [5], [7], [3], [6],
[8] and block builders serving private transactions, as in the
PBS or proposer-builder separation architecture [4], [2], [1].

Unlike the conventional network stack, mempools are
permissionless, and by design, they have to openly ac-
cept transactions sent from unauthenticated accounts. This
open nature, while necessary for achieving decentraliza-
tion, makes the mempool susceptible to denial-of-service
(DoS) attacks. In such an attack, an adversary joins a target
blockchain network, befriends victim nodes, and sends them
crafted transactions with the goal of denying the mempool
service to normal transactions. The failed service of a
mempool can cripple a range of downstream blockchain
subsystems such as block building, transaction propaga-
tion, blockchain value extraction (i.e., MEV searching),
remote-procedure calls, Gas stations, etc. For instance, it
has been empirically shown that by denying mempools,
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one can force the entire Ethereum network to produce
empty blocks [25], stripping away validators’ incentives and
putting the blockchain at risk from 51% attacks.

Existing mempool DoS attacks are highly practical,
achieving high success rates yet requiring low monetary
costs from attackers. They are asymmetric in the sense that
an attacker can inflict much higher damage to victims than
the cost he needs to invest. DETER [25] is the first asymmet-
ric mempool DoS that evicts normal transactions by crafting
invalid transactions at high prices. MemPurge [32] similarly
evicts pending transactions using a certain type of overdraft
transactions. These attacks follow simple transaction pat-
terns and can be easily detected; in fact, recent Ethereum
clients like Geth v1.11.4 have been patched against DE-
TER [11], and there is an open-source code patch against
MemPurge [13]. Unfortunately, more mempool-DoS attacks
have been recently discovered by a mempool fuzzer named
MPFUZZ [31] on a wide range of Ethereum clients including
the patched ones; these “second-generation” mempool DoS
attacks are much more sophisticated and function by sending
a multi-step sequence of crafted transactions to trigger a
series of mempool-state transitions to inflict damage. Their
transaction patterns are stealthy, and the full mitigation is
an open research problem.
Security definitions: To end this arms race between attack-
ers and defenders, the key lies in a formal understanding
of the mempool DoS security. Without a precise security
definition, it would be impossible to validate or certify
the soundness or completeness of a mempool’s defense
against unknown attacks, let alone design new mempools
with provable security. Note that the bug oracles in MP-
FUZZ [31] optimize search efficiency and don’t guarantee
completeness.

One may attempt to define mempool-DoS security di-
rectly on notions like adversarial transactions and trans-
action fees. However, these notions are unobservable to a
mempool, as they are dependent on execution-time condi-
tions; see § 4 for detail. We propose mempool-observable
economic-security definitions for evaluating a mempool’s
defense against DoS. The idea is as follows: Given a mem-
pool of any initial state and receiving an arbitrary sequence
of arriving transactions, the security of the mempool relies
on a lower bound of transaction fees inside the mempool
and an upper bound of fees of transactions left outside the



mempool, either evicted or declined upfront. As discussed
in § 4.1, the upper and lower bounds jointly ensure the
failure of any asymmetric mempool DoS attacks, including
the variants of eviction attacks and locking attacks [31]. Our
security definitions are based only on mempool-observable
conditions: They consider arbitrary transactions and are
agnostic to the benign or adversarial nature of these trans-
actions. Our fee bounds rely only on “static” transaction
attributes that are observable to a mempool, such as senders,
nonces, and prices, but not Gas.
Secure designs: Designing a secure mempool with both
eviction- and locking-security poses challenges because
mempool eviction and locking form dual attacks. On the
one hand, if a mempool’s admission policy is too loose, an
adversary can exploit it to overly evict normal transactions.
On the other hand, if the policy is too strict, the adversary
can exploit it to lock the mempool to decline normal trans-
actions arriving.

This work presents SAFERAD, a lightweight transaction
admission framework that secures a mempool against both
eviction- and locking-based DoSes. SAFERAD prevents the
risky eviction that turns existing valid transactions into
invalid ones; this is achieved by evicting only “childless”
transactions without descendants. SAFERAD prevents lock-
ing the mempool at a low-cost state; this is done by enforc-
ing an upper bound on the price of any declined transaction.
These rules may force the mempool to sometimes exhibit
counter-intuitive admission behavior, such as admitting a
low-priced transaction to evict a high-priced transaction,
leading to a drop in total fees. SAFERAD is designed to
limit the effect of such spurious admission by ensuring the
monotonic increase of a lower bound of fees. SAFERAD
admits transactions based only on “static” transaction at-
tributes without speculatively executing smart contracts and
is lightweight, free of resource-exhaustion risks.
Evaluation: We prove the security of SAFERAD against
eviction- and locking-attacks: SAFERAD can upper-bound
the attack damage under locking attacks (i.e., the fees of
victim transactions declined) and lower-bound the attack
costs under eviction attacks (i.e., the fees of adversarial
transactions included in blocks).

We implement a SAFERAD prototype over a variant
of Geth v1.11.4 patched against DETER [25] and Mem-
Purge [32], and our prototype maintains additional trans-
action indexes. We collect transaction traces from the
Ethereum mainnet and replay them to evaluate the utility
and performance of the SAFERAD prototype. The results
show that compared to the vanilla, unsecured Geth v1.11.4,
SAFERAD causes a reasonable change of block revenue
between [−1.33%,+7.96%] and incurs extra latency by at
most 7.3%. Under the attacks that Geth v1.11.4 is known
to be vulnerable for, SAFERAD increases the attacker’s cost
by more than 10000 times.
Contributions: This paper makes the following contribu-
tions:
• New security definitions: We presented the first mempool
economic-security definitions to evaluate a mempool’s de-
fense against asymmetric DoS. The definitions are based

on observable conditions in practical mempools and com-
prehensively cover both eviction- and locking-based at-
tacks [31].
• Provable-secure designs: We proposed SAFERAD, a
framework of secure mempool designs with provable secu-
rity against asymmetric DoSes. We have proven SAFERAD’s
security against arbitrary asymmetric-DoS attacks — The
security stems from SAFERAD’s design in upper-bounding
the attack damage under locking attacks and lower-bounding
the attack cost under eviction attacks.
• Performance & revenue evaluation: We implemented a
SAFERAD prototype on Geth and evaluated its performance
and revenue. Under real-world transaction traces, SAFERAD
shows a small overhead in latency and block revenue. Be-
sides, SAFERAD shows a high lower bound under eviction
attacks and a relatively low upper bound under locking
attacks.

2. Background and Related Works

Transactions: In Ethereum, a transaction tx is characterized
by a sender, a nonce, a price, an amount of computa-
tion it consumes, GasUsed, and the data field relevant to
smart-contract invocation. Among these attributes, transac-
tion sender, nonce, and price are “static” in the sense
that they are independent of smart contract execution or
the context of block validation (e.g., how transactions are
ordered). This work aims at lightweight mempool designs
leveraging only static transaction attributes. We denote an
Ethereum transaction by its sender, nonce, and price. For
instance, a transaction tx1 sent from Account A, with nonce
3, of price 7 is denoted by ⟨A3, 7⟩.

A transaction tx1 is tx2’s ancestor or parent if
tx1.sender = tx2.sender ∧ tx1.nonce < tx2.nonce. We
denote the set of ancestor transactions to transaction tx
by tx.ancestors(). Given the transaction set in a mempool
state ts, tx’s ancestor transactions in ts and with consecutive
nonces to tx are denoted by set tx.ancestors() ∩ ts. For
instance, suppose transactions tx1, tx2, tx3, tx4 are all sent
from Alice and are with nonces 1, 2, 3, and 4, respectively.
Then, tx4.ancestors() ∩ {tx1, tx3} = {tx3}.

A transaction tx is a future transaction w.r.t. a transaction
set ts, if there is at least one transaction tx′ ̸∈ ts and tx′ is
an ancestor of tx. Given any future transaction tx in set ts,
we define function ISFUTURE(tx, ts) = 1.
Transaction fees: A transaction tx’s fee is the product of
GasUsed and price, that is, tx.fee = GasUsed · price.
GasUsed is determined by a fixed amount (21000 Gas)
and the smart contract execution by tx. In Ethereum, The
latter factor is sensitive to various runtime conditions, such
as how transaction tx is ordered in the blocks. After EIP-
1559, part of price and fees are burnt; in this case, block
revenue excludes the burnt part.
The notations used in this paper (some of which are
introduced later in the paper) are listed in Table 1. Notably,
we differentiate the unordered set and ordered list: Given
an unordered transaction set, say as, an ordered list of the



same set of transactions is denoted by a vector, a⃗s. A list
is converted to a set as by the function unorder(a⃗s), and
a set is converted to a list a⃗s by the function TORDER(as).

TABLE 1: Notations: txs means transactions.
Meaning Meaning

as Arriving txs a⃗s List of arriving txs
st Txs in mempool s⃗t List of txs in mempool
dc Txs declined or evicted

from mempool
m Mempool length

⟨A3, 7⟩ A tx of sender A, nonce 3, and price 7

Blockchain mempools: In blockchains, recently submitted
transactions by users, a.k.a., unconfirmed transactions, are
propagated, either privately or publicly, to reach one or mul-
tiple validator nodes. Mempool buffers the “unconfirmed”
transactions before these transactions are included in blocks.
In Ethereum 2.0, transaction propagation follows two paths.
A public transaction is propagated to the entire network,
while a private transaction is forwarded by a builder to
the proposers who he has established the connection with.
In both cases, the mempool faces the same design issues:
Because the mempool needs to openly accept a potentially
unlimited number of transactions sent from arbitrary EOA
accounts, it needs to limit the capacity and enforce policies
for transaction admission. In practice, we found the mem-
pool storing public transactions has the same codebase as
that storing private transactions.*

2.1. Related Works

Mempool DoS: The early designs of mempool DoSes [18],
[29] work by sending spam transactions of high prices to
evict benign transactions of normal prices. These attacks are
extremely expensive and are not practical.

A more realistic threat is the asymmetric denial of mem-
pool service, where the attacker spends much less fees in the
adversarial transactions he sends than the damage he caused,
that is, the fees of evicted or declined benign transactions
that would be otherwise chargeable. DETER [25] is the first
asymmetric DoS attack studied in research works where the
attacker sends invalid and thus unchargeable transactions
(e.g., future transactions in Ethereum) to evict valid benign
transactions from the mempool. The DETER vulnerabil-
ity is used to construct an active measurement approach,
TopoShot [24], to reveal the Ethereum network topology for
the first time. The MemPurge attack [32] similarly evicts
Ethereum’s (more specifically, Geth’s) pending-transaction
mempool by crafting invalid overdraft transactions. The
DETER bug is fixed in Geth v1.11.4 [10], and there is a
tested code patch to mitigate MemPurge on Geth [13].

More sophisticated and stealthy attacks are recently
discovered by MPFUZZ, a stateful symbolized fuzzer for
testing mempools [31]. The discovered attacks are staged
and stateful attacks in that they transition mempool states
via multiple steps (see § 8.3 for an example exploit, XT6).

*For instance, the mempool in Flashbot builder [4] used to store both
private and public transactions is a fork (with no code change) of the
mempool storing only public transactions in Geth.

Figure 1: Threat model of a victim mempool: In blue are
downstream operators that rely on reading or writing the
mempool. In dark blue are the operators in the private
transaction path.

Thus, they are stealthier and have successfully evaded the
mitigation rules intended for DETER and MemPurge. For
instance, Geth v1.11.4, which is already patched against
DETER attacks, is found still vulnerable by MPFUZZ, such
as under the XT6 attack [31].
Resource exhaustion and blockchain DoS: Besides misus-
ing transaction admission policies, there are other means to
cause under-utilized blocks in a victim blockchain. One can
aim to exhaust computing resources. Known strategies in-
clude running under-priced smart-contract instructions [28],
[19], [14] or exploiting “speculative” contract execution
capabilities, such as the eth_call in Ethereum’s RPC
subsystem [23] or censorship enforcement in Ethereum PBS
(proposer-builder separation) subsystem (i.e., the Condi-
tionalExhaust attack in [32]). Resource exhaustion by ad-
versarial smart contracts is out of the scope of this paper.
Besides, denial of blockchain services has been studied
across different system layers including eclipse attacks on
the P2P networks [22], [26], [17], [30], DoS blockchain
consensus [27], [9], DoS state storage [21], etc.

3. Threat Model

Adversary’s goals and capacities: In the threat model, an
adversary node is connected, either directly or indirectly, to a
victim node on which a mempool serves various downstream
operators reading or inserting transactions. Figure 1 depicts
some example mempool-dependent operators, including a
transaction sender who wants to insert her transaction to
the mempool, a full node that reads the mempool to decide
whether a received transaction should be propagated, a
validator or PBS builder that reads the mempool and selects
transactions to include in the next block, an MEV searcher
that reads the mempool to find profitable opportunities,
a Gas-station service that reads the mempool to estimate
appropriate Gas price for sending transactions, etc.

The adversary’s goal is two-fold: 1) Deny the victim
mempool’s service to these critical downstream operators.
This entails keeping all normal transactions out of the
mempool so that the transaction read/write requests from
operators would fail. 2) Keep the adversary’s cost asym-
metrically low. This entails keeping the transactions sent by
the adversary from being included in the blockchain.



The adversary has the capacity to craft transactions and
send them to reach the victim mempool. In the most basic
model, the adversary is directly connected to the victim
node. In practice, the adversary may launch a super-node
connected to all nodes and aim at attacking all of them or
selecting critical nodes to attack (as done in DETER [25]).
Alternatively, the adversary may choose to launch a “nor-
mal” node connected to a few neighbors and propagate the
crafted transactions via the node to reach all other nodes in
the network.

4. Economic-Security Definitions

Rationale: This work aims to develop principled defenses
for blockchain mempools against asymmetric DoS (Denial
of Service) attacks, including unknown ones. The key ob-
servation motivating this work is that, regardless of how
adversarial transactions are crafted in an asymmetric DoS
attack, the success of such an attack hinges on cost asymme-
try. Specifically, the damage caused by the attack, measured
by the fees of normal transactions excluded from produced
blocks (due to denied mempool service), must be higher
than the attack cost, measured by the fees of adversarial
transactions included in produced blocks.

One can define mempool security directly by negat-
ing the above cost-asymmetry condition. That is, a secure
mempool needs to ensure that, under all circumstances, the
fees of normal transactions excluded from the mempool are
lower than the fees of adversarial transactions included in
the mempool (or blocks). However, such a formulation is
impractical and based on conditions that a mempool cannot
observe. For instance, in a permissionless setting, it is not
possible to discern whether a transaction originates from an
adversarial account or a benign one. Additionally, the fees a
transaction charges, or more specifically, the computation or
Gas an Ethereum transaction incurs, depend on the runtime
context at the time of block validation (e.g., blockchain
states and transaction ordering), which are not observable
by a mempool. In practice, in most Ethereum clients, the
smart-contract execution occurs after the mempool (e.g., to
avoid resource-exhaustion risks [32]), leaving the dynamic
transaction attributes like the Gas amount unobservable by
the mempool.

To work around these design constraints, this work aims
at establishing static bounds of transaction fees, instead of
precisely estimating fees, based only on observable trans-
action attributes (e.g., prices, senders, and nonces) with-
out relying on the unobservable Gas. It aims to bound a
mempool’s transaction fees under an arbitrary sequence of
arriving transactions and initial states.

We propose economic security notions for mempools
based on the following idea: Given a mempool of any initial
state and receiving an arbitrary sequence of arriving transac-
tions, the security of the mempool relies on 1) a lower bound
of transaction fees inside the mempool, and 2) an upper
bound of fees of transactions left outside the mempool,
either evicted or declined upfront. As will be analyzed,
the former quantifies the economic security of mempool

under an abstract attack vector, eviction attacks, and the
latter quantifies the economic security of mempool against
locking attacks. Next, we specify the mempool processes,
or timelines, before presenting the security definitions.
Specification: To start with, we characterize two mempool
states at any time: the set of transactions residing in the
mempool denoted by st, and the set of transactions declined
or evicted from the mempool denoted by dc. We also
characterize the list of confirmed transactions included in
produced blocks by ⃗bks = {⃗b} and the list of transactions
arriving by a⃗s.

A mempool commonly supports two procedures: trans-
action admission and block building. We specify the first
one, which is relevant to this work.

Definition 4.1 (Tx admission). Given an arriving transaction
tai at a mempool of state sti, an admission algorithm
ADTX would transition the mempool into an end state
sti+1 by admitting or declining tai or evicting transac-
tions tei. Formally,

ADTX(sti, tai) → sti+1, tei (1)

Definition 4.2 (Tx admission timeline). In a transaction
admission timeline, a mempool is initialized at state
⟨st0, dc0 = ∅⟩, receives a list of arriving transactions
in a⃗s, and ends up with an end state ⟨stn, dcn⟩. Then, a
validator continually builds blocks from transactions in
the mempool stn until it is empty, leading to eventual
state ⟨stl = ∅, dcl = dcn⟩ and newly produced blocks
⃗bksl with ordered transactions in stn. This transaction-

admission timeline is denoted by f(⟨st0,∅⟩, a⃗s) ⇒
⟨stn, dcn⟩.

As in the above definition, this work considers the time-
line in which block arrival or production does not interleave
with the arrival of adversarial transactions. We leave it to
the future work for interleaved block arrival and attacks.
In the following, we define the mempool security against
asymmetric attacks.

Definition 4.3 (Mempool eviction security). Consider any
mempool that initially stores normal transactions st0b
and receives a list of normal transactions a⃗sb, that is,
the timeline without attack in Equation 3. Any adversary
sends a list of adversarial transactions a⃗sa, at such a tim-
ing that adversarial transactions and normal transactions
are interleaved to arrive at the following order: a⃗sa⊕a⃗sb.
That is the timeline under attack as in Equation 2.
The mempool is secure against asymmetric eviction
attacks, or g-eviction-secure, if.f. the total transaction
fees under arbitrary transaction ordering in the end state
reached in the timeline under attack (Equation 2) are
higher than g(stnb) where stnb is the end state of
mempool in the timeline without an attack (Equation 3)
and g(·) is a price function that takes as input a mempool
state and returns a price value. Formally,



∀st0b, a⃗sb, a⃗sa, a⃗s = asa ⊕ asb,

f(⟨st0b,∅⟩, a⃗s) ⇒ ⟨stn, dcn⟩ (2)
f(⟨st0b,∅⟩, a⃗sb) ⇒ ⟨stnb, dcnb⟩ (3)
∃function g(·) s.t., ∀s⃗tn, fees(s⃗tn) ≥ g(stnb)(4)

The g-eviction-security definition ensures that under
arbitrary attacks, the total fees of transactions inside the
mempool are lower bounded by a value dependent only on
benign transactions. This definition reflects the following
intuition: If the benign-transaction workload can provide
enough block revenue for validators (i.e., the mempool
end state without attack has enough benign transactions),
the g-security of mempool ensures the mempool under
the same benign workload and any adversarial workloads
(i.e., attacks) has enough fees or enough block revenue for
validators.
Definition 4.4 (Mempool locking security). Consider any

timeline under attacks in which the mempool of initial
state storing only benign transactions ⟨st0b,∅⟩ receives
an ordered-transaction sequence interleaving adversarial
and benign transactions, a⃗s = a⃗sa ⊕ a⃗sb, transitions its
state, and reaches the end state ⟨stn, dcn⟩, as shown in
Equation 5.
The mempool is considered to be secure against asym-
metric locking attacks, or h-locking-secure, if.f. the
maximal price of transactions declined or evicted in the
end state under attacks, i.e., dcn, is lower than a certain
price function h() on the end-state mempool under at-
tacks, i.e., h(stn). It is required that for any mempool
state st, h(st) must be lower than the average transaction
price in st, namely ∀st, h(st) < avgprice(st). Formally,

∀st0b, a⃗sb, a⃗sa, a⃗s = asa ⊕ asb,

f(⟨st0b,∅⟩, a⃗s) ⇒ ⟨stn, dcn⟩ (5)
∃function h(·) < avgprice(·) (6)
s.t., maxprice(dcn) < h(stn)

The h-locking-security definition ensures that the max-
imal price of any declined or evicted transactions from
the mempool is upper-bounded by that of the transactions
staying in the mempool.

4.1. Analysis of the Definitions

This subsection presents an informal analysis of the
soundness and completeness of the proposed definitions. We
do so from two angles: 1) how known attacks violate the
definitions and 2) how all possible attacks, including the
unknown ones, must violate the definitions.
Violation captures known attacks: In existing literature,
1) DETER attacks [25] follow one specified pattern (direct
eviction), that is, sending invalid transactions to fully evict
the valid transactions in the mempool. Clearly, it violates the
g-eviction security where function g() is simply a non-zero
constant, say 1 wei. For a primary mempool pool storing

only pending transactions, MemPurge [32] follows the same
pattern as DETER by sending invalid transactions to evict
valid transactions in the mempool.

2) MPFUZZ [31] is a fuzzer based on a more general
insecurity definition, or bug oracle, which, however, is still
very strict. The eviction bug oracle in MPFUZZ entails the
non-overlapping between initial and end mempool states;
the g-eviction security definition in this work removes such
a condition. Thus, the different eviction attacks found in
MPFUZZ are (true) positives in the negation of g-eviction
security. For instance, given an MPFUZZ-compatible eviction
attack with parameter ϵ =

∑
stn

tx.fee∑
st0

tx.fee , one can easily find a
price function g(stnb) = ϵ ·

∑
st0

tx.price s.t. Inequality 4
is violated. A similar analysis applies to the locking bug
oracle in MPFUZZ and h-locking security.
Violation captures all attacks: Conceptually, all asymmet-
ric mempool DoSes succeed by exploiting cost asymmetry
conditions; that is, the damage measured by the (normal)
transactions eventually excluded from the mempool is sig-
nificantly higher than the attack cost bounded by the trans-
actions included in the blockchain. Our security definitions
realize this cost asymmetry by mandating the lower bound of
damage (by considering all excluded transactions are normal
transactions) is higher than the upper bound of the attack
cost (by considering all included transactions are adversarial
transactions).

Specifically, our security definitions concretely capture
two abstract attack patterns, i.e., eviction- and locking-
attacks. We claim that the two abstract patterns are complete
due to the reasons below: The damage of any asymmetric
mempool DoS comes from the exclusion of normal trans-
actions from a mempool’s end state, which can come about
in three possible ways: 1) declining an arriving normal
transaction, 2) admitting the normal transaction only to evict
it later, and 3) admitting the normal transaction only to turn
it into an invalid one later.

Our security definitions capture all three possible dam-
ages: The eviction security quantifies the cost asymmetry in
Cases 2) and 3), and the locking security quantifies the cost
asymmetry in Case 1). If a given timeline is cast into an
eviction-only (or locking-only) attack, the g-eviction defi-
nition (h-locking definition) is sufficient to ensure security
in the worst-case scenario. Suppose the given timeline is
cast into an interleaving of eviction and locking sub-attacks.
What ensures the security is a conjunctive form of the two
definitions, that is, Inequality 4 holds and Inequality 6 holds.
Intuitively, the conjunctive form ensures that the total attack
cost is higher than each sub-attack’s upper bound of damage.

5. The SAFERAD Defense Framework

5.1. Design Rationale

Multi-pool framework: The SAFERAD mempool contains
multiple sub-pools, out of which a primary sub-pool stores



only valid, pending transactions, and other secondary sub-
pools may store invalid transactions temporarily.

Blocks are built by selecting transactions only from the
primary sub-pool. Given an arriving transaction, the primary
sub-pool attempts to admit it before other secondary sub-
pools. Only valid transactions are admitted to the primary
sub-pool. Invalid transactions, such as future transactions or
overdrafts, are declined and may be admitted to secondary
sub-pools. The invalid transactions buffered in the secondary
sub-pool may attempt to enter the primary sub-pool.

Because the primary sub-pool controls what block
builders (or validators) can see and has priority in admitting
transactions, it is security critical. This work focuses on the
secure design of the primary sub-pool.† We discuss revenue
optimization in secondary sub-pools in § 10. Because other
sub-pools buffering invalid transactions don’t directly feed
transactions to the block validator, their “security” under
DoS is secondary.

Note that in our framework, the storage of valid trans-
actions (in the primary sub-pool) is isolated from that of
invalid transactions; the existing DETER attack that exploits
the mixed storage of valid and invalid transactions becomes
inapplicable and ineffective.
Design choices: A common mempool-design paradigm is to
assign each transaction a score and use the score as the pri-
ority to decide transaction admission: Transactions of higher
priority remain in the mempool, while those of lower priority
are left outside (i.e., evicted from the mempool or declined
by the mempool upfront). Admission scores are based on
static transaction attributes (i.e., attributes independent of the
context of a transaction or smart-contract execution), which
makes the admission lightweight (e.g., without executing
smart contracts) and free of resource-exhaustion risks [32].
To the best of our knowledge, static transaction scoring is
adopted in the mempools of all Ethereum clients [5], [7],
[3], [6], [8], [4], [2], [1].

Figure 2: Motivating example: A two-slot mempool storing
tx1 and tx2 receives an arriving transaction tx3.

In practice, mempools use transaction scores such as
transaction price, transaction age (i.e., the order transactions
arrive at the mempool), etc. However, these scores don’t take
into account transaction validity and can be misused. For
instance, a mempool that admits transactions only by price
(i.e., the price-only score or Score PO) can be misused
to trigger dangerous eviction behavior. Here, we use an

†In the rest of the paper, unless otherwise specified, we use the words
“mempool” and “primary sub-pool” interchangeably.

example depicted in Figure 2 where a two-slot mempool
initially stores transactions tx1 = ⟨A1, 1⟩, tx2 = ⟨A2, 5⟩
and receives an arriving transaction tx3 = ⟨B1, 5⟩. If the
mempool exercises Policy PO, it would admit tx3 and
select from the pool the transaction of the lowest price to
evict, that is, tx1. The eviction would turn tx2 into a future
transaction, rendering its fee unchargeable and the mempool
transitioning from a high-cost state into a low-cost one (i.e.,
from 1+ 5 to 4+ 0). Transaction turning has been misused
in constructing eviction-based mempool DoS, such as the
XT6 discovered by MPFUZZ on Geth (see § 8.3).

To avoid transaction turning, the key is to prevent evict-
ing “parental” transactions that have any descendants in the
mempool. We propose admission schemes that enforce the
following invariant: A parent transaction is always assigned
with a higher score than any of its descendants. We employ
an admission algorithm that selects transactions of the low-
est score as eviction victims so that the selected transaction
has no descendants to turn (the properties that will be proven
in § 6 as Lemmas 6.3 and 6.5).

5.2. The Framework and Policies

Recall that Algorithm ADTX(st, ta) determines whether
to admit an arriving transaction ta at the mempool of state
st. To realize such an algorithm, the key idea in this work is
to treat the mempool as an ordered list of transactions and
to use such transaction ordering as the priority in admission
to achieve security. Specifically, we propose the concept
of transaction scores by which transactions are ordered;
our admission algorithm ADTX() ensures that transactions
admitted into the mempool always have higher scores than
those left outside.

This section describes the two transaction scores and the
proposed admission algorithms.
Score CP (Childless Price): We propose the first scoring
function CP where any “parental” transaction that has at
least one descendant transaction in st is assigned with an
infinitely large score (+∞), and any “childless” transaction
in st is assigned a score equal to its price. That is,

scoreCP(tx, st) =

{
tx.price, if tx.descendants() ̸∈ st

+∞, otherwise.

Score AP (Ancestor Min. Price): We first define the
minimal-price ancestor: Given a transaction in a set, tx ∈ st,
the minimal-price ancestor, denoted by txm(tx, st), is the
transaction whose price is the lowest among all ancestors of
tx in st.

Given a mempool’s (unordered) state st, transaction tx’s
ancestor minimal price or AP equals txm(tx, st)’s price:

txm(tx, st).price = min
∀tx′∈st∩

tx.ancestors()

tx′.price (7)

scoreAP(tx, st) = txm(tx, st).price (8)



Example: Consider the example scenario described in Fig-
ure 2. Specifically, a mempool of state st initially stores two
transactions, tx1 = ⟨A1, 1⟩ and tx2 = ⟨A2, 5⟩. That is, both
transactions are sent from Alice, and they are, respectively,
with nonces 1 and 2, and of prices 1 and 5. A transaction
tx3 = ⟨B1, 4⟩ arrives at the mempool.

We have the following scores: scoreCP(tx1, st) =
∞, scoreCP(tx2, st) = 5, scoreCP(tx3, st) = 4,
scoreAP(tx1, st) = 1, scoreAP(tx2, st) = 1, and
scoreAP(tx3, st) = 4.

It is clear from Equation 8 that given any transaction tx
and set st, scoreAP(tx, st) is not higher than tx.price. This
property is useful in proving the eviction security, as will
be seen. Formally,

∀tx, st, s.t. tx ∈ st

scoreAP(tx, st) ≤ tx.price (9)

Admission Algo. AA: The proposed Algorithm 1 enforces
the invariant that each admitted transaction to a mempool
evicts at most one transaction from the mempool.

The algorithm initially maintains a mempool of state
st and receives an arriving transaction ta. The algorithm
decides whether and how to admit ta and produces as
the output the end state of the mempool and the evicted
transaction te from the mempool. In case that ta is declined
by the mempool, te = ta.
Algorithm 1 ADTXAA(MempoolState st, Tx ta)

1: if PRECKV(ta, st) == 0 then ▷ Precheck tx validity
2: return te = ta; ▷ Decline invalid ta
3: end if
4: s⃗t=TORDER(st, score(·));
5: te=s⃗t.lastTx();
6: if isFull(st) then
7: if score(ta, st) ≤ score(te, st) then
8: return te = ta; ▷ Decline ta
9: else

10: st.admit(ta).evict(te);
11: end if
12: else
13: st.admit(ta);
14: te =NULL;
15: end if

Internally, the algorithm first pre-checks the validity of
ta on mempool st (in Line 1). If ta is a future transaction
or overdrafts its sender balance, the transaction is deemed
invalid and is declined from entering the mempool. The
algorithm proceeds if ta passes the validity pre-check.

It then sorts all transactions in mempool st in descending
order based on a selected scoring function, score() (in
Line 4). As described next, function s⃗t = TORDER(st)
produces a total order of transactions in the mempool,
denoted by s⃗t. It selects the last transaction on this ordered
list, denoted by te. That is, te has the lowest score on s⃗t.

If the mempool is full and score(ta, st) ≤ score(te, st)
(Line 7), the algorithm declines the arriving transaction ta,
that is, te = ta (Line 8). Otherwise, if the mempool is full

and score(ta, st) > score(te, st), the algorithm admits ta
and evicts te (Line 10).

If the mempool is not full, the algorithm always admits
ta to take the empty slot (Line 13).

One can plug different score() functions, including CP
and AP, into Algorithm 1 to obtain different admission
policies. Thus, we also use the score function name, such
as AP, to refer to the corresponding admission policy.
Tx total-order by TORDER(): To produce a total or-
der among transactions, we enforce the following rule:
Given two transactions, tx1 and tx2, if score(tx1, st) <
score(tx2, st), tx1 is ordered after tx2. If score(tx1, st) =
score(tx2, st), it breaks even in two cases: 1) If
tx1.sender = tx2.sender, it orders the two transactions
by their nonces: If tx1.nonce > tx2.nonce, tx1 is ordered
after tx2. 2) If tx1.sender ̸= tx2.sender, it uses the
following heuristics: Given a deterministic hash function
H(·), if H(tx1.sender) < H(tx2.sender), tx1 is ordered
after tx2.
TABLE 2: Admission policies and their security. OI means
order insensitivity as in Definition 6.1.

Policies Eviction security Locking
Without OI With OI security

CP ✓ ✗ ✗
AP ✓ ✓ ✓

6. Security Analysis

Before we analyze the security of individual policies, we
establish a security-proof framework based on the property
definitions in § 6.1.

6.1. Eviction-Security Definitions

Given an ordered list of transactions a⃗s, a reordered
list of transactions a⃗s′ is considered to preserve the parent-
before relationship, if.f. for any ∀txi, txj ∈ a⃗s such that txi

is a parent of txj and txi is ordered before txj on a⃗s (i.e.,
Equation 12), txi is ordered before txj on a⃗s′ (Equation 11).
Definition 6.1 (Order insensitivity). A mempool is

admission-order insensitive if.f. given any timeline a⃗s
(in Equation 10) and any reordered timeline preserving
the parent-before relationship a⃗s′′, the mempool always
reaches the same end state, ⟨stn, dcn⟩ ≡ ⟨st′′n, dc′′n⟩.
Formally,

∀f(⟨st0b,∅⟩, a⃗s) ⇒ ⟨stn, dcn⟩ (10)
∀f(⟨st0b,∅⟩, a⃗s′′) ⇒ ⟨st′′n, dc′′n⟩ s.t.

unorder(a⃗s) = unorder(a⃗s′′) ∧
∀txi, txj ∈ a⃗s, i < j ∧ (11)
txi ∈ txj .ancestors() ∧
a⃗s′′.idx(txi) < a⃗s′′.idx(txj)(12)

⟨st′′n, dc′′n⟩ ≡ ⟨stn, dcn⟩



Definition 6.2 (Monotonic score-increasing). A mempool
admitting transactions is monotonically score-increasing,
if.f. under an arbitrary timeline f(⟨st0,∅⟩, as) =
⟨stn, dcn⟩, the total score’s of all the transactions in
the mempool monotonically increases. Formally,

∀f(⟨st0,∅⟩, as) = ⟨stn, dcn⟩, (13)∑
tx′∈stn

score(tx, stn) ≥
∑

tx∈st0

score(tx, st0)

6.2. Security of Policy CP

Eviction security (violating OI): Policy CP achieves weak
eviction security in the sense that it ensures the total prices
monotonically increase, but it breaks order insensitivity.
Lemma 6.3 (No tx turning of CP). Suppose a mempool

runs Algorithm 1 under scoreCP and transitions from
state sti to sti+1. No transaction in sti can be turned
into a future transaction in sti+1.

Theorem 6.4 (Monotonic price-increasing). If a mempool
runs Algorithm 1 under scoreCP, the sum of transac-
tion prices in the mempool monotonically increases,
or the mempool is considered to be monotonic price-
increasing.

Due to the space limit, the proofs of Theorem 6.4 and
Lemma 6.3 are deferred to the technical report [20].

However, Policy CP breaks order-insensitivity. Con-
sider a simple counter-example that extends the case in
Figure 2 with another transaction tx4 to arrive after tx3.
tx4 = ⟨C1, 6⟩. In the original timeline when tx3 arrives
before tx4, the mempool running Policy CP declines tx3

(because scoreCP(tx3, st0) = 4 < 5 = scoreCP(tx2, st0))
and admits tx4 by evicting tx2, leaving the mempool at end
state st2 storing tx1 and tx4.

On the reordered time when tx4 arrives before tx3,
the mempool running Policy CP admits tx4 by evicting
tx2, leaving the mempool at intermediate state st′1 of
tx1, tx4. The next transaction to arrive, tx3, would be ad-
mitted into the mempool at this intermediate state, because
scoreCP(tx3, st

′
1) = 4 > 1 = scoreCP(tx1, st

′
1). The

mempool end state st′2 stores tx3 and tx4. Thus, st′2 ̸= st2,
that is, the two timelines reach different mempool end states.
Locking insecurity: Policy CP is not locking secure. Fig-
ure 2 shows a counterexample in which we can easily
construct an effective locking attack. Specifically, recall that
in the figure, tx3 is declined by the mempool running Policy
CP (i.e., Algorithm 1 with scoreCP). Assume transactions
tx1 and tx2 are sent by an adversary (i.e., Adversarial
account A), and tx3 is sent by a benign user (B). This
admission event implies that a benign user’s transaction
of price 4 is declined by a mempool where the average
transaction price per slot is 1+5

2 = 3, which is lower than
4. Suppose there is another subsequent normal transaction
tx5 = ⟨D1, 4⟩. tx5 would be declined by the mempool. Had
tx3 and tx5 been admitted into the mempool, the sum of

prices in the end state would have been 4 + 4 = 8, which
is higher than the sum of prices in the actual mempool end
state, 1 + 5 = 6. This is an asymmetric mempool-locking
attack. The example also violates h-locking security, where
h must be lower than the average transaction price.

6.3. Security of Policy AP

Eviction security: We first analyze the eviction security of
Policy AP.
Lemma 6.5 (No tx turning of AP). Suppose a mempool

runs Algorithm 1 under scoreAP and transitions from
state sti to sti+1. No transaction in sti can be turned
into a future transaction in sti+1.

The proof of Lemma 6.5 is in Appendix B.
Theorem 6.6 (monotonic scoreAP-increasing). A mem-

pool running Algorithm 1 under scoreAP is monotonic
scoreAP-increasing as in Definition 6.2.

The proof of Theorem 6.6 is deferred to Appendix B.
Theorem 6.7 (Order-insensitivity of AP). A mempool

running Algorithm 1 under scoreAP is admission-order
insensitive as in Definition 6.1.

Proof sketch: Algorithm 1 sorts transactions in the mempool
by scoreAP and maintains such ordering across arbitrary
admission events. Because a transaction’s scoreAP is static,
running Algorithm 1 with Policy AP is order insensitive:
Given the same (unordered) set of transactions arriving, no
matter how they are ordered, the ordered list of transactions
inside the mempool end state reached by Policy AP is
always the same. The full proof is in Appendix § A.
Theorem 6.8 (g-eviction security of AP). A mempool

running Algorithm 1 under scoreAP is g-eviction secure.
Given any timeline without attacks (Equations 3) and
any timeline with attacks (Equation 2), the total transac-
tion fees of the mempool end-state under attacks (stn)
are lower-bounded by the following, no matter how the
transactions in stn are ordered when building blocks:

∀s⃗tn, fees(s⃗tn) ≥ gAP(stnb) (14)

= 21000 ·
∑

tx′∈stnb

scoreAP(tx
′, stnb)

Proof Due to the security definition 4.3, we prove the
theorem by considering any timeline under attacks, that is,
Equation 2.

We construct the following timeline, where benign trans-
actions and adversarial transactions are not interleaved:

f(⟨st0b,∅⟩, a⃗sb|a⃗sa) ⇒ ⟨st′n, dc′n⟩
Specifically, f(⟨st0b,∅⟩, a⃗sb) ⇒ ⟨stnb, dcnb⟩

f(⟨stnb, dcnb⟩, a⃗sa) ⇒ ⟨st′n, dc′n⟩

The timeline is illustrated as in Figure 3. Because
unorder(a⃗s) = unorder(a⃗sa ⊕ a⃗sb) = unorder(a⃗sb|a⃗sa)



Figure 3: Reorder the timeline to have separated benign
and adversarial transaction lists for proving eviction secu-
rity. Green are benign transactions and red are adversarial
transactions.

and due to order insensitivity in Theorem 6.7, the newly
constructed timeline reaches the same end state as the
original timeline. Thus,

⟨st′n, dc′n⟩ = ⟨stn, dcn⟩

Therefore, we can have a timeline:
f(⟨stnb, dcnb⟩, a⃗sa) ⇒ ⟨stn, dcn⟩. Applying Theorem 6.6
(monotonic increasing of scoreAP) to this timeline leads to
the following:

∑
tx′∈stn

scoreAP(tx
′, stn) ≥

∑
tx′∈stnb

scoreAP(tx
′, stnb)

Due to Equation 9, we derive:

∴ ∀s⃗tn = TORDER(stn),

fees(s⃗tn) ≥ 21000 ·
∑

tx′∈stn
tx.price

≥ 21000 ·
∑

tx′∈stn
scoreAP(tx

′, stn)

≥ 21000 ·
∑

tx′∈stnb
scoreAP(tx

′, stnb)

Equation 14 holds.

Example: Consider Figure 2 that depicts the admission
of arriving tx3 at the mempool of state: tx1 and tx2.
Assume tx1 and tx2 are benign transactions, and tx3

is adversarial; that is, stnb = st0 consists of tx1 and
tx2.The lower fee bound from Equation 14 is 21000 ·∑

tx′∈stnb
scoreAP(tx

′, stnb) = 21000 ∗ ·(1 + 1) = 42000.
Locking security: We then analyze the locking security of
Policy AP.
Lemma 6.9 (Monotonic increasing min scoreAP ). For any

timeline of a mempool running Algorithm 1 with Pol-
icy AP , denoted by f(⟨st0,∅⟩, a⃗s) ⇒ ⟨stn, dcn⟩, the
following holds:

∀0 ≤ i < j ≤ n, min
tx∈sti

scoreAP(tx, sti)

≤ min
tx∈stj

scoreAP(tx, stj) (15)

Proof of Lemma 6.9 is in Appendix § C.
Theorem 6.10 (h-locking security of AP). A mempool

running Algorithm 1 with Policy AP is h-locking secure,

with h(st) = (1 + γ)mintx′∈stn scoreAP(tx
′, stn) with

γ ≥ 0, under the following assumption.
Given any benign transaction txC , for any set of trans-
actions that are ancestors to tx and whose nonces are
consecutive w.r.t. tx, say ts, txC .price must be lower
than txC’s minimal ancestor price in ts multiplied by
1 + γ. Formally,

∀txC ,∀ts, ISFUTURE(txC , ts) = 0

txC .price < (1 + γ)scoreAP(txC , ts) (16)

Due to the space limit, the proof of Theorem 6.10 is
deferred to our technical report [20].

7. Implementation Notes on Geth

We build a prototype implementation of SAFERAD on
Geth v1.11.4. We describe how the pending mempool in
vanilla Geth handles transaction admission and then how
we integrate SAFERAD into Geth.
Background: Geth mempool implementation: In Geth
v1.11.4, the mempool adopts the price-only Policy (PO)
patched with extra checks. Concretely, upon an arriving
transaction ta, 0 Geth first checks the validity of ta (e.g.,
ta is an overdraft), then it checks if the mempool is full.
1 If so, it finds the transaction with the lowest price as the

candidate of eviction victim te′. 2 It then removes te′ from
the primary storage and the secondary index. 3 At last, it
adds ta to the primary storage and the secondary index. If
the mempool is not full, 4 Geth adds ta to the primary
storage and the secondary index.

For fast transaction lookup, Geth v1.11.4 maintains two
indices to store mempool transactions (i.e., each transaction
is stored twice): a primary index where transactions are
ordered by price and a secondary index where transactions
are ordered first by senders and then by nonces.

In Step 0 , we adopt the patch against MemPurge
attacks [16]: A MemPurge attack works by reconnecting
future transactions only to turn them into overdraft transac-
tions. The attack is mitigated by the patch which checks and
invalidates overdraft transactions when reconnecting future
transactions.
Implementation of SAFERAD on Geth: Geth’s mempool
architecture is well aligned with Algorithm 1. We overwrite
Step 1 in Geth; instead of finding the transaction with
the lowest price, we find the transaction with the lowest
score() in the mempool. If scoreCP is used, in Step 1 , we
scan Geth’s price-based index from the bottom, that is, the
transaction with the lowest price; for each transaction, we
check if the transaction has a descendant in the mempool
by querying the second index. If so, we continue to the
transaction above in the primary index and repeat the check.
If not, we select the transaction to be eviction victim te.

If scoreAP is used, we build another index that keeps
track of the ancestor transaction with the lowest price
for each transaction. Upon the admission or eviction of a
transaction in the mempool, the index does not need to be
updated because transaction admission by Algorithm 1 does



not change an existing transaction’s ancestors and thus its
scoreAP. Upon transaction replacement, the index needs to
be updated, and the transaction entries with the same sender
to the replacement transaction need be re-calculated.

Steps 2 , 3 , and 4 remain the same except that
reference te′ is replaced with te.

8. Evaluation of Block Revenue

This section evaluates the block revenue of different
SAFERAD policies under normal and attacks workloads.

8.1. Experimental Setups

Workload collection: For transaction collection, we first
instrumented a Geth client (denoted by Geth-m) to log every
message it receives from every neighbor. The logged mes-
sages contain transactions, transaction hashes (announce-
ments), and blocks. When the client receives the same
message from multiple neighbors, it logs it as multiple
message-neighbor pairs. We also log the arrival time of a
transaction or a block.

We ran a Geth-m node in the mainnet and collected
transactions propagated to it from Sep. 5, 2023 to Oct. 5,
2023. In total, 1.5 ∗ 208 raw transactions were collected,
consuming 30 GB-storage. We make the collected trans-
actions replayable as follows: We initialize the local state,
that is, account balances and nonces by crawling relevant
data from infura.io. We then replace the original sender
in the collected transactions with the public keys that we
generated. By this means, we know senders’ secret keys and
can send the otherwise same transactions in the experiments.

We choose 8 traces of consecutive transactions from
the raw dataset collected, each lasting 2.5 hours. We run
experiments on each 2.5-hour trace. The reason to do so,
instead of running experiments directly on the one-month
transaction trace, is that the initialization of blockchain state
in each trace requires issuing RPC queries (e.g., against
infura) on relevant accounts, which is consuming; for a 2.5-
hour trace, the average time of RPC querying is about one
day. To make the selected 2.5-hour traces representative, we
cover both weekdays and weekends, and on a single day,
daytime and evening times.

Figure 4: Experimental setup

Experimental setup: For experiments, we set up four
nodes, an optional attack node sending crafted transactions,
a workload node sending normal transactions collected, a
victim non-validator node propagating the transactions and
blocks between attack node and victim validator node, and

a victim validator node receiving transactions from the
workload node and attack node through non-validator node.
The victim validator node is connected to both the workload
node and victim non-validator node which is connected to
the attack node. There is no direct connection between the
attack node and the workload node. The attack node runs
an instrumented Geth v1.11.4 client (denoted by Geth-a)
that can propagate invalid transactions to its neighbors. The
victim nodes run the target Ethereum client to be tested; we
tested three victim clients: vanilla Geth v1.11.4, SAFERAD
CP and SAFERAD AP; the latter two are implemented as ad-
don to Geth v1.11.4. The workload node runs a vanilla Geth
v1.11.4 client. On each node, we also run a Prysm v3.3.0
client at the consensus layer. The experiment platform is
depicted in Figure 4. Among the four nodes, we stake Ether
to the consensus-layer client on the victim validator node,
so that only the victim validator node would propose or
produce blocks.

We run experiments in two settings: under attacks and
without attacks. For the former, we aim at evaluating the
security of SAFERAD under attacks, that is, how successful
DoS attacks are on SAFERAD. In this setting, we run all
three nodes (the victim, attack and workload nodes). For
the latter, we aim to evaluate the utility of SAFERAD under
normal transaction workloads. In this setting, we only run
victim and workload nodes, without running the attack node.

In each experiment, 1) we replay the collected trans-
actions as follows: For each original transaction tx col-
lected, we send a replayed transaction tx′ by replacing its
sender with a self-generated blockchain address. 2) When
replaying a collected block, we turn on the block-validation
function in Prysm, let it produce and validate one block,
and send the block (which should be different from the
content of the collected block) to the Geth client. We then
immediately turn off block validation before replaying the
next transaction in the trace.

Method limitation: Our transaction-replay method presents
a coarse estimation of revenue due to the following rea-
soning: First, our method can precisely reproduce the same
transaction fees if the same blocks (and transaction order-
ing) are produced in our experiment as in the mainnet;
because we use GasUsed in replaying those transactions
included in the mainnet. Second, our method does not cover
the validators’ revenue received from smart contracts (e.g.,
MEV and bribing).’ Third, our method presents a coarse es-
timation of fees for transactions excluded from the mainnet
blockchain. For those transactions, there is no ground truth
regarding their GasUsed; the value of GasUsed depends on
runtime factors like transaction ordering and timing, which
are unknown for transactions excluded from the blockchain.
Generally, the possible values for GasUsed fall in a range,
and our method is a best-effort estimation of such a range
based on the assumption that, in practice, transaction senders
are incentivized to make their tx.Gas as precise as possible
to the expected range of GasUsed.



8.2. Revenue Under Normal Transactions
This experiment compares different mempool policies

by evaluating their block revenue under the same transaction
workloads.

We consider three mempool policies, the baseline one
in Geth v1.11.4, SAFERAD-CP and SAFERAD-AP on the
baseline. Given each policy, we replay the 8 transaction
traces in the same way as before and collect the produced
blocks. We report the average revenue per block collected
from the blocks.

Figure 5 presents the revenue of the selected 150 con-
secutive blocks from the 600 blocks in Trace 2. The num-
bers of the three mempool policies are close, and they
fluctuate in a similar way. Table 3 presents the aggre-
gated results by the revenue per block. Compared to Geth
v1.11.4, CP’s revenue per block falls in the range of
[100%+1.18%, 100%+7.96%]. AP’s revenue per block falls
in the range of [100%− 1.33%, 100%+2.55%]. This result
suggests under CP or AP, SAFERAD incurs no significant
change of block revenue under normal transactions.
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Figure 5: Block revenue w/w.o. SAFERAD under Trace 2.
SAFERAD introduces negligible change of revenue.

TABLE 3: Block revenue (Ether) of different mempool
policies. In bold are max and min numbers.

Trace CP AP Geth
1 0.73 (+3.13%) 0.72 (+1.02%) 0.71
2 1.17 (+6.97%) 1.08 (−1.19%) 1.09
3 0.85 (+4.55%) 0.81 (−0.21%) 0.81
4 0.54 (+4.56%) 0.54 (+2.55%) 0.52
5 0.78 (+6.66%) 0.72 (−1.09%) 0.73
6 1.19 (+4.23%) 1.12 (-1.33%) 1.14
7 0.56 (+1.18%) 0.57 (+2.1%) 0.55
8 0.64 (+7.96%) 0.59 (+0.74%) 0.59

8.3. Revenue Under Known Eviction Attacks

This experiment evaluates the security of SAFERAD
against known eviction attacks.
Background of eviction attacks: Given that different mem-
pools are exploitable to different eviction attacks, we choose
a variant of eviction attack known as XT6 [31] that is found
to be successful on Geth v1.11.4. Briefly, XT6 works on the
mempool of Geth v1.11.4, whose capacity is of m = 5120
transactions. Geth’s mempool can additionally store up to
mf = 1024 future transactions. The mempool admits up to
l = 16 transactions of the same sender, provided there are
less than 5120 pending transactions in the m+mf = 6144
slots.

Under this setting, XT6 works in the following four
steps: 1) It first evicts the Geth mempool by sending
m+mf

l = 384 transaction sequences, each of l = 16
transactions from a distinct sender. The transaction fees are
high enough to evict normal transactions initially in the
mempool. 2) It then sends

⌈
mf

l−1

⌉
= 69 transactions to

evict 69 parent transactions sent in step 1) and turn their
child transactions into future transactions. 3) Since now
there are more than m = 5120 pending transactions in the
mempool, Geth’s limit of 16 transactions per sender is off.
It then conducts another eviction; this time, it sends all 5120
transactions from one sender, evicting the ones sent in the
previous round. 4) At last, it sends a single transaction to
turn all transactions in the mempool but one into future
transactions. The overall attack cost is low, costing the fee
of one transaction.

Because XT6 can evict Geth’s mempool until it is with
one transaction, we estimate Geth’s bound by the maximal
price in a given mempool times the minimal Gas per trans-
action (21000 Gas).
Experimental method: We set up the experiment platform
described in § 8.1. In each experiment, we drive benign
transactions from the workload node. Note that the collected
workload contains the timings of both benign transactions
and produced blocks. On the 30-th block, we start the
eviction attack. Each time the attack node detects the arrival
of a newly produced block, it waits for d seconds and sends
a round of crafted transactions. The attack phase lasts for
36 blocks; after the 66-th block, we stop the eviction attack
node from sending crafted transactions. We keep running the
workload and victim nodes for another 24 blocks, then stop
the process at the 90-th block. We collect produced blocks
and, for each block, report the fees of included transactions
replayed using the method described in § 8.1.
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Figure 6: Validator revenue under attacks (XT6 [31]): With
and without SAFERAD defenses on a single node.

Results: Figure 6a reports the metrics for XT6 on three
victim clients: vanilla Geth v1.11.4, SAFERAD-AP and
SAFERAD-CP. Before the attack is launched (i.e., before
the 30-th block), the three clients produce a similar amount
of fees for benign transactions, that is, around 0.7−2.0 Ether
per block. As soon as the attack starts from the 30-th block,
Geth’s transaction fees quickly drop to zero Ether, which
shows the success of XT6 on unpatched Geth v1.11.4. There
are some sporadic spikes (under 0.7 Ether per block), which
is due to that XT6 cannot lock the mempool on Geth.
Patching Geth with SAFERAD-AP and SAFERAD-CP can



fix the vulnerability. After the attack starts on the 30-th
block, the transaction fees, instead of decreasing, actually
increase to a large value; the high fees are from adversarial
transactions and are charged to the attacker’s accounts. The
high fees show SAFERAD’s effectiveness in defense against
known eviction-based attacks (XT6).

Figure 6b shows the fees per block under XT6 with
varying delays, where the delay measures the time between
when a block is produced and when the next attack arrives.
The results of Geth v1.11.4 show that with a short delay, the
transaction fees in mempool are high because XT6 cannot
lock a mempool, and the short block-to-attack delay leaves
enough time to refill the mempool. With a median delay
(e.g., sending an attack 8 seconds after a block is produced),
the attack is most successful, leaving mempool at zero Ether.
With a long delay, the in-mempool transaction fees grow
high due to the attack itself being interrupted by the block
production. Under varying delays, the transaction fees of
the mempool practicing Policy CP and AP would remain
constant at a high value, showing the defense effectiveness
against attacks of varying delays.

8.4. Revenue Under Known Locking Attacks

This experiment evaluates the security of SAFERAD
against known locking attacks.
Background of locking attacks: Recall that in our Policy
CP, an arriving transaction ta evicts a childless trans-
action te only when ta.price > te.price. In practice,
OpenEthereum adopts this policy and is found exploitable
under a locking attack named by XT9 in MPFUZZ [31]. We
use XT9 as the attack workloads for evaluation. In XT9,
the attacker monitors for empty slots in the mempool, which
occur due to the arrival of new blocks, and promptly sends
the same number of transactions to fill these slots. These
transactions are distributed across m+mf

l = 384 different
accounts. Each transaction set includes a child transaction
with a higher price ph compared to normal transactions,
while all parent transactions have a minimal fee of 1 Gwei.
As a result, subsequent normal transactions are declined
because their price is lower than ph. Since the parent
transactions have a very low price, the mempool becomes
locked at a low overall cost.
Experimental method: We run experiments using the same
method as in § 8.3 except that the attack in this experiment
begins at the 15-th block and ends at the 55-th block, lasting
for 40 blocks.
Results: Figure 7a shows the metrics under XT9 for three
clients. Before the attack (up to the 15-th block), fees are
similar (0.7 - 2.0 Ether per block). From the 15-th to the 30-
th block, the attacker fills the mempool, maintaining this fee
range due to sufficient normal transactions. After the 30-th
block, SAFERAD-CP fees drop to 0.06 Ether per block as the
mempool is filled with the attacker’s low-fee parent trans-
actions and a single high-fee childless transaction, blocking
normal transactions. Even after the attack ends at the 55-
th block, block revenue remains low due to lingering low-
fee attack transactions. This shows XT9 effectively locks

(a) XT9 w. 0-sec. delay (single
node)

0 1 2 3 4 8 12

Delay (second)

0

100

T
x
 f

e
e
 p

e
r 

b
lo

c
k
 (

*
 1

0
^

-1
 E

th
e
r)

Geth

saferAd (AP)

saferAd (CP)

(b) XT9 w. varying delay (single
node)

Figure 7: Validator revenue under attacks: With and without
SAFERAD defenses.

the mempool under SAFERAD-CP, negatively impacting
block revenue. In contrast, SAFERAD-AP and vanilla Geth
maintain normal block revenue, demonstrating SAFERAD-
AP’s effectiveness against XT9.

Figure 7b shows the fees per block under XT9 with
varying delays. For SAFERAD-CP, a short delay results in
low transaction fees due to the rapid locking of the mempool
by XT9. Low-revenue blocks emerge early, resulting in
the reduced fee per block. Conversely, with a long de-
lay, transaction fees increase as normal transactions occupy
empty slots and are mined into new blocks, thereby raising
the average revenue of blocks. SAFERAD-AP and vanilla
Geth maintain consistently high fees regardless of delay,
demonstrating their effectiveness against locking attacks.

8.5. Estimation of Eviction Bounds

This experiment estimates the eviction bounds of differ-
ent admission policies under real-world workloads.
Experimental method: In the experiment, we replayed the
transaction traces we collected in § 8.1 on one of three
Ethereum clients, be it either CP, AP, or vanilla Geth
v1.11.4 . In each run, right after producing each block, say
bki, we record the mempool snapshot sti. Then, assuming
an attack starts right after the block bki is produced and
lasts for the next 10 blocks, we estimate the lower bound of
fees in the mempool right after block bki+10 under arbitrary
eviction attacks.

1) For CP, we use the sum of price in sti to estimate
the above bound, that is, 21000 ∗

∑
tx∈st tx.price. 2) For

AP, we use gAP(sti+10 ∪ bki+1 ∪ bki+2 . . . ∪ bki+10) to
estimate the above bound; recall gAP() in Equation 14. 3)
For the baseline, we consider vanilla Geth v1.11.4 under
XT6; instead of mounting actual attacks (which is time-
consuming), we estimate the attack damage by considering
that the mempool under attack contains only one transaction,
which is consistent with the mempool end-state under an
actual XT6 attack.
Results: Figure 8 presents the results of estimated bounds
over time. Compared to the mempool fees post attacks in
Geth v1.11.4, both SAFERAD policies achieve high eviction
bounds. The bound of CP is higher than that of Geth
v1.11.4 by 4 orders of magnitude, and the bound of AP is
higher than that of Geth v1.11.4 by 5 orders of magnitude.
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v1.11.4 under worst-case eviction attacks.

TABLE 4: Average, 95-th, and 5-th percentile of eviction
bounds under different policies on eight transaction traces

Avg. bound
(Ether)

95% bound
(Ether)

5% bound
(Ether)

CP 6.05 13.72 2.63
AP 101.05 299.60 16.41
Geth 0.63 · 10−3 1.05 · 10−3 0.17 · 10−3

Table 4 presents statistics of the estimated bounds on the
three clients tested. It includes the average, 95-th, and 5-
th percentile of eviction bounds. Both SAFERAD policies
achieve statistically higher bounds than the baseline of Geth.
On average, CP’s eviction bound is 6.05 Ether, and AP’s
bound is 101.05 Ether, both of which are much higher than
the 0.63 · 10−3 Ether in Geth under attacks. For CP, 5% of
its bounds exceed 13.72 Ether, and 95% exceed 2.63 Ether.
For AP, 5% of its bounds exceed 299.60 Ether, and 95%
of its bounds exceed 16.41 Ether.

8.6. Estimation of Locking Bounds

This experiment estimates the γ value in Equation 16
which indicates the security level of the mempool un-
der locking attacks. Since Policy CP is unsecured against
locking, we focus on evaluating AP here. Given a se-
quence of arriving transactions o⃗ps, we derive from Equa-
tion 16 the following: γ(tx) = tx.price

scoreAP (tx,o⃗ps) − 1, γ(s) =
max ∀tx∈o⃗ps∧

tx.sender=s

γ(tx), and γ = max∀tx∈o⃗ps γ(tx).

We similarly run experiments as in § 8.5 with the eight
collected transaction traces described in § 8.1.

TABLE 5: Estimated γ from eight transaction traces.
Tx trace 1 2 3 4 5 6 7 8

γ 0.82 0.37 0.33 0.24 0.50 0.37 0.92 0.35

The results are illustrated in Table 5. The maximal γ is
0.92 across the eight traces. This implies that under arbitrary
attacks, the maximal price of declined transactions by a
mempool running Algorithm 1 can be bounded by 1.92×
of the minimal price of transactions in the mempool.

9. Performance Evaluation

9.1. Performance under Generic Workloads

Design rationale: This section evaluates the concrete per-
formance overhead introduced by the SAFERAD defenses.

As described by the implementation notes in § 7, some
scoring functions entail additional index whose overhead is
data dependent and can be superlinear (e.g., one transaction
replacement on the index built for scoreAP can potentially
trigger the entire scan of the mempool), we present an
evaluation of performance overhead of SAFERAD under
real-world transaction workloads.
Platform setup: In this work, we use Ethereum Foun-
dation’s test framework [12] to evaluate the performance
of the implemented countermeasures on Ethereum clients.
Briefly, the framework runs two phases: In the initialization
phase, it sets up a tested Ethereum client and populates its
mempool with certain transactions. In the workload phase,
it runs multiple “rounds”, each of which drives a number
of transactions generated under a target workload to the
client and collects a number of performance metrics (e.g.,
latency, memory utilization, etc.). In the end, it reports the
average performance by the number of rounds. In terms
of workloads, we use the provided workload (i.e., “Batch
insert”).
Results under “Batch insert” workload: We use the
provided workload ”Batch insert” that issues addRemote
calls to the tested txpool of the Geth client. We select this
workload because all our countermeasures are implemented
inside the addRemote function. In the initialization phase,
this workload sends no transactions to the empty mempool.
In the workload phase, it runs one round and sends n0 trans-
actions from one sender account, with nonces ranging from
1 to n0, and of fixed Gas price 10000 wei. When n0 is larger
than the mempool size, Geth admits the extra transactions
to the mempool, buffers them, and eventually deletes them
by running an asynchronous process that reorganizes the
mempool (i.e., Function pool.scheduleReorgLoop()
in Geth).
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Figure 9: Performance under Workload “Batch insert”.

We report running time and memory usage in Fig-
ure 9a and Figure 9b, respectively. In each figure, we
vary the number of transactions n0 from 1000 to 10000,
where n0 ∈ [1000, 5000] indicates a non-full mempool,
and n0 ∈ [5000, 10000] indicates a full mempool. It is
clear that in both figures, the performance overhead for
a non-full mempool is much lower than that for a full
mempool; and when the mempool is full, both the running
time and memory usage linearly increase with n0. The high
overhead is due to the expensive mempool-reorg process
triggered by a full mempool. Specifically, 1) upon a full



mempool (n0 > 5000), on average, Geth v1.11.4 hardened
by SAFERAD CP/AP causes 1.073×/1.095× running time
and 1.000×/0.994× memory usage, compared to vanilla
Geth v1.11.4. 2) When the mempool is not full (n0 ≤ 5000),
on average, Geth v1.11.4 hardened by SAFERAD CP/AP
causes 1.017×/1.005× running time and 1.000×/1.000×
memory usage, compared to vanilla Geth v1.11.4. Overall,
the overhead by SAFERAD-CP/AP is negligible.

Note that Geth v1.11.4 that mitigates DETER causes
1.083× running time compared to vanilla Geth v1.11.3,
which is vulnerable to DETER.

9.2. Performance under Tx Resubmission
Methods: In practice, if a sender experiences a long delay in
block inclusion or dropped transactions, they will commonly
retry sending the transaction to ensure the block inclusion.
We evaluate SAFERAD under this adaptive user behavior.

Specifically, we aim to report and study two metrics:
the number of resubmitted transactions and the inclusion
delay (i.e., the time between when the transaction is first
submitted and when the transaction is eventually included in
a block (or when the attack ends)). To do so, we implement
a basic transaction-resubmitting strategy, that is, the user
waits a fixed period if she does not see her previously
sent transaction included in the blockchain. There are many
other “backoff” strategies [15], the modeling and evaluation
of which are out of the scope. We vary the time interval
between transaction re-submission, and for each interval,
we run the experiment under attacks in the same way as in
§ 8.3 and § 8.4.
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Figure 10: SAFERAD and vanilla Geth with transaction
resubmission

Results are presented in Figures 10a and 10b. Given each
experimental run, we rank the transaction senders by the
number of times their transactions are resubmitted. We
plot the distribution of resubmission times over senders in
Figure 10a. It is clear that SAFERAD entails much fewer
resubmissions than the vanilla Geth without protection. For
Geth, the shorter the interval is, the more resubmissions are.

Figure 10b presents the average inclusion delay with
varying resubmission intervals. This experiment carries out
eviction attacks. It is clear that SAFERAD achieves much
shorter inclusion delay (or transaction finality delay) than
unprotected Geth under user resubmission behavior. With
the increasing intervals, the delay also gets increased as
reasoned below: Given that a Geth node is vulnerable un-

der eviction attacks but not locking attacks, a resubmitted
transaction can be included into a block if it occurs after
an eviction attack but before the validator builds the next
block. The shorter the resubmission interval is, the more
likely the resubmitted transaction can hit this time window
and be included.

10. Discussion

Handling invalid transactions: This work focuses on the
secure design of the primary mempool (i.e., the one storing
only pending transactions) and considers the “basic” setting
where the primary mempool is of fixed size.

In practice, however, one can optimize mempool utility
or specifically block revenue by adding secondary mem-
pools to temporarily buffer invalid transactions, such as
future transactions and overdrafts. Specifically, there are
three cases: 1) An arriving invalid transaction declined by
the primary pool (recall the pre-check Line 1 in Algo-
rithm 1) enters the corresponding secondary pool. 2) An
invalid transaction buffered in the secondary pool may be
“promoted” as a valid transaction (e.g., a future transaction
in the secondary pool whose parent transaction recently
arrived). The promotion triggers the transaction to re-enter
the primary mempool. 3) A transaction evicted from the
primary pool will not enter any secondary pool.

In the above design, there is no interference between
the primary pool and secondary pool, in the sense that no
invalid transaction can cause the eviction of an existing valid
transaction in the primary mempool (in compliance with
the attack-specific defense proposed in DETER [25] and
MPFUZZ [31]).

However, this non-interference design can lead to sub-
optimal block revenue: When an invalid transaction arrives
at a full secondary pool and a primary pool with empty
slots, the transaction would be declined by both pools in
the current design. One can further optimize block revenue
by repurposing empty slots in the primary pool to store
invalid transactions. When this occurs, the primary pool
treats an empty slot, storing an invalid transaction as if it
were a normal empty slot; that is, a slot buffering an invalid
transaction in the primary pool would have the same priority
in transaction admission as an empty slot.
Handling transaction replacements: SAFERAD handles
transaction replacements in the same way as existing
works [25], [31]. An imminent replacement of an existing
transaction tx2 by an arriving transaction tx1 is checked to
avoid turning any of tx1’s descendants into latent overdrafts.
Design generalizability: Our mempool security definitions
and defenses are based on some generic transaction at-
tributes and can apply to other major blockchains, notably
Bitcoin. Specifically, this work only assumes transactions
can form a parent-child relationship, such as in Algorithm 1
and scores like CP; such relationship models the case in
Ethereum (where the parent and children are based on
nonce) and the case in Bitcoin (where the parent and chil-
dren are based on transaction input and output). Thus, given
that Bitcoin transactions also have other attributes assumed



in this work, such as price, we believe it is straightforward
to apply the techniques in this work to Bitcoin.

11. Conclusion
This paper presents provably secure mempool designs

under asymmetric DoS attacks. It formulates security defini-
tions under two abstract DoS attack types, namely eviction-
and locking-based attacks. It presents a suite of secure mem-
pool policies, SAFERAD, that achieves both eviction- and
locking- security. The evaluation shows SAFERAD incurs
negligible overhead in latency and validator revenue.
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Appendix A.
Proof of Theorem 6.7

A.1. Relevant Theorems and Proofs

Before proving, we first build a useful analytical model
of Algorithm 1. Specifically, we model the insertion to the
ordered list in Line 4 in the algorithm by a sorting network.



The sorting network consists of conditional swaps or cswap
defined as follows.
Definition A.1. Given two (unordered) input transactions

tx0, tx1 and a set of transactions st, a cswap function
produces as output a list of the two input transactions
ordered by their scoreAP w.r.t. st. Formally,

cswapst(tx0, tx1) = tx3, tx2 (17)
{tx3, tx2} = {tx0, tx1}

scoreAP(tx3, st) ≥ scoreAP(tx2, st)

Given a set of transactions txs and a transaction set st,
function x(txs) returns the transaction of the maximal
scoreAP w.r.t. st, and function n(txs) returns the trans-
action of the minimal scoreAP w.r.t. st.

We also define pairwise order insensitivity.
Definition A.2 (Pairwise order insensitivity). A mempool

is admission-order insensitive if.f. for any initial state,
denoted by st0, and any two transactions arriving in
order, txa, txb (i.e., txb arriving after txa), the end state
reached by st0 admitting txa, txb is the same as the state
reached by st0 admitting txb, txa. Formally,

∀st0, txa, txb, (18)
f(⟨st0,∅⟩, txa, txb) = f(⟨st0,∅⟩, txb, txa)

Lemma A.3. A mempool running Algorithm 1 is pair-wise
order insensitive as in Definition A.2.

Proof We prove the theorem by considering the setup spec-
ified by Definition 6.1 and proving Equations 19.

Suppose a mempool running Algorithm 1 is of state
st0, in which the transactions of the lowest scoreAP and
the second lowest scoreAP are denoted by tx0 and tx1,
respectively. That is,

scoreAP(tx0, st0) = min
tx∈st0

scoreAP(tx, st0) (19)

scoreAP(tx1, st0) = min
tx∈st0\{tx0}

scoreAP(tx, st0)

Now consider the timeline A in which the mempool
receives two transactions in the following order: txa arriving
before txb. In this timeline, Algorithm 1 would insert the
arriving transactions txa, txb to the internal ordered list (see
Line 4. In the model of a sorting network, it essentially runs
cswap() three times as follows.

A1) Initially, Algorithm 1 runs cswap() on tx0, txa,
because scoreAP(tx0, st0) < scoreAP(tx1, st0). That is:

cswap(tx0, txa) = tx3, tx2

scoreAP(tx3, st0 ∪ {txa}) ≥ scoreAP(tx2, st0 ∪ {txa})
tx3 = x(tx0, txa)

tx2 = n(tx0, txa) (20)

Assuming st0 is full, it is tx2 that is evicted from the
mempool.

A2) The algorithm runs the second cswap:

cswap(tx1, txb) = tx5, tx4

st1 = st0 ∪ {txa} \ {tx2}
scoreAP(tx5, st1 ∪ {txb}) ≥ scoreAP(tx4, st1 ∪ {txb})

tx5 = x(tx1, txb)

tx4 = n(tx1, txb) (21)

A3) The algorithm runs the third cswap:

cswap(tx4, tx3) = tx7, tx6

scoreAP(tx7, st1 ∪ {txb}) ≥ scoreAP(tx6, st1 ∪ {txb})
tx7 = x(tx4, tx3)

tx6 = n(tx4, tx3) (22)

Transaction tx6 is evicted from the mempool, leading to
the end state in Equation 23:

st2 = st0 ∪ {txa, txb} \ {tx2, tx6} (23)
{tx2, tx6} = {n(tx0, txa), n(txb, tx1, x(tx0, txa))} (24)

From Equations 20, 21, and 22, we can derive Equa-
tion 24 as above.

Now consider timeline B in which the mempool has the
same initial state st0 and the same two arriving transactions
except that they arrive in opposite order: txb before txa. By
similar analysis and by symmetry, we can derive the end
state as follows:

st′2 = st0 ∪ {txb, txa} \ {tx′
2, tx

′
6} (25)

tx′
2 = n(tx0, txb)

tx′
6 = n(txa, tx1, x(tx0, txb))

{tx′
2, tx

′
6} = {n(tx0, txb), n(txa, tx1, x(tx0, txb))} (26)

In the following, we prove {tx2, tx6} = {tx′
2, tx

′
6} by

considering the three cases:
Case C1): scoreAP(txa, st0) ≤ scoreAP(tx0, st0) .

Thus, n(tx0, txa) = txa and x(tx0, txa) = tx0. Because
n(tx0, tx1) = tx0, we can have:

{tx2, tx6} = {txa, n(txb, tx0)}
{tx′

2, tx
′
6} = {n(txb, tx0), txa} = {tx2, tx6}

Case C2): scoreAP(txb, st0) ≤ scoreAP(tx0, st0) .
Thus, n(tx0, txb) = txb and x(tx0, txb) = tx0. Because
n(tx0, tx1) = tx0, we can have:

{tx2, tx6} = {n(txa, tx0), txb}
{tx′

2, tx
′
6} = {txb, n(txa, tx0)} = {tx2, tx6}



TABLE 6: Proof of order insensitivity: Equality between end state dc = {tx2, tx6} under timeline txa, txb and dc′ =
{tx′

2, tx
′
6} under timeline txb, txa. In gray means outside the mempool.

scoreAP(txa, st0) ≤ scoreAP(txb, st0) ≤ scoreAP(txa, st0) > scoreAP(tx0, st0) ∧
scoreAP(tx0, st0) scoreAP(tx0, st0) scoreAP(txb, st0) > scoreAP(tx0, st0)

tx2 = n(tx0, txa) txa n(txa, tx0) 0
tx6 = n(txb, tx1, x(tx0, txa)) n(txb, tx0) txb n(txb, tx1, txa)
tx′

2 = n(tx0, txb) n(txb, tx0) txb 0
tx′

6 = n(txa, tx1, x(tx0, txb)) txa n(txa, tx0) n(txb, tx1, txa)

Case C3): scoreAP(txa, st0) > scoreAP(tx0, st0) ∧
scoreAP(txb, st0) > scoreAP(tx0, st0) . Thus,
n(tx0, txa) = tx0, n(tx0, txb) = tx0, x(tx0, txa) = txa,
and x(tx0, txb) = txb .

{tx2, tx6} = {tx0, n(txb, tx1, txa)}
{tx′

2, tx
′
6} = {tx0, n(txb, tx1, txa)} = {tx2, tx6}

The three cases are summarized in Table 6. Proven.

Figure 11: Order-insensitive mempool and a sorting-network
model of transaction admission.

A.2. Main Proof of Theorem 6.7

We now present the proof of Theorem 6.7.

Proof Consider a timeline f(⟨st0,∅⟩), a⃗s ⇒ ⟨stn, dcn⟩
and another timeline from a⃗s, that is, f(⟨st0,∅⟩), a⃗s′′ ⇒
⟨st′′n, dc′′n⟩. a⃗s′′ is reordered from a⃗s, while preserving the
happen-before partial order.

Consider the original timeline a⃗s (full description in
Equation 10) and a destination timeline a⃗s′′ (in Equa-
tion 11). We can construct a procedure (i.e., a sorting
network) as follows that converts a⃗s to a⃗s′′.

Denote a⃗s and a⃗s′′ by a⃗s′0 and a⃗s′n. For ∀k ∈ [0, n−1],
consider converting a⃗s′k to ⃗as′k+1 as follows:

Step 1) Find the first transaction of index i on a⃗s′k that
differs from the i-th transaction on a⃗s′′. That is,
a⃗s′k.at(i) ̸= a⃗s′′.at(i).

Step 2) If a⃗s′k.at(i) is not the parent of a⃗s′k.at(i + 1),
swap a⃗s′k.at(i) and a⃗s′k.at(i + 1). Otherwise, it
moves the reference to the next position (j =
i+1) and tries swapping a⃗s′k.at(j) and a⃗s′k.at(j+
1). It keeps incrementing j until it successfully
conducts a swap.

Step 3) By incrementing j, it keeps doing swaps until
transaction a⃗s′k.at(i) is ordered after transaction
a⃗s′′.at(i).

Step 4) Repeat Steps 1), 2) and 3) with the same i, until
a⃗s′k.at(i) equals a⃗s′′.at(i). In the end of Step 3),
we denote the transaction list by ⃗as′k+1.

Step 5) Repeat Steps 1), 2), 3), and 4) after enough
iterations, say n− 1 iterations, until a⃗s′n = a⃗s′′.

Consider each swap step in Step 2) in the above pro-
cedure. That is, given the current transaction list ⃗as′kj , it
swaps the j-th and j+1-th transactions on this list, resulting
in ⃗as′kj+1 . Because the procedure above swap transactions
without violating the parent-before relationship, and due to
Lemma A.3, given the same initial state ⟨st0, dc0⟩, replay-
ing transactions in ⃗as′kj leads to the same end state with
replaying transactions in ⃗as′kj+1 .

By induction, the overall swap procedure from the begin-
ning list a⃗s to the end list a⃗s′′ does not change the mempool
end state, that is, ⟨stn, dcn⟩ = ⟨st′′n, dc′′n⟩.

Appendix B.
Proof of Theorem 6.6

First, we prove Lemma 6.5.

Proof We prove this lemma by contradiction. Assume tx ∈
sti is turned into a future transaction in sti+1.

There must be an ancestor of tx, say tx′, that is evicted
from sti+1 by Algorithm 1. Due to Line 5, tx′ must be
ordered the last on s⃗t. That is, tx′ must be ordered after tx
on s⃗t. However, tx.nonce > tx′.nonce and, according to
the break-even rules in TORDER() (described in § 5.2), tx′

is ordered before tx on the total order. Contradiction.

Second, we present and prove a relevant Lemma B.1
before proving Theorem 6.6.

Lemma B.1 (Independence of scoreAP). Suppose a mem-
pool running Algorithm 1 with scoreAP admits an arriv-
ing transaction tai and transitions its state from sti to
sti+1. That is, ADTX(sti, tai) → sti+1, tei as in Equa-
tion 1. For the set of transactions residing in the mem-
pool before and after the admission (i.e., sti ∩ sti+1),
their scoreAP do not change. Formally,

∀tx ∈ sti+1 ∩ sti = sti+1 \ {tai}
scoreAP(tx, sti) ≡ scoreAP(tx, sti+1) (27)

Proof We prove the lemma by two properties: 1) Given a
transaction tx and a set st, scoreAP(tx, st) depends only
on tx’s ancestors in st. 2) Given state transition from sti
to sti+1, if tx ∈ sti ∩ sti+1, any of tx’s ancestors, say tx′,
must also belong to sti ∩ sti+1.

Property 1) can be easily derived from Equation 8.
We prove Property 2) by contradiction. Given a tx ∈

sti∩sti+1, assume tx′ is tx’s ancestor, and tx′ ̸∈ sti∩sti+1



. Consider three sub-cases: 2a) tx′ ̸∈ sti ∧ tx′ ̸∈ sti+1. 2b)
tx′ ̸∈ sti ∧ tx′ ∈ sti+1. 2c) tx′ ∈ sti ∧ tx′ ̸∈ sti+1.

In sub-case 2a), tx must be a future transaction in
both sti and stI+1, which contradicts the setting that our
mempool stores only pending transactions.

In sub-case 2b), tx must be a future transaction in sti.
Contradiction.

In sub-case 2c), Algorithm 1 must evict tei = tx′, and
tx′ is an ancestor to tx. In other words, Algorithm 1 under
scoreAP must turn tx into a future transaction in sti+1,
which contradicts with Lemma 6.5.

Overall, Property 2) holds.

Third, we now present the proof of Theorem 6.6.

Proof Consider that a mempool running Algorithm 1 re-
ceives an arriving transaction tai and transitions from state
sti to sti+1. We prove the following equation:

∑
tx∈sti+1

scoreAP(tx, sti+1) ≥
∑

tx∈sti

scoreAP(tx, sti) (28)

To start with, denote by st the set of transactions that
exist in both sti and sti+1. That is, st = sti ∩ sti+1. Due
to the score independence (i.e., Lemma B.1), we have

∑
tx∈st

scoreAP(tx, sti) =
∑
tx∈st

scoreAP(tx, sti+1)

Now we consider three cases for state transition: 1) tai
is declined, 2) tai is admitted by taking an empty slot in
sti (i.e., no transaction is evicted), and 3) tai is admitted
by evicting tei. In Case 1), sti = sti+1 = st. Thus,

∑
tx∈sti

scoreAP(tx, sti) =
∑
tx∈st

scoreAP(tx, sti)

=
∑
tx∈st

scoreAP(tx, sti+1)

=
∑

tx∈sti+1

scoreAP(tx, sti+1)

In Case 2), sti+1 = {tai}∪sti, and sti = st. Thus,

∑
tx∈sti+1

scoreAP(tx, sti+1)

=
∑

tx∈sti∪{tai}

scoreAP(tx, sti+1)

=
∑

tx∈sti

scoreAP(tx, sti+1) + scoreAP(tai, sti+1)

=
∑
tx∈st

scoreAP(tx, sti+1) + scoreAP(tai, sti+1)

=
∑

tx∈sti

scoreAP(tx, sti) + scoreAP(tai, sti+1)

≥
∑

tx∈sti

scoreAP(tx, sti)

In Case 3), sti+1 \ {tai}= sti \ {tei}= st. Applying
Line 7 in Algorithm 1, we can derive the following:

∑
tx∈sti+1

scoreAP(tx, sti+1)

=
∑

tx∈st∪{tai}

scoreAP(tx, sti+1)

=
∑
tx∈st

scoreAP(tx, sti+1) + scoreAP(tai, sti+1)

=
∑
tx∈st

scoreAP(tx, sti) + scoreAP(tai, sti+1)

≥
∑
tx∈st

scoreAP(tx, sti) + scoreAP(tei, sti)

=
∑

tx∈st∪{tei}

scoreAP(tx, sti)

=
∑

tx∈sti

scoreAP(tx, sti)

Therefore, in all three cases, Equation 28 holds. In
general, for any initial state st0 and any end state stn that is
transitioned from st0 with i ∈ [0, n− 1], one can iteratively
apply Equation 28 for i ∈ [0, n − 1] and prove the sum of
scoreAP monotonically increases.

Appendix C.
Proof of Lemma 6.9
Proof Given timeline f(⟨st0,∅⟩, a⃗s) ⇒ ⟨stn, dcn⟩, con-
sider any k ∈ [0, n] and the associated admission step:
ADTX(txk, stk) = tek, stk+1 . Because of Line 7 in Al-
gorithm 1 and Equation 27, if txk is declined, we have
stk = stk+1. Thus,

min
tx∈stk

scoreAP(tx, stk) = min
tx∈stk+1

scoreAP(tx, stk+1)

(29)
If txk is admitted, tek = txm(stk). The following holds:

min
tx∈stk

scoreAP(tx, stk)

= min( min
tx∈stk\

{txm(stk)}

(scoreAP(tx, stk)), scoreAP(txm(stk), stk))

≤ min( min
tx∈stk\

{txm(stk)}

(scoreAP(tx, stk)), scoreAP(txk, stk))

= min( min
tx∈stk+1\

{txk}

(scoreAP(tx, stk+1)), scoreAP(txk, stk+1))

= min
tx∈stk+1

scoreAP(tx, stk+1)

Induction from k = i to k = j−1 leads to Equation 15.



Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

The paper presents a new security definition for evaluat-
ing defense against asymmetric DoS attacks in Mempools. It
also introduces formal definitions for security and presents a
framework called SAFERAD for securing Mempools against
eviction and locking attacks. It also presents the practicality
of the approach by evaluating their approach on Ethereum
client Geth. The overall takeaway is that the paper presents
formal evidence that SAFERAD offers security with minimal
overhead.

D.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) The paper provides a valuable step forward in an
established field. It provides a formal approach to study
and evaluate security defenses against asymmetric DoS
attacks in Mempools. Formal justification adds value to
the paper and provides justification for the soundness
and correctness of the overall approach.

2) The paper creates a new tool to enable future science.
The paper presents the tool SAFERAD which offers
security with minimal overhead. The tool will be avail-
able to serve as a platform for future research.

D.4. Noteworthy Concerns

1) The paper is hard to follow and makes it difficult to
assess the correctness and soundness of the overall

approach. A formal description of the threat model and
all the formal definitions presented in Section 4 should
lead to making the reader understand about the formal
justifications presented in the paper and should connect
the formal justifications with the overall results.

2) The paper lacks the comparison with existing work and
discussion about how previous attacks and solutions fit
into the proposed framework in Section 1. For example,
discussion related to attacks discovered in MPFUZZ [31]
and how attacks discovered in DETER [25] and Mem-
Purge [32] fits with the proposed model.

3) The paper lacks proper discussion about the limitations
and to what level the proposed framework can be gen-
eralized. For example, the security analysis presented in
the paper only considers intra-block attacks and what
extensions it would need to tackle the attacks where
interleaving of blocks and transactions are allowed.
Also, the defense seems to be applicable only to the
valid transaction pool and the security analysis is more
inclined towards Ethereum, which makes it hard to
analyze the generalization of the overall approach.

4) The paper also lacks proper evaluation due to the fact
of making the experiments abstract instead of actu-
ally executing the transactions and it does not capture
the adaptive behavior of the transaction senders. This
makes it hard to evaluate the theoretical results through
the experiments.

Appendix E.
Response to the Meta-Review

In Section § 4.1, we discuss the correctness of our def-
initions and describe how they capture known attacks [25],
[31], [32] and all possible asymmetric mempool-DoS at-
tacks. The pre-checks in Algorithm 1 (i.e., Line 1) are
compatible with and has integrated the rule-based defenses
to specifically mitigate known attacks, such as DETER
and mpfuzz [11], [25]. § 9.2 presents the evaluation of
SAFERAD’s performance when users resubmit transactions
upon observing transaction exclusion from blocks. The pa-
per also discusses the design rational of replaying trans-
actions without actual execution, generalizability to non-
Ethereum blockchains, and the limitation of the current
security analysis.


