
Scalable Log Auditing on Private Blockchains via
Lightweight Log-Fork Prevention

Yuzhe Tang
ytang100@syr.edu
Syracuse University

Kai Li
kli111@syr.edu

Syracuse University

Yibo Wang
ywang349@syr.edu
Syracuse University

Sencer Burak
Somuncuoglu∗

burak.somuncuoglu@chainalysis.com
Chainalysis

Abstract
Thiswork presents TxChecker, a secure logging system over
a private blockchainwith two salient features: 1) TxChecker
prevents log forking attacks without trusting any external
party other than the blockchain, 2) TxChecker achieves a
low cost on log auditors that is proportional to the data be-
ing audited. TxChecker employs a novel scheme to map the
misbehavior of forking logs to the double-spending transac-
tions, which are invalidated by the underlying blockchain.
In the TxChecker protocol, clients and the server in the do-
main infrastructure both attest to a history of concurrent
operations and send blockchain transactions. A prototype of
TxChecker is implemented in HyperLedger Fabric. Evalua-
tion shows that TxChecker reduces the costs of log auditors
significantly compared to replication-based log schemes.

CCS Concepts: • Security and privacy → Distributed
systems security.
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1 Introduction
Preventing log forks among disconnected auditors, such as
web browsers, is known to be impossible without trusted-
third parties [14]. A promising solution is to use blockchains
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as a trusted source of fork prevention, as in recently pro-
posed blockchain logs such as Catena [17], Chainiac [15]
andGhostor [9].While the log actors in these schemes avoid
downloading a blockchain full node by using “light” clients
such as simplified payment verification (SPV) clients [3, 5],
they still incur high auditing overhead caused by the repli-
cated full logs across auditors. The high auditing overhead
presents a major bottleneck to scale the log auditing to a
large population. This work aims at lightweight prevention
of log forks for scalable auditing – Given a log of N entries,
an auditor on a single entry can be assured of no log forks
by downloading O(N ) log data (and blockchain data). We
call this property by distributed log auditing or DLA.
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Figure 1. TxChecker system model

We propose TxChecker, a log running over blockchain’s
SPV client and achieving DLA. In TxChecker, the overall
system in Figure 1 consists of a private blockchain and four
actors: a storage server, storage clients, a log server which
may co-reside with the storage server, log auditors whomay
co-reside with storage clients. Storage clients submit data
read/write operations to the storage server which process
the operations concurrently. The private blockchain stores
its ledger state in unspent transaction outputs or UTXOs [4].
In this work, a private blockchain are chosen because it is
more efficient than a public blockchain and is better suited
to observe the intensive operation stream. Also, a private
blockchain that federates a consortium of trust domains is
more resilient against insiders or external hacks than a con-
ventional database in a single domain.
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In the threat model, the storage server can misbehave
and the adversarial log server can mount forking attacks to
present different views to different auditors. The blockchain
is trusted to honestly validate transactions and provide im-
mutability; a double-spending transaction cannot be vali-
dated, and once be added to the blockchain, a transaction
cannot be altered.
Unlike existing log schemes [17] where only the log server

sends log attestations to the blockchains, TxChecker makes
both the server and clients send log attestations to the block-
chain. The log stores a history of storage operations, lin-
earized in an order consistent to their real-time relations. An
auditor on operation o downloads only the predecessor and
successor of the operation in the linearized log and can be
assured no forks occurred. The security (of no log forks) can
be reduced to the blockchain security assumption that no
double-spends are validated and the assumption that trusted
clients will not replay their log attestations.
As an application, TxChecker can verify the consistency

of concurrent storage operations against an untrusted server.
The consistency model is linearizability [8]. A TxChecker
auditor verify that concurrent operations belong to a lin-
earizable history.
We build a system prototype of TxCheckeron FabToken [4],

which is a UTXO-based token contract on HyperLedger Fab-
ric [2].1 We evaluate the client cost of TxChecker in compar-
ison to the existing replication-based log schemes. We build
a non-trivial cost model by counting the time duration and
size of the data a log auditor is required to maintain. The
target metric affecting auditing costs is blockchain’s trans-
action finality time. We conduct experiments by driving the
standard YCSB workloads [6] to the system and measure
the transaction finality delays of our TxChecker prototype
on FabToken. The experiment results show that with more
than hundreds of clients, TxChecker saves the client cost by
one to two orders of magnitude, compared with replicated
log schemes e.g., Catena.

2 Related Works
Amongblockchain applications to security infrastructures,
IKP [13] leverages cryptocurrencies to incentivize the re-
porting of mis-issued certificates in PKI and can be com-
plementary to TxChecker. ContractChecker [11] conducts
storage consistency verification in smart contracts. It adopts
the on-chain design where log auditing occurs fully on the
blockchain, thus incurring high costs in smart-contract exe-
cution. GEM2 trees [18] and TPAD [16] support the secure
database outsourcing to the hybrid blockchain-cloud plat-
form, enabling authenticated database queries at low block-
chain costs. These systems assume a single log auditor/data

1Note that we dismiss the alternative design to support TxChecker on
account-based blockchains directly (e.g., native Ethereum) due to the lack
of light-client supports there.

user and do not address the fork prevention as in TxChecker.
The design of blockchain light clients [3, 5, 10] is to avoid
downloading a full transaction history on a blockchain client.
The communication efficiency and reliability between the
blockchain network and a particular full-node client is ad-
dressed in [7]. These techniques are complementary to this
work which uniquely addresses the design of a light client
for blockchain logs.

3 The TxChecker Protocol
This section presents the TxChecker protocol. Due to the
space limits, the full security analysis is deferred to technical
report [1]. The protocol runs in epochs. In each epoch, there
are three steps: Step 1 occurs with each storage operation
a client sends to the storage server. By the end of an epoch,
the server attests to the batch of operations (Step 2 ), serves
log queries from individual auditors (Step 3 & 4 ).
Initially, there is a “genesis” transaction for each data key

used. The genesis transaction is sent by an offline trusted
party (e.g., a client). The transaction identity is propagated
to all participating clients and the server. We assume all par-
ticipating clients are available in this initialization process.
Step 1 : Client log attestation: Client c attests to her

operation o by calling txc [o] = clientAttest(c,o). Specif-
ically, suppose a client c sends a request of operation o to
the server at time o.inv . The server processes the requests
and sends the response at time o.rsp. Here, client c signs
her request, and the server signs the response, making the
operation double-signed. The client generates a transaction
txc [o] that encodes the double-signed operation o (e.g., us-
ing the OP_RETURN instruction). The transaction transfers
a fixed amount of cryptocurrency coins from the client c’s
address to the server’s address. The transaction is signed by
the private key controlled in client c’s wallet. The client will
send the ID of transaction txc [o] to the server.
Step 2 : Server log attestation: At the end of every epoch,

the server collects all the operations processed and, for each
key, declares a total-order on the operations of the key. To
find the total-order, the server can run existing linearizabil-
ity checking algorithms [12]. The server then attests to the
total-order by generating a series of server transactions. For-
mally, given operations {o} and their client transactions {txc [o]},
the server attests to the total order by generating server
transactions in order: {⟨o, txc , txs ⟩} = serverAttest({⟨o,
txc ⟩}). For each operation in the total-order, the server tags
a value calledmin_rsp, which is the minimal response time,
the next operation is allowed to have. Specifically, suppose
operation o′ is immediately succeeded by o. The server tags
operation o with themin_rsp value calculated as follows:

min_rsp[o] = max (min_rsp[o′],o.inv) (1)
2
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The server generates a transaction to encode operation o
andmin_rsp[o], that is, txs [o∥min_rsp[o]]. Transaction txs [o]2

fully spends the outputs of two transactions, txc [o] and txs [o′].
Note that the previous operation o′ may be processed in
a previous epoch. If operation o is the very first operation
of a given key, the server transaction txs [o] will spend the
output of the genesis transaction for the key txд(o.k), and
the output of client transaction txc [o]. If operation o is a
write w(k,v), the server transaction txs [o] encodes the key
and value of the record written. If the operation o is a read
v = r (k), the server transaction txs [o] also encodes both the
key of the read (k) and the value of the record read (v).
Step 3 : Submitting log query: A client who sent oper-

ation o is interested in auditing the consistency of the opera-
tion in the current total-order log. To do so, the client poses
a log query of operation o on the current epoch’s total-order
log. Given a log digest dд and a query on operation o, the
server processes the query against the log by returning oper-
ation o and its preceding operation o′, associated with their
server/client transactions: ⟨o, txc [o], txs [o]⟩, ⟨o′, txc [o′],
txs [o

′]⟩ = serverLogQuery(o,dд). If o is the first operation
by itself, the second triplet in the result is ⟨txд(o.k)⟩.
Step 4 : Log auditing based on query results: The re-

sult of log query constitutes the view of this client, that
is, ⟨o, txs [o], txc [o]⟩, and ⟨o′, txs [o

′], txc [o
′]⟩. Based on the

view, the client conducts the audits: b = clientLogAudit(c,
⟨o, txc [o], txs [o]⟩, ⟨o

′
, txc [o

′], txs [o
′]⟩,o). The audits include

the following two steps:
Step 4-1) Log integrity checks: The client checks the authen-
ticity of the predecessor operation presented by the untrusted
server. The purpose of the authenticity check is to detect
and prevent the server forging and forking the total-order
log. 4-1a): The client transaction’s signature can be veri-
fied against its public key. That is, the signature of txc [o′]
can be verified by client c(o′)’s public key. Here, we assume
clients are identified and their public keys are securely dis-
tributed among all clients. 4-1b): Server transactions fully
spend the outputs of the corresponding client transactions.
Specifically, the output of txc [o] (txc [o′]) is fully spent by
txs [o] (txs [o′]). 4-1c): The transaction txs [o] fully spends
the output of transaction txs [o′] or txд(o.k). 4-1d): All trans-
actions in the view, i.e., txc [o], txs [o], txc [o′] and txs [o′] (or
txд(o.k)), are finalized n the blockchain.
Step 4-2) Consistency checks: The client checks the consis-
tency on her view of operation history and ensure the lin-
earizability [8]. Informally, given a series of concurrent op-
erations, linearizability states that the operations can be se-
rialized to a total-order without violating the causal/real-
time order among them. Linearizability definition can be
found in [8]. 4-2a): Check real-time order: Operation o does
not happen before operation o′ or any earlier operations.
The following conditions are checked:min_rsp[o] = max(

2We use terms txs [o] and txs [o ∥min_r sp[o]] interchangeably.

min_rsp[o′] ,o.inv) (the same as in Equation 1) andmin_rsp[o′]
< o.inv . 4-2b): Check read-write freshness: If o is a read op-
eration, say v = r (k), and o′ is a write, say w(k ′,v ′), check
k ′ = k and v = v ′. If both o and o′ are reads, say v = r (k)
andv ′

= r ′(k ′), check k = k ′ and v = v ′. If both o and o′ are
writes, say w(k,v) andw ′(k ′,v ′), check k = k ′.

Prototype impl.: We build a TxChecker prototype on
FabToken. FabToken [4] is a UTXO-based contract that runs
over the permissioned blockchain of HyperLedger Fabric.
FabToken supports token transfer and represents each trans-
fer by a mapping between input (a token spent from the
sender’s address) and output (a new token spendable by the
receiver’s address). In other words, FabToken stores the to-
ken ownership state in the UTXO model.
With FabToken, TxChecker is implemented as a middle-

ware over HyperLedger Fabric’s off-chain clients. The mid-
dleware translates log updates into FabToken transfer()

calls so that each log update is represented by a token. We
abuse the “type” attribute in a FabToken to store the ex-
ternal log information. TxChecker sees HyperLedger Fab-
ric’s blockchain as a blackbox and is unaware of its internal
execute-order-validateworkflow. TxChecker uses default en-
dorsement policies and may abort conflicting transactions
in its order phase.

4 Evaluation
In this section, we evaluate the client cost of TxChecker in
comparison with replicated log auditing schemes (RLA).We
first build a client-cost model and, based on the model, per-
form experiments. transaction delay, denoted as Ft

N .
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Figure 2.Client costs of TxChecker, where the client cost of
replicated log is normalized and the client cost of distributed
log is measured by transaction delay Ft .

Experiment design: In RLA (replicated log auditing), each
auditor receives the log updates from all clients; the client
cost in replicated logs is proportional to the number of clients
N . In DLA (distributed log auditing), each auditor receives a
constant number of log updates and needs to maintain them
for an extended period of time until the transactions are fi-
nalized in the Blockchain (time period Ft ). Based on this, we
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can derive (see details in technical report [1]) that the client
cost of distributed logs divided by the cost of replicated logs
is proportional to transaction-finality delay Ft , which is thus
chosen as the primary metric of client cost.
In experiments, we set Epoch E to be longer than Ft , so

that the Blockchainwill not drop transactions eventually. To
measure Ft , we runN clients concurrently who submit their
transactions to the Blockchain. The N clients then proac-
tively check the finality of the transactions. We used the
suggested transaction fee and did not observe any transac-
tions being dropped. We record the time duration between
the submission time of the first transaction and the finality
of the last transaction on Blockchain.
Platform setup: We set up our TxChecker prototype on
HyperLedger Fabric in a cloud environment.We created four
servers using AWS EC2 instances, amongwhich three act as
peer nodes in the HyperLedger Fabric and one server acts
as the orderer node. The hardware specs of these servers
are the following: 3.0 GHz Intel Xeon Processor with two
virtual CPUs, 8 GB memory, 8 GB SSD storage. All these
servers run Ubuntu 16.04 LTS 64-bit, and use LevelDB asHy-
perLedger Fabric’s state database. On the client-side, we use
several laptops as client machines. The YCSB benchmark [6]
is used to generate transaction proposals. Particularly, in the
offline phase, we use YCSB to generate a trace of reads and
writes (on workload A of 50% reads and 50% writes, with
data keys following the Zipfian distribution). We then replay
the same trace on client machines, in each experiment, to
generate transaction proposals in TxChecker. The transac-
tion proposals are sent, at a controlled rate, to the peer nodes
in HyperLedger Fabric, such that it does not overwhelm the
blockchain network, and no transactions are dropped.
Experiment results: Figure 2a shows the client cost per
operation with a varying number of clients. With the in-
creasing number of clients, the client cost of RLA3 increases
linearly (note the log scale of client cost plotted on the fig-
ure). By contrast, the client cost of TxChecker grows much
slower. With 800 clients, the TxChecker cost is lower than
that of RLA by two orders of magnitude. This is due to that
each operation in RLAneeds to be replicated on allN clients
while an operation in TxChecker is replicated on two clients,
leaving its cost independent with the number of clients.
Figure 2b shows the per-operation client cost with vary-

ing number of operations submitted by a client. With more
operations (packed in an epoch), the client cost of TxChecker
increases; because with more operations, the current block
in the blockchain is more likely to be saturated, incurring a
longer delay on a TxChecker auditor. The client cost of RLA
stays constant when the number of operations per epoch
increases. Because in RLA, a client never truncates the log,
and the transaction delay does not affect the client’s cost.

3Note that we use RLA to represent the design of Catena.

Acknowledgments
This work was supported by the National Science Founda-
tion under Grant CNS1815814.

References
[1] Anyone can audit: Lightweight log auditing with fork prevention via

blockchains. https://tinyurl.com/y5xtfmer.
[2] Hyperledger fabric, https://www.hyperledger.org/projects/fabric.
[3] Simplified payment verification: http://docs.electrum.org/en/latest/spv.html.
[4] Using FabToken on HyperLedger Fabric, http://bit.ly/357zfgg.
[5] B. Bunz, L. Kiffer, L. Luu, and M. Zamani. Flyclient: Super-Light

Clients for Cryptocurrencies. 2019. https://eprint.iacr.org/2019/226.
[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking cloud serving systems with ycsb. In SoCC, pages 143–
154, 2010.

[7] J. Hellings and M. Sadoghi. Coordination-free byzantine replication
with minimal communication costs. In C. Lutz and J. C. Jung, editors,
ICDT 2020, March 30-April 2, 2020, Copenhagen, Denmark, volume
155 of LIPIcs, pages 17:1–17:20, 2020.

[8] M. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst. , 12(3):463–
492, 1990.

[9] Y. Hu, S. Kumar, and R. A. Popa. Ghostor: Toward a secure data-
sharing system from decentralized trust. In NSDI 2020, Santa Clara,
CA, USA, February 25-27, 2020, pages 851–877, 2020.

[10] A. Kiayias, N. Lamprou, and A. Stouka. Proofs of proofs of work with
sublinear complexity. In FC 2016 Workshops, pages 61–78, 2016.

[11] K. Li, Y. Tang, B. H. B. Kim, and J. Xu. Secure consistency verification
for untrusted cloud storage by public blockchains. In S. Chen, K. R.
Choo, X. Fu, W. Lou, and A. Mohaisen, editors, SecureComm 2019,
Orlando, FL, USA, October 23-25, 2019, Proceedings, Part I.

[12] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus,
S. Kumar, and W. Lloyd. Existential consistency: measuring and un-
derstanding consistency at facebook. In SOSP 2015, pages 295–310,
2015.

[13] S. Matsumoto and R. M. Reischuk. IKP: turning a PKI around with
decentralized automated incentives. In SP 2017, pages 410–426, 2017.

[14] D. Mazières and D. Shasha. Building secure file systems out of byan-
tine storage. In PODC 2002, pages 108–117, 2002.

[15] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford. CHAINIAC: proactive software-
update transparency via collectively signed skipchains and verified
builds. In E. Kirda and T. Ristenpart, editors, USENIX Security 2017,
pages 1271–1287. USENIX Association, 2017.

[16] Y. R. Tang, Z. Xing, C. Xu, J. Chen, and J. Xu. Lightweight blockchain
logging for data-intensive applications. In FC 2018 International
Workshops, WTSC, Nieuwpoort, Curaçao, March 2, 2018, pages 308–
324, 2018.

[17] A. Tomescu and S. Devadas. Catena: Efficient Non-equivocation via
Bitcoin. In SP 2017, pages 393–409, 2017.

[18] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi. Gemˆ2-tree: A gas-
efficient structure for authenticated range queries. In ICDE 2019,
pages 842–853. IEEE, 2019.

4


