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Abstract
In blockchains, mempool controls transaction flow before
consensus, denial of whose service hurts the health and se-
curity of blockchain networks. This paper presents MPFUZZ,
the first mempool fuzzer to find asymmetric DoS bugs by
exploring the space of symbolized mempool states and op-
timistically estimating the promisingness of an intermedi-
ate state in reaching bug oracles. Compared to the baseline
blockchain fuzzers, MPFUZZ achieves a > 100× speedup in
finding known DETER exploits. Running MPFUZZ on major
Ethereum clients leads to discovering new mempool vulnera-
bilities, which exhibit a wide variety of sophisticated patterns,
including stealthy mempool eviction and mempool locking.
Rule-based mitigation schemes are proposed against all newly
discovered vulnerabilities.

1 Introduction

In Ethereum, a mempool buffers unconfirmed transactions
from web3 users before they are included in the next blocks.
Mempool provides the essential functionality to bridge the
gap between varying rates of submitted transactions and rates
of produced blocks, regardless of public or private transac-
tions it serves. As shown in recent studies [28], denying a
mempool service can force the blockchain to produce blocks
of low or even zero (Gas) utilization, undermining valida-
tors’ incentives and shrinking the blockchain networks in the
long run, re-introducing the 51% attacks. Besides, a denied
mempool service can prevent normal transactions from block
inclusion, cutting millions of web3 users off the blockchain
and failing the DApps relying on real-time blockchain access.
Problem: Spamming the mempool to deny its service has
been studied for long [15, 18, 23, 33]. Early designs by send-
ing spam transactions at high prices burden attackers with
high costs and are of limited practicality. What poses a real
threat is Asymmetric DeniAl of Mempool Service, coined
by ADAMS, in which the mempool service is denied at an
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asymmetrically low cost. That is, the attack costs, in terms
of the fees of adversarial transactions, are significantly lower
than those of normal transactions victimized by the denied
mempool. In the existing literature, DETER [28] is the first
ADAMS attack, and it works by sending invalid transactions
to directly evict normal transactions in the mempool. Mem-
Purge [35] is a similar mempool attack that finds a way to
send overdraft transactions into Geth’s pending transaction
pool and causes eviction there. These known attacks are easy
to detect (i.e., following the same direct-eviction pattern). In
fact, the DETER bugs reported in 2021 have been successfully
fixed in all major Ethereum clients as of Fall 2023, including
Geth, Nethermind, Erigon, and Besu. Given this state of af-
fairs, we pose the following research question: Are there new
ADAMS vulnerabilities in the latest Ethereum clients already
patched against direct-eviction based attacks?

This work takes a systematic and semi-automated approach
to discovering ADAMS vulnerabilities, unlike the existing
DETER bugs that are manually found. Fuzzing mempool im-
plementations is a promising approach but also poses unique
challenges: Unlike the consensus implementation that reads
only valid confirmed transactions, the mempool, which resides
in the pre-consensus phase, needs to handle various uncon-
firmed transactions, imposing a much larger input space for
the fuzzer. For instance, a mempool can receive invalid trans-
actions under legitimate causes,1 and factors such as fees or
prices are key in determining transaction admission outcomes.
Existing blockchain fuzzers including Fluffy [36], Loki [29]
and Tyr [25] all focus on fuzzing consensus implementation
and don’t explore the extra transaction space required by mem-
pool fuzzing. As a result, directly re-purposing a consensus
fuzzer to fuzz mempool would be unable to detect the DETER
bugs as evaluated in Appendix § A, let alone discover more
sophisticated new ADAMS bugs.
Proposed methods: To efficiently fuzz mempools, our key ob-
servation is that real-world mempool implementation admits
transactions based on abstract “symbols”, such as pending

1For instance, future transactions can be caused by out-of-order informa-
tion propagation in Ethereum.



and future transactions, instead of concrete value. Thus, send-
ing multiple transactions under one symbol would trigger the
same mempool behavior repeatedly, and it suffices to explore
just one transaction per symbol during fuzzing without losing
the diversity of mempool behavior.

We propose symbolized-stateful mempool fuzzing or MP-
FUZZ. To begin with, MPFUZZ is set up and run in a three-step
workflow: It is first manually set up against a size-reduced
mempool under test, which induces a much smaller search
space for fuzzing. Second, MPFUZZ is iteratively run against
the reduced mempool to discover short exploits. Third, the
short exploits are manually extended to actual ones that are
functional on real mempools and Ethereum clients. Internally,
the design of MPFUZZ is based on seven transaction symbols
we design out of Ethereum semantics: future, parent, overdraft,
latent overdraft, and replacement transactions. Under these
symbols, in each iteration of fuzzing, MPFUZZ explores one
concrete transaction per symbol, sends the generated transac-
tion sequence to the target mempool, observes the mempool
end state, and extracts the feedback of symbolized state cover-
age and state promisingness in reaching bug oracles to guide
the next round of fuzzing. In particular, MPFUZZ employs a
novel technique to evaluate state promisingness, that is, by op-
timistically estimating the costs of unconfirmed transactions
whose validity is subject to change in the future.
Found attacks: We run MPFUZZ on six leading execution-
layer Ethereum clients deployed on the mainnet’s public-
transaction path (Geth [7], Nethermind [11], Erigon [5],
Besu [9], Reth [13], and OpenEthereum [12]), three PBS
builders (proposer-builder separation) on the mainnet’s
private-transaction and bundle path (Flashbot v1.11.5 [6],
EigenPhi [4] and bloXroute [1]), and three Ethereum-like
clients (BSC v1.3.8 [2] deployed on Binance Smart Chain,
go-opera v1.1.3 [8] on Fantom, and core-geth v1.12.19 [3]
on Ethereum Classic). Compared to the baseline fuzzers,
MPFUZZ can find exploits faster by more than two orders
of magnitude. On Ethereum clients of historical versions,
MPFUZZ can rediscover known DETER bugs. On the latest
Ethereum clients where DETER bugs are fixed, MPFUZZ can
find new ADAMS attacks, described next.

We summarize the newly discovered ADAMS exploits into
several patterns: 1) Indirect eviction by valid-turned-invalid
transactions. Unlike the direct-eviction pattern used in DE-
TER, the indirect-eviction attack works more stealthily in
two steps: The attacker first sends normal-looking transac-
tions to evict victim transactions from the mempool and then
sends another set of transactions to turn the admitted normal-
looking transactions into invalid ones, bringing down the cost.
2) Locking mempool, which is to occupy the mempool to
decline subsequent victim transactions. Mempool locking
does not need to evict existing transactions from the mempool
as the eviction-based DETER attacks do. 3) Adaptive attack
strategies where the attack composes adversarial transactions
in an adaptive way to the specific policies and implementa-

tions of the mempool under test. Example strategies include
composing transactions of multiple patterns in one attack, re-
sending evicted transactions to evict “reversible” mempools,
locking mempool patched against turning, etc. We propose
rule-based mitigation schemes against all newly discovered
vulnerabilities.

All newly found ADAMS bugs are reported to the devel-
oper communities, including Ethereum Foundation, BSC, Fan-
tom, PBS builders, etc. with 15 bugs confirmed and 4 fixed in
recent client releases [10]. Bug reporting is documented on
the webpage [20], which also includes demos of MPFUZZ on
the tested Ethereum clients. MPFUZZ will be open-sourced to
facilitate vulnerability discovery in more and future clients.
Contributions: The paper makes contributions as follows:
• New fuzzing problem: This paper is the first to formulate the
mempool-fuzzing problem to automatically find asymmetric
DoS vulnerabilities as bug oracles. Fuzzing mempools poses
new unique challenges that existing blockchain fuzzers don’t
address and entails a larger search space including invalid
transactions and varying prices.
• New fuzzing method: The paper presents the design and
implementation of MPFUZZ, a symbolized-stateful mempool
fuzzer. Given a mempool implementation, MPFUZZ defines
the search space by the mempool states covered under sym-
bolized transaction sequences and efficiently searches this
space using the feedback of symbolized state coverage and
the promising-ness of an intermediate state in triggering bug
oracles. With a Python prototype and runs on real Ethereum
clients, MPFUZZ achieves a > 100× speedup in finding known
DETER exploits compared to baselines.
• New discovery of mempool vulnerabilities: MPFUZZ dis-
covers new asymmetric-DoS vulnerabilities in six major
Ethereum clients in the mainnet. By evaluation under real
transaction workloads, all found attacks achieve 84.6−99.6%
success rates and low costs such as adversarial transaction
fees 100× lower than the victim transaction fees.

2 Related Works

Consensus fuzzers: Fluffy [36] is a code-coverage based
differential fuzzer to find consensus bugs in Ethereum Vir-
tual Machines (EVM). Specifically, given an EVM input,
that is, a transaction sequence, Fluffy sends it to multiple
nodes running different Ethereum clients (e.g., Geth and
OpenEthereum) for execution. 1) The test oracle in Fluffy
is whether the EVM end states across these nodes are differ-
ent, implying consensus failure. 2) Fluffy mutates ordered
transaction sequences at two levels: it reorders/adds/deletes
transactions in the sequence, and for each new transaction to
generate, it randomly selects values in Gas limits and Ether
amounts. For the data field, it employs semantic-aware strate-
gies to add/delete/mutate bytecode instructions of pre-fixed
smart contract templates. 3) Fluffy uses code coverage as
feedback to guide the mutation.



Loki [29] is a stateful fuzzer to find consensus bugs causing
crashes in blockchain network stacks. Specifically, Loki runs
as a fuzzer node interacting with a tested blockchain node
through sending and receiving network messages. 1) The test
oracle in Loki is whether the tested blockchain node crashes.
2) The fuzzer node uses a learned model of blockchain net-
work protocol to generate the next message of complying
format, in which the content is mutated by randomly choos-
ing integers and bit-flipping strings. That is, the mutation in
Loki is unaware of application level semantics. For instance,
if the message is about propagating an Ethereum transaction,
the transaction’s nonce, Ether amount, and GasPrice are all
randomly chosen; the sender, receiver, and data are bit flipped.
3) Loki records messages sent and received from the test node.
It uses them as the state. New states receive positive feedback.

Tyr [25] is a property-based stateful fuzzer that finds con-
sensus bugs causing the violation of safety, liveness, integrity,
and other properties in blockchain network stacks. Specifi-
cally, in Tyr, a fuzzer node is connected to and executes a
consensus protocol with multiple neighbor blockchain nodes.
1) The test oracle Tyr uses is the violation of consensus prop-
erties, including safety (e.g., invalid transactions cannot be
confirmed), liveness (e.g., all valid transactions will be con-
firmed), integrity, etc. The checking is realized by matching
an observed end state with a “correct” state defined and run
by the Tyr fuzzer. 2) Tyr mutates transactions on generic
attributes like randomly selecting senders and varying the
amount of cryptocurrencies transferred (specifically, with two
values, the full sender balance, and balance plus one). When
applied to Ethereum, Tyr does not mutate Ethereum-specific
attributes, including nonce or GasPrice. It generates one type
of invalid transaction, that is, the double-spending one, which
in account-based blockchains like Ethereum are replacement
transactions of the same nonce. 3) Tyr uses state divergence as
the feedback, that is, the difference of end states on neighbor
nodes receiving consensus messages in the same iteration. In
Tyr, the states on a node include both the messages the node
sent and received, as well as blocks, confirmed transactions,
and other state information.

These existing blockchain fuzzers [25,29,36] cannot detect
mempool DoS bugs and are different from this work. Briefly,
mempool DoS does not trigger system crashes and can not be
detected by Loki. Mempool content difference across nodes
does not mean insecurity, and the mempool DoS bugs can not
be detected by Fluffy (which detects consensus state differ-
ence). While Tyr aims to detect liveness and safety violations,
their model of invalid transactions is rudimentary. Specifically,
they only model double-spending transactions and cannot de-
tect DETER bugs [28] that rely on more advanced invalid
transactions, like future transactions and latent overdrafts.
Blockchain DoS: Blockchain DoS security has been exam-
ined at different system layers, including P2P networks [21,
26, 30, 34], mining-based consensus [14, 31], and application-
level smart contracts [17, 24, 32] and DApp (decentralized

application) services [27]. These DoSes are not related to
mempools and are orthogonal to this work.

For mempool DoS, a basic attack is by sending spam trans-
actions with high fees to evict victim transactions of normal
fees [15, 18, 23, 33], which incur high costs to attackers. DE-
TER [28] is the first asymmetric DoS on Ethereum mempool
where the adversary sends invalid transactions of high fees
(e.g., future transactions or latent overdrafts) to evict victim
transactions of normal fees. Concurrent to this work is Mem-
Purge [35] posted online in June 2023; in it, the attacker re-
connects her adversarial future transactions and makes them
latent-overdraft transactions. The DETER bugs have been
fixed on the latest Ethereum clients such as Geth v1.11.4, as
we tested them in July 2023. Both DETER and MemPurge
are manually discovered.

3 Background

Ethereum mempools: In Ethereum, users send their transac-
tions to the blockchain network, which are propagated to
reach validator nodes. On every blockchain node, uncon-
firmed transactions are buffered in the mempool before they
are included in the next block or evicted by another trans-
action. In Ethereum 2.0, transactions are propagated in two
fashions: public transactions are broadcast among all nodes,
and private transactions are forwarded to selected nodes, more
specifically, selected builders and proposers (as in PBS or
proposer-builder separation). The mempool is present on both
paths, and it is inside Ethereum clients such as Geth [7] and
Nethermind [11] (handling public transactions), and Flash-
bot [6] (private transactions). On these clients, a mempool
also serves many other downstream modules, including MEV
searchers or bots (in PBS), Gas stations, RPC queries, etc.

Mempools on different nodes are operated independently
and don’t need to synchronize as the consensus layer does. For
instance, future transactions are not propagated, and the set of
future transactions in the mempool on one node is different
from another node.

The core mempool design is transaction admission: Given
an initial state, whether and how the mempool admits an ar-
riving transaction. In practice, example policies include those
favoring admitting transactions of higher prices (and thus
evicting or declining the ones of lower prices), transactions ar-
riving earlier, certain transaction types (e.g., parent over child
transactions), and valid transactions (over future transactions).
See different types of Ethereum transactions in § 4.1.
Transactions and fees: In Ethereum, Gas measures the
amount of computations caused by smart contract execu-
tion. When preparing for transaction tx, the sender needs
to specify Gas and GasPrice; the former is the maximal
amount of computations allowed for running smart contracts
under tx, and the latter is the amount of Ether per Gas the
sender is willing to pay. After tx is included in a block, the
actual amount of computations consumed by contract exe-



cution is denoted by GasUsed. The fees of transaction tx
are the product of GasUsed and GasPrice, that is, tx. f ee =
GasUsed∗GasPrice.

After EIP-1559 [19], GasPrice is divided into two com-
ponents: BasePrice and PriorityPrice, that is, GasPrice =
BasePrice + PriorityPrice. Blockchain nodes follow the
Ethereum protocol to derive BasePrice from Gas utilization
in recent blocks. The fees associated with the BasePrice are
burnt upon transaction inclusion. PriorityPrice is set by the
transaction sender.

4 Threat Model and Bug Oracle

In the threat model, an attacker controls one or few nodes to
join an Ethereum network, discovers and neighbors critical
nodes (e.g., top validators, backends of an RPC Service, MEV
searcher) if necessary, and sends crafted adversarial transac-
tions to their neighbors. The attacker in this work has the
same networking capacity as in DETER [28].

The attacker’s goal is to disable the mempools on the criti-
cal or all nodes in an Etheurem network and cause damage
such as dropped transactions in block inclusion, produced
blocks of low or zero (Gas) utilization, and disabled other
downstream services. In practice, this damage is beneficial
to competing block validators, MEV searchers, and RPC ser-
vices. Besides, the attacker aims to cause this damage at
asymmetrically low costs, as will be described.

4.1 Notations
Transactions: In Ethereum, we consider two types of ac-
counts: a benign account of index i denoted by Bi, and an
adversarial account of index i denoted by Ai. A (concrete)
Ethereum transaction tx is denoted by tx[ s v

n f
], where the sender

is s, the nonce is n, the GasPrice is f , and the transferred value
in Ether is v. This work does not consider the “data” field in
Ethereum transactions or smart contracts because smart con-
tracts do not affect the validity of the Ethereum transaction.
The notations are summarized in Table 1.

Table 1: Notations
Symbol Meaning Symbol Meaning
m Mempool length ops Tx sequence
st State of residential

txs in mempool
dc History of declined

txs from mempool
A Adversarial tx

sender
B Benign tx sender

tx
[ s v

n f
]

A transaction from sender s, of nonce n, transferring
Ether value v, and with GasPrice f

We use each of the following symbols to represent a dis-
joint group of transactions. Informally, N is a transaction
sent from a benign account, F a future transaction, P a parent
transaction, C a child transaction, O an overdraft transaction,
L a latent overdraft transaction, and R a replacement transac-
tion. These symbols are formally specified in § 5.

Particularly, we use the notion of latent overdraft from the
existing work [28], which indicates a child transaction that by
itself does not overdraft but does overdraft when taking into
account its parent transactions. Suppose Alice has a balance
of 5 Ether and sends tx1 of nonce 1 spending 2 Ether and tx2
of nonce 2 spending 4 Ether. tx2 is a latent overdraft.
States and transitions: We recognize two mempool-related
states in Ethereum, the collection of transactions stored in
mempool st, and the collection of declined transactions dc.

Suppose a mempool of state ⟨sti,dci⟩ receives an arriving
transaction txi and transitions to state ⟨sti+1,dci+1⟩.

An arriving transaction can be admitted with eviction, ad-
mitted without eviction, or declined by a mempool. The three
operations are defined as follows. 1) An arriving transac-
tion txi is admitted with evicting a transaction tx′i from the
mempool, if sti+1 = sti \ tx′i ∪ txi,dci+1 = dci. 2) txi is ad-
mitted without evicting any transaction in the mempool, if
sti+1 = sti ∪ txi,dci+1 = dci. 3) txi is declined and does not
enter the mempool, if sti+1 = sti,dci+1 = dci ∪ txi.

Figure 1: Overview of exploit discovery and evaluation work-
flow: 0) MPFUZZ setup, 1) mempool reduction, 2) fuzzing
on reduced mempool under test (MUT) to discover short ex-
ploits, and 3) exploit extension. The extended exploits are 4)
evaluated on the actual mempool of the original size. Green
means automated tasks, and gray requires manual effort.

4.2 Exploit Discovery Workflow
To set up the stage, we present the workflow overview in this
work. The workflow is depicted in Figure 1. To discover vul-
nerabilities and exploits in an actual mempool, one has to 0)
set up MPFUZZ by various parameters (as will be introduced),
1) reduce the mempool from its original configuration to a
much smaller version, named mempool under test (MUT).
2) MPFUZZ is run on the reduced MUT deployed locally
(with settings described in § 7.1). Fuzzing leads to the dis-
covery of short exploits. 3) Short exploits are extended to the
longer ones, that is, actual exploits. 4) The success of the ac-
tual exploit is evaluated on the actual mempools deployed in
close-to-operational settings, such as using popular Ethereum
testnets like Goerli (see § 6.3.1) or a network we set up locally
running unmodified Ethereum clients (see § 6.4.2 and § D).
Fuzzing a reduced mempool (MUT) instead of an original one
is necessary to ensure the efficient execution of the MPFUZZ,
which entails many iterations of re-initiating and populating
the mempool. We discuss and evaluate the possible false pos-
itives that could be introduced by fuzzing smaller MUT in



§ 7.2.
In this workflow, fully automated is Step 2), that is, the

discovery of short exploits on a given MUT (colored green in
Figure 1). Other steps colored in gray require manual efforts
and are described below: In Step 0), MPFUZZ setup entails
setting parameters in bug oracles (e.g., ε and λ) and fixed sym-
bols in guiding fuzzing. The setup is usually one-time. In Step
1), mempool reduction entails reconfiguring the mempool to
a much smaller capacity (e.g., MUT length m = 6 or m = 16,
compared to the original size like m′ = 6144 as in Geth). In
addition, policy-specific parameters in the actual mempool are
tuned down proportionally. For instance, the Geth mempool
buffers up to py′1 = 1024 future transactions, and when buffer-
ing more than py′3 = 5120 pending transactions, the mempool
triggers a protective policy to limit the number of transac-
tions sent from the same sender by py′2 = 16 . In a reduced
MUT of m = 6, these parameters are reduced while retain-
ing the same proportion, such as py1 = 1, py3 = 5, py2 = 2.
The mempool reduction requires expert understanding and
manual efforts, and it is by nature the best effort. In Step
3), it first de-duplicates the raw short exploits found by MP-
FUZZ. Then, for each distinct short exploit, it extends it by
repeating the transaction-admission events to fit into the ac-
tual mempool, during which one may practice strategies like
increasing nonce, switching sender accounts, and measuring
normal transactions in the actual mempool. In exploit exten-
sion, one could also consider the factors not modeled in MUT
or MPFUZZ such as BasePrice, as seen in the case in § 6.4.

4.3 Bug Oracle: Definitions & Rationale
Definition 4.1 (Tx admission timeline) In a transaction ad-
mission timeline, a mempool under test is initialized at state
⟨st0,dc0 =∅⟩, receives a sequence of arriving transactions
ops, and ends up with state ⟨stn,dcn⟩. Then, a validator con-
tinually builds blocks by selecting and clearing transactions
in the mempool until the mempool is empty. This transaction
timeline is denoted by ⟨st0,dc0 =∅⟩,ops ⇒ ⟨stn,dcn⟩.

The transaction admission timeline is simplified from the
timeline that an operational mempool experiences where trans-
action arrival and block building can be interleaved. The sim-
plification is intended to trade off the accuracy of fuzzing
results for fuzzing efficiency as discussed in § 7.2.

We use two mempool-attack templates to define two bug
oracles: an eviction-based DoS where adversarial transac-
tions evict existing victim transactions in the mempool, and a
locking-based DoS where existing adversarial transactions in
the mempool decline arriving victim transactions.

Definition 4.2 (Eviction bug oracle) A transaction admis-
sion timeline, ⟨st0,dc0 = ∅⟩,ops ⇒ ⟨stn,dcn⟩, is a success-
ful ADAMS eviction attack, if.f. 1) the admission timeline
causes full damage, that is, initial state st0 contains only be-
nign transactions, ops are adversarial transactions, and the

result end state stn contains only adversarial transactions (in
Equation 1), and 2) the attack cost is asymmetrically low, that
is, the total adversarial transaction fees in the end state stn to
be charged are smaller, by a multiplicative factor ε, than the
attack damage measured by the fees of evicted transactions
in the initial state st0 (in Equations 2 and 3). Formally,

st0 ∩ stn = ∅ (1)

asymE(st0,ops)
de f
=

∑tx∈stn tx. f ee
∑tx∈st0 tx. f ee

(2)

asymE(st0,ops) < ε (3)

Definition 4.3 (Locking bug oracle) A transaction admis-
sion timeline, ⟨st0 =∅,dc0 =∅⟩,ops ⇒ ⟨stn,dcn⟩, is a suc-
cessful ADAMS locking attack, if.f. 1) the admission timeline
causes full damage, that is, the mempool is first occupied by
adversarial transactions (i.e., stn contains only adversarial
transactions) and then declines the arriving normal transac-
tions (i.e., dcn contains only normal transactions); the normal
transactions and adversarial transactions are sent by different
accounts (i.e., Equation 4), and 2) the attack cost is asymmet-
rically low, that is, the average adversarial transaction fees
in the mempool are smaller, by a multiplicative factor λ, than
the attack damage measured by the average fees of victim
transactions declined (i.e., Equations 5 and 6). Formally,

∪tx∈dcntx.sender ∩ ∪tx∈stntx.sender =∅ (4)

asymD(ops)
de f
=

∑tx∈stn tx. f ee/∥stn∥
∑tx∈dcn tx. f ee/∥dcn∥

(5)

asymD(ops) < λ (6)

Design rationale: Both definitions use the normal transaction
fees to measure the attack damage because these fees are
not collected by the validator in the timeline under attack
and are collectible without attack. Specifically, the damage in
Definition 4.2 is measured by the fees of normal transactions
in st0 which are evicted in end state stn and which would not
have been evicted had there been no adversarial transactions
in ops. The damage in Definition 4.3 is measured by the fees
of normal transactions in ops which are declined from end
state stn and which would not have been declined had there
been no adversarial transactions in ops.

Both definitions are strict and require causing full damage,
such as evicting or declining all normal transactions. Strict
definitions are necessary to ensure that what is found as ex-
ploits on the small MUT is true positive and works on the
actual mempool.

The targeted attacks by this work are denial of mempool
service in feeding downstream validators with valid transac-
tions sent from benign users. They are different from other
forms of DoS in blockchains, including resource exhaustion
via executing malicious smart contracts [27, 35].



Particularly, in the threat model of mempool DoS, we as-
sume the validators are benign and functional in building
blocks. Because in all Ethereum clients we know, transactions
are admitted into mempool without execution (i.e., executing
the smart contracts they invoke), GasUsed is not a factor in
transaction admission.2 Thus, our bug oracle does not vary
GasUsed. Instead, all the transactions are fixed at 21000 Gas
(i.e., as if they don’t invoke smart contracts).3 This design
significantly reduces the search space without loss in cov-
ering different mempool behaviors. Besides, our bug oracle
does not model the effect of EIP1559 or BasePrice. Without
modeling BasePrice, our bug oracle can still capture the al-
ternative transaction fee (the product of GasPrice and 21000
Gas), which is still proportional to actual PriorityPrice or
damage on validator revenue.

5 Stateful Mempool Fuzzing by MPFUZZ

5.1 Transaction Symbolization

The key challenge in designing MPFUZZ is the large input
space of transaction sequences. Recall that an Ethereum trans-
action consists of multiple attributes (sender, nonce, GasPrice,
value, etc.), each defined in a large domain (e.g., 64-bit string).
Exploring the raw transaction space is hard; the comprehen-
sive search is inefficient, and randomly trying transactions
as done in the state-of-the-art blockchain fuzzers (in § 2) is
ineffective.
Intuition: We propose symbolizing transactions for efficient
and effective mempool stateful fuzzing. Our key idea is to map
each group of concrete transactions, triggering an equivalent
mempool behavior into a distinct symbol so that searching for
one transaction is sufficient to cover all other transactions un-
der the same symbol. Transaction symbolization is expected
to reduce the search space from possible concrete transactions
to the symbol space.

In this work, we manually design seven symbols to repre-
sent transactions based on the Ethereum “semantics”, that is,
how different transactions are admitted by the mempool.
Specification: Suppose the current state contains adversarial
transactions sent from r accounts A1, . . . ,Ar. These accounts
have an initial balance of m Ether, where m equals the mem-
pool capacity (say m = 1000). The rationale is that these
accounts can send at most m adversarial transactions, each
minimally spending one Ether, to just occupy a mempool of
m slots. A larger value of attacker balance is possible but
increases the search space.

Symbol N defines a transaction subspace covering any
normal transactions sent from any benign account and of any
nonce, namely tx[B∗ ∗

∗ ∗ ] . In MPFUZZ, Symbol N is instanti-
ated to concrete transactions of fixed GasPrice 3 wei and of

2The further design rationale for admitting transactions without execution
is that an Ethereum transaction tx’s GasUsed is non-deterministic unless the
ordering of tx w.r.t. other transactions in the block is fixed and tx is executed.

3We may use price and fees interchangeably.

Table 2: Symbols, transactions, and associated costs. Tx refers
to the instantiated transaction under a given symbol.

Symbol Description Tx cost() opcost()

N Benign tx
[

B∗ 1
∗ 3

]
3 3

F Future tx
[ A∗ 1

m+1 m+1

]
0 0

P Parent tx
[

A>r 1
1 [4,m]

]
[4,m] [4,m]

C Child tx
[

A[1,r] 1
≥2 m+1

]
m+1 1

O Overdraft tx
[

A[1,r] m+1
≥2 m+1

]
0 0

L Latent overdraft tx
[

A[1,r] m−1
≥2 m+1

]
0 0

R Replacement tx
[

A[1,r] m−1
1 m+1

]
0 0

value 1 Ether. That is, symbol N is instantiated to transaction
tx
[

B∗ 1
∗ 3

]
, as shown in Table 2. Among all symbols, N is the

only symbol associated with benign sender accounts.
Symbol F defines the transaction subspace of any future

transaction sent from an adversarial account; the future trans-
action is defined w.r.t. the current state. MPFUZZ instantiates
symbol F to concrete transactions of nonce m+ 1, value 1
Ether, GasPrice m+1 wei, and any adversarial account A∗.
The instantiating pattern for symbol F is tx

[
A∗ 1

m+1 m+1
]
.

Symbol P defines the transaction subspace of any parent
transaction from an adversarial account w.r.t. the current state.
MPFUZZ instantiates P to a transaction of Pattern tx

[
A≥r 1

1 [4,m]

]
.

Here, the transaction is fixed with a GasPrice in the range
[4,m] wei, value at 1 Ether, and nonce at 1. The GasPrice of
a future transaction (F ) is m+1 wei, which is higher than the
price of a parent transaction (P ) in [4,m] wei. The purpose
is to ensure that a future transaction can evict any parent
transaction during fuzzing.

Symbol C defines the transaction subspace of any adver-
sarial child transaction w.r.t. the state. MPFUZZ instantiates C
to a transaction of Pattern tx

[
A[1,r] 1
≥2 m+1

]
. The instantiated child

transaction is fixed at GasPrice of m+1
Symbol O defines the transaction subspace of any adver-

sarial overdraft transaction w.r.t. state st. MPFUZZ instantiates
O to a transaction of Pattern tx

[
A[1,r] m+1
≥2 m+1

]
. Recall that all adver-

sarial accounts have an initial balance of m Ether.
Symbol L defines the transaction subspace of any adversar-

ial latent-overdraft transaction w.r.t. state st. MPFUZZ instan-
tiates L to a transaction of Pattern tx

[
A[1,r] m−1
≥2 m+1

]
. All adversarial

accounts have an initial balance of m Ether.
Symbol R defines the transaction subspace of any adver-

sarial “replacement” transaction w.r.t., the state. Unlike the
symbols above, the transactions under Symbol R must share
the same sender and nonce with an existing transaction in the
current state st. MPFUZZ instantiates R to a transaction of
Pattern tx

[
A[1,r] m−1

1 m+1

]
. Here, we simplify the problem and only

consider replacing the transaction with nonce 1.
Given that a concrete transaction in this work consists of

four attributes, transactions are defined in a four-dimensional



Figure 2: Symbols and transaction space reduction.

space. We visualize transaction symbols (with an incomplete
view) in two two-dimensional spaces in Figure 2, that is, one
of transaction sender and nonce and the other of sender and
value. For each symbol, the figures depict the transaction sub-
space covered by the symbol (in white shapes of black lines)
and the transaction pattern instantiated by MPFUZZ under the
symbol (in red lines or shapes). In our design, the instanti-
ated transactions are a much smaller subset of the defining
transaction space. For instance, given state st of transactions
sent from account A1, . . . ,Ar, transaction tx

[
Ar+1 ∗

3 ∗

]
is within

the defining space of symbol F , but MPFUZZ does not instan-
tiate F by transaction tx

[
Ar+1 ∗

3 ∗

]
(but instead to transactions

tx[ A∗ 1
m+1 m+1

]). The design rationale of transaction symbolization
is deferred to Appendix A.1.

5.1.1 State Search Algorithm

Algorithm 1 MPFUZZ(SeedCorpus sdb, Mempool mp)
1: sdb.init(mp);
2: while !sdb.is_empty() or timeout do
3: st,ops = sdb.next(); ▷ Selection by energy
4: for all ops′,st ′ = mutateExec(ops,st) do
5: if is_ADAMS(st ′) then ▷ Test oracle
6: emit(ops′, st ′, "Found an exploit");
7: else
8: if !sdb.feedback(st ′, sdb) then
9: sdb.add(st ′, ops′);

10: end if
11: end if
12: end for
13: end while

Algorithm overview: We propose a stateful fuzzing algo-
rithm, listed in Algorithm 1, to selectively explore the input
space in a way that prioritizes new and promising mempool
states towards triggering ADAMS oracle.

The core data structure is a seed corpus or sdb which stores
a list of input-state pairs or seeds. Upon running the algorithm,
the corpus maintains the mempool states covered so far by
the algorithm execution. The algorithm runs an outer loop
that continues until the corpus is empty, or only the states of
zero energy are left, or timeout. In each iteration, the algo-
rithm retrieves the next seed from the corpus based on how
promising the seed is in reaching a state triggering the ora-
cle (a.k.a., the energy [22]). A seed consists of a symbolized
input ops, which consists of transaction symbols, and a sym-
bolized state st reached by running a transaction sequence
instantiated from the input ops (Line 3). The algorithm runs

an inner loop, in each iteration of which it mutates the input
in the current seed (⟨st, in⟩) and executes the mutated input
against a reinitialized empty mempool, producing end state
st ′ (Line 4). If the end state satisfies ADAMS conditions (i.e.,
the test oracle), it emits the mutated input-state pair ops′,st ′

as a newly found exploit. The algorithm further checks the
feedback: The feedback is positive if the mutated input ops′

brings the mempool state st ′ closer to triggering the test oracle
than st. This entails mutated state st ′ to be different from state
st (i.e., increased state coverage) and state st ′ to achieve larger
damage or lower attack cost. In case of positive feedback, the
algorithm would add mutated input-state pair ops′,st ′ to the
corpus.

This algorithm assumes the mempool is deterministic. That
is, given a seed ⟨ops,st⟩, running the same input ops against
an empty mempool multiple times always results in the same
end state st. In practice, we generate inputs to avoid the non-
deterministic behavior of real mempool implementations.

The algorithm can be configured with initial seeds and
input-mutation strategies. By default, we use one initial seed
whose input fills up the mempool with normal transactions.
The default input-mutation strategy is to append the current
input with a newly generated transaction.
Algorithm 2 mutateExec(SymbolInput ops, SymbolState st)

1: ops′=mutateSymbol(ops);
2: stc=executeUnappended(ops,ops′);
3: st ′c=executeAppended(ops′,stc,st);
4: return st ′c

Input mutation: Given a symbolized input ops and sym-
bolized state st, the mutation algorithm is to explore each
“slightly” different input ops′ and its associated state st ′, such
that the next stage can find the inputs producing positive feed-
back.

Internally, the algorithm proceeds at two levels, that is, sym-
bols and concrete value. Specifically, as shown in Algorithm 2,
1) it appends the symbolized input ops with a previously un-
tried symbol, generating the “mutated” symbolized input ops′

(Line 1 in Algorithm 2). In this step, the algorithm tries differ-
ent symbols in the following order: P ,L ,C . 2) It instantiates
symbolized ops′ to a transaction sequence and executes the se-
quence in the tested mempool to obtain the concrete end state
(Line 2 in Algorithm 2). This step is necessary for instantiat-
ing and executing the mutation in the next step. Specifically,
in this step, the algorithm instantiates symbolized input ops
to a concrete input inc, which is a sequence of transactions.
It then drives the transactions to a reinitialized mempool for
execution. It returns the resulting concrete state stc. 3) The
algorithm instantiates the appended symbols under the con-
text of the previous state st and stc. At last, it executes the
appended transaction on mempool stc to obtain the concrete
end state st ′c under the mutated input (Line 3 in Algorithm 2).
Mutation feedback: We describe how mempool states are
symbolized before presenting state-based feedback. In MP-



FUZZ, a symbolized state st is a list of transaction symbols,
ordered first partially as follows: N ⪯ E ⪯ F ⪯ {P ,L ,C .
E refers to an empty slot. State slots of the same symbols
are independently instantiated into transactions, except for
P ,C ,L . Child transactions (i.e., C ,L) are appended to their
parent transaction of the same sender (i.e., P ). Across differ-
ent senders, symbols are ordered by the parent’s GasPrice.
For instance, suppose a mempool stores four concrete trans-
actions, tx

[A1 ∗
1 4

]
, tx

[
B ∗

100 100

]
, tx

[A2 ∗
1 5

]
, tx

[A1 ∗
2 10001

]
, they are

mapped to four symbols, P ,F ,P ,C , and are further ordered
in a symbolized state by F P CP .

In MPFUZZ, the feedback of an input ops′ is based on the
symbolized end state st ′. Positive feedback on state st ′ is
determined conjunctively by two metrics: 1) State coverage
that indicates state st ′ is not covered in the corpus, and 2) state
promising-ness that indicates how promising the current state
is to reach a state satisfying bug oracles.

f eedback(st ′,st,sdb) = st_coverage(st ′,sdb) == 1∧
st_promising(st ′,st) == 1 (7)

Specifically, state coverage is determined by straightfor-
wardly comparing symbolized state st ′, as an ordered list of
symbols, with all the symbolized states in the corpus. For
instance, state F P CP is different from F P P C . This also im-
plies concrete transaction sequence tx

[
A1 ∗
1 4

]
, tx[ B ∗

100 100

], tx
[

A2 ∗
1 5

]
,

tx
[

A1 ∗
2 10001

]
is the same with tx

[
A1 ∗
1 4

]
, tx[ B ∗

100 100

], tx
[

A2 ∗
1 6

]
, tx

[
A1 ∗
2 10

]
,

as they are both mapped to the same symbolized state.
How promising a state st ′ is (i.e., st_promising(st ′)) is de-

termined as follows: A mutated state st ′ is more promising
than an unmutated state st if any one of the three condi-
tions is met: 1) State st ′ stores fewer normal transactions
(under symbol N ) than state st, implying more transactions
evicted and higher damage (i.e., evict_normal(st ′,st) = 1).
2) State st ′ declines (speculatively) more incoming normal
transactions than state st, also implying higher damage (i.e.,
decline_normal(st ′,st) = 1). 3) The total fees of adversarial
transactions in state st ′ are lower than those in state st, im-
plying lower attack costs. We consider two forms of costs:
concrete cost and symbolized cost. The former, denoted by
cost(st ′), is simply the total fees of adversarial transactions
instantiated from a symbolized state st ′. The latter, denoted by
opcost(st ′), optimistically estimates the cost of transactions
in the current state st ′ that contributes to a future state trig-
gering test oracle. We will describe the symbolized cost next.
Formally, state promising-ness is calculated by Equation 8.

st_promising(st ′,st) = evict_normal(st ′,st) == 1∨
decline_normal(st ′,st) == 1∨
cost(st ′)< cost(st)∨
opcost(st ′)< opcost(st) (8)

Seed energy: Recall that in MPFUZZ, the next seed is selected
from the corpus based on energy. By intuition, the energy of
a state is determined based on how promising the state is in
triggering the test oracle. In addition to the state promising-
ness used in deciding feedback, state energy incorporates fuzz
runtime information, such as how many times the state has
been selected.

Specifically, the energy of a seed ⟨ops,st⟩ is determined by
Equation 9.

Energy(in,st) = b/opcost(st) (9)

First, each seed in the corpus records how many times it has
been mutated. The more symbols it has mutated in the past,
the less energy the seed currently has and the lower priority
it will be selected next. b can be configured differently to
traverse the state tree differently. In particular, breadth-first
search (BFS) is by the following configuration: b = 1 if at
least one symbol has not been tried (for mutation) in the
current seed. Otherwise, b = 0.

Second, we use the symbolized cost to estimate how promis-
ing a state is and use it in seed energy.
Estimate state cost: When MPFUZZ determines how promis-
ing a state is, it needs to look beyond the current state and
into all possible descendant states. We propose a heuristic that
optimistically estimates the descendant-state costs given a cur-
rent state. The key intuition is the following: In Ethereum, the
validity of a child transaction (under symbol C ) depends on its
parent/ancestor transaction. Thus, even though a transaction
in the current state is valid, the transaction can be “turned”
into an invalid one in subsequent states. We thus attribute,
optimistically, the cost of transaction C to value 1, so that it
is preferable to a parent transaction P in input mutation and
seed selection, and turning C into an invalid one like L or
F is also encouraged. The cost profiles used in MPFUZZ are
summarized in Table 2.

6 Found Exploits

We have run MPFUZZ across a variety of Ethereum clients,
including six leading execution-layer clients on the public-
transaction path of Ethereum mainnet (Geth, Besu, Nether-
mind, Erigon, Reth, and OpenEthereum), three PBS clients
(proposer-builder separation) on the mainnet’s private-
transaction and bundle path (Flashbot builder v1.11.5 [6],
EigenPhi builder [4] and bloXroute builder-ws [1]), and the
clients deployed on three operational Ethereum-like networks
(BSC v1.3.8 [2] deployed on Binance Smart Chain, go-opera
v1.1.3 [8] on Fantom, and core-geth v1.12.19 [3] on Ethereum
Classic).

On the six public-transaction clients, MPFUZZ leads to the
discovery of 22 bugs, as listed in Table 3, including 7 con-
forming to the known DETER attacks on clients of historical
versions and 15 new bugs on the clients of the latest versions.



Table 3: ADAMS exploit patterns found by MPFUZZ across Ethereum clients; XT1−7 are eviction based, and XT8−9 are locking
based. XT1−3 are known patterns in DETER [28], while others are new. ✗ indicates the presence of a bug, ✓ indicates the fixing
of a bug after our reporting, and ✓ indicates the fixing of a bug by previous works.

XT1 XT2 XT3 XT4 XT5 XT6 XT7 XT8 XT9
Geth ≥ v1.11.4, Flashbot ≤ v1.11.5 , bloXroute,

BSC ≤ v1.3.8, core-geth≤ v1.12.18 ✓ ✓ ✓ ✗ ✗

Geth < v1.11.4, EigenPhi ✗ ✗ ✗ ✗ ✗ ✗
go-opera ≤ v1.1.3 ✗ ✗ ✗ ✗ ✗
Erigon ≤ v2.42.0 ✗
Besu ≥ v22.7.4 ✓ ✗ ✗
Besu < v22.7.4 ✗ ✗ ✗
Nethermind ≥ v1.18.0 ✓ ✗ ✓
Nethermind < v1.18.0 ✗ ✗ ✗
Reth ≥ v0.1.0−al pha.6 ✗ ✓
Reth < v0.1.0−al pha.6 ✗
OpenEthereum ≤ v3.3.5 ✗ ✗

Other clients, including the three PBS clients and three
clients on Ethereum-like networks, are mostly forks of the
Geth clients except for minor code changes4, and on them, MP-
FUZZ discovered 13 bugs of a similar nature to those found on
Geth (of the historical and latest versions), as seen in Table 3.

We describe the patterns of these bugs as follows.

6.1 Found Eviction Attacks

Exploit XT1: Direct eviction by future transactions: In
this attack, given a mempool’s initial state storing normal
transactions, the attacker sends future transactions at high
GasPrice to evict the normal transactions. This exploit is
essentially the DETER-X attack [28].

In practice, Geth (≤ v1.11.4), Nethermind, Besu, and Eigen-
Phi are vulnerable under this exploit, as in Table 3.
Exploit XT2: Direct eviction by latent overdraft trans-
actions: In this eviction attack, the attacker sends latent-
overdraft transactions at high GasPrice to evict the normal
transactions initially stored in the target mempool. These
transactions are sent from k accounts, each of which sends l
transactions, denoted by k× l. The intention is to evade the
limit on the number of transactions per sender. The evasion
increases the attacker cost from one pending transaction to
multiple. This exploit is essentially the DETER-Z attack [28].

In practice, Geth (≤ v1.11.4), Besu, EigenPhi, and go-opera
are found vulnerable under this exploit.
Exploit XT3: Compositional direct eviction (by combining
XT1 and XT2): In some Ethereum clients, notably Geth, the
limit on the number of transactions per sender is triggered
under the condition that the mempool stores enough pending
transactions (e.g., more than 5120 transactions in Geth). This
eviction attack combines XT1 and XT2 to avoid triggering the
condition and evade the protection. It works by maximizing
the eviction of mempool under XT1 until it is about to trigger
the condition. It then conducts XT2 by sending latent overdraft
transactions under one sender, that is, 1× l. Compared to XT2,
the combined exploit XT3 achieves lower costs.

4For instance, go-opera adopts its own fix against XT1 based on the fork
of Geth < v1.11.4.

In practice, Geth (≤ v1.11.4) is vulnerable under this ex-
ploit where its mempool of capacity of 6144 slots triggers the
limit of 16 transactions per sender when there are more than
5120 pending transactions. That is, XT3 is configured with
l = 5120. Other clients including EigenPhi and go-opera are
also vulnerable.
Exploit XT4: Indirect eviction by valid-turned-overdraft
transactions: This eviction attack works in two steps: 1) The
attacker first sends valid transactions at high GasPrice to evict
normal transactions initially stored in the mempool. These
transactions are sent from k accounts, each of which sends
l transactions. 2) She then sends k transactions; each of the
transactions is of nonce 1, at a high GasPrice, of high value
v1, and from the same k accounts in Step 1). The transactions
would replace the transaction of the same sender and nonce
sent in Step 1). Once the replacement is finished, they turn
their child transactions into latent overdraft. Specifically, if
a sender’s balance is bal and the Ether value of transaction
of nonce 2 is v2, then v1 is carefully crafted to enable turned
latent overdraft, that is, v1 < bal and v1 + v2 > bal.

In practice, many clients are found vulnerable under this
exploit, including Geth < v1.11.4, Erigon, Besu, Nethermind,
OpenEthereum, EigenPhi, and go-opera.
Exploit XT5: Indirect eviction by valid-turned-future
transactions: This eviction attack works in two steps: 1)
The attacker first sends valid transactions at high fees to evict
normal transactions initially stored in the mempool. These
transactions are sent by k× l, that is, from k accounts, each
with l transactions. For each sender, the transaction of nonce 1
has a fee, say f1, slightly lower than the transactions of other
nonces, that is, f1 < f2. 2) She then sends k transactions; each
of the transactions is from a distinct sender from those used
in Step 1) and of fee f ′ that f1 < f ′ < f2. The intent is that
the k transactions in Step 2) evict the transactions of nonce 1
sent in Step 1), turning other child transactions sent in Step 1)
into future transactions.
Exploit XT6: Compositional indirect eviction (by multi-
round valid-turned-future transactions): This exploit is an
adaptive attack to the Geth ≥ v1.11.4. Geth ≥ v1.11.4 is
patched against XT1−2 and adopts the following admission



policies: The mempool of m′ = 6144 slots admits up to py′1 =
1024 future transactions. When containing more than py′3 =
5120 pending transactions, the mempool starts to limit that
no more than py′2 = 16 pending transactions from the same
sender can be admitted.

Exploit XT6 works in three steps: 1) it first evicts the ini-
tial mempool of normal transactions with m′/py′2 = 384 se-
quences, each of 16 transactions sent from one unique sender,
2) it then sends py′1/(py′2 −1) = 65 transactions to evict the
parent transactions and creates py′1 = 1024 future transactions
in the mempool, 3) it sends one sequence of 5120 transac-
tions from one sender to evict the normal transactions sent
in Step 1), and 4) it sends one transaction to evict the parent
transaction in Step 3, leaving the mempool of just one valid
transaction. Step 3) can succeed because the precondition
(w.r.t. py′3 = 5120) of limiting transactions of the same sender
does not hold.

In practice, Geth of all versions and the Geth forks, in-
cluding Flashbot, bloXroute, BSC, and Ethereum Classic are
found vulnerable under XT6.
Exploit XT7: Reversible evictions: Suppose a mempool of
state st admits an arriving transaction tx by evicting an exist-
ing transaction tx′, transitioning its state to st ′. A mempool is
reversible if one sends tx′ to state st ′, and the mempool admits
tx′ by evicting tx, transitioning its state back to st.

The mempool on Nethermind < v1.18.0 can be reversible:
Minimally, suppose a two-slot mempool stores tx1 of low
GasPrice from one sender and tx2 of medium GasPrice from
another sender A2 and receives tx3 as a child of tx1 and of
high GasPrice. For instance, tx1

[
A 1
1 1

]
, tx2

[
B 1
1 3

]
, tx3

[
A 1
2 5

]
. The

Nethermind < v1.18.0 mempool would admit tx3 and evict
tx2. After that, if one resends the evicted tx2 back to the mem-
pool storing tx1 and tx3, the Nethermind < v1.18.0 mempool
would admit tx2 and evict tx3, looping back to its initial state.

An attacker observing reversible mempool mounts Exploit
XT7 to evict the mempool while bringing down attack costs.
On Nethermind < v1.18.0, the attack works in two steps: 1)
She first sends k transaction sequences from k senders,5 each
of l transactions (i.e., k× l). In each l-transaction sequence,
the nonce-1 transaction has a low GasPrice, say f1, while all
its child transactions are of high GasPrice, evicting normal
transactions initially stored in the mempool. 2) The attacker
sends k×(l−1) transactions from k×(l−1) new senders, all
with GasPrice slightly higher than f1. The mempool would
admit these transactions to the mempool by evicting all child
transactions sent in Step 1), bringing down the attack costs.

6.2 Found Locking Attacks

Exploit XT8: Locking FIFQ: Certain mempool design pro-
hibits eviction by admitting transactions as a FIFQ. Transac-
tions are admitted only when there are empty slots. A full

5Nethermind does not limit transactions per sender, thus k = 1 in actual
attacks.

mempool always declines an arriving transaction. In practice,
Reth v0.1.0−al pha.4 adopts the FIFQ mempool design.

While a FIFQ mempool can not be vulnerable to eviction
attacks, it can be easily locked by Exploit XT8 as follows:
Whenever the attacker observes an empty slot present in the
mempool, she sends a pending transaction of a minimally
necessary fee to occupy the slot. Any transactions that arrive
after will encounter a full mempool and are declined.
Exploit XT9: Locking mempool of no turning: Because
of the risk of evicting a parent transaction that could lead
to turning, certain mempool is designed to restrict eviction
victims to child transactions; that is, only the transaction of
maximal nonce under a given sender can be evicted. For
instance, given an arriving transaction tx, the OpenEthereum
mempool finds an existing child transaction tx′ with a lower
GasPrice than tx and evicts it to admit tx.

In Exploit XT9, the attacker observes empty slots in the
mempool (e.g., created by arriving blocks) and sends the same
number of transactions to occupy them. The transactions are
sent from one account where the child transaction has a higher
GasPrice f1 than normal transactions, while all its parent
transactions have minimal fees. A normal transaction that
arrives subsequently is declined because f1 is higher than a
normal transaction. Because each of its parent transactions
has a low GasPrice, the mempool is locked at a low cost.

6.3 Evaluation of Found Turning Exploits

This and next subsections show the evaluation of turning at-
tacks and locking attacks, and due to the space limit, the eval-
uation of other ADAMS attacks is deferred to Appendix D.

We design experiments to measure the success of ADAMS
attacks in real Ethereum networks.

6.3.1 Evaluation in Testnet

Experimental settings: We set up our experiment platform by
connecting the attacker node to the Goerli testnet. The attacker
node runs an instrumented Geth client at the execution layer
which sends crafted transactions to the testnet.

To monitor transaction propagation, we launch an indepen-
dent supernode (called measurement node) in the same testnet.
The measurement node runs a reconfigured Geth client where
the limit of peers/neighbors is removed and can connect to
as many neighbors as possible. The measurement node is not
(directly) connected to the attacker node. When setting up
our experiments, we ran the measurement node in Goerli for
seven days and found the node is stabilized at 290 neighbors.
Experiment results: The instrumented measurement node is
able to log the received messages from different neighbors;
these messages include those of transactions and of transac-
tion hashes. The measurement node could receive the same
transaction from different neighbors, and the log stores the
transaction-neighbor pairs. We started logging the received
messages one month before the experiment.



Figure 3: Mounting XT4 attacks on Goerli: Etherscan screen-
shot of the blocks generated during the attack

To do an experiment, we make the attacker node send XT4
transactions using 384 accounts. Each account sends 16 valid
pending transactions, followed by a replacement transaction.
In total, the attacker node sends 6144 valid transactions and
384 replacement transactions. The GasPrice of the valid and
replacement transactions are set to be 8 Gwei and 130 Gwei,
respectively. Finally, we wrap up the experiment by waiting
after the attacker node sends all messages and all replacement
transactions are included in the blockchain.

Figure 3 shows the generated blocks in the experiment.
We took the screenshot from etherscan.io and labeled it in
red with information regarding the attack. Before the attack
begins, the testnet normally utilizes 24−47% of the Gas in a
block. For ethics, our attacks are short (lasting four blocks).

Right after the launch of the attack, in block xx07, the Gas
used by normal transactions drops to 3.19% and the Gas used
by adversarial transactions (denoted by red bars in Figure 3)
is 26.88%. The included adversarial transactions are 384 re-
placement transactions sent in the second round of XT4. The
6144−384 = 5760 child transactions sent in the first round
are not included in the block. Other blocks during the attack,
namely xx08 and xx10, are similar. In the third block xx09,
73.1% Gas is spent on including 82 normal transactions.To
explain it, we inspect the raw history of transactions arriving
at and logged by our measurement supernode and found that
out of the 82 included normal transactions, only 4 are present
in the log, implying the other 78 normal transactions are pri-
vate ones that were not broadcast to the measurement node.
Notice that our attacks require no discovery of critical nodes
as needed in [28].

6.4 Evaluation of Found Locking Exploits
6.4.1 Exploit Extension

Mempool in Reth v0.1.0−al pha.4: Recall that the mempool
is a FIFO queue: Any transaction residential in the mempool
is never evicted, no matter how high an arriving transaction’s
fee is. Besides, when there is an empty slot in its mempool,
it requires that the transaction admitted must have GasPrice
higher than the latest block’s BasePrice.
Actual exploit XT8a: In XT8, the attack cost increases with
the block BasePrice. We manually propose a method to de-

crease the block BasePrice in Ethereum by mounting an evic-
tion attack on the previous block. Specifically, in Ethereum
(after EIP1559), given a recently produced block i, the block
BasePrice of block i+1 is calculated dynamically as follows:

BasePrice(i+1) = BasePrice(i)∗ [7
8
+

1
4
∗ GasUsed(i)

BlockLimit
]

(10)

Therefore, if an eviction attack can persistently lower the
Gas utilization of recent blocks, the current BasePrice can be
reduced, which decreases the costs of locking attacks on the
current block. In Exploit XT8a, we mount a series of eviction
attacks first and then a locking attack against the Reth node.

Specifically, suppose in a network of a Reth node and a
block validator node, the XT8a attacker first keeps sending
eviction attacks directly to the validator node for several con-
secutive blocks. When observing the block BasePrice drop
sufficiently, the attacker mounts the regular locking attack
XT8 against the Reth node.

6.4.2 Attack Evaluation on Reth

Experimental settings: We set up an experiment platform
for evaluating locking attacks, on which an attacker node
is connected to a victim non-validator node, which is also
connected to a workload generator node and a victim validator
node. The attacker node also maintains a direct connection
to the victim validator. The network topology is depicted in
Figure 4. The non-validator node runs the Geth v1.11.4 client.

Figure 4: Experimental setup for locking attacks on Reth

Eviction

begin Eviction

end

Locking

end

Locking

start

Figure 5: Evaluation of locking attack XT8 on Reth

Evaluation of XT8: To evaluate XT8, we set up the workload
generator that sends normal transactions to the validator Geth
node. The non-validator Reth node has not yet joined the net-
work. We let the attacker node first send eviction attacks (XT6)
directly to the victim validator for 35 consecutive blocks until
it observes the block BasePrice drops sufficiently to 1 Gwei,
which occurs at the 45-th in our experiment. The Reth node
then joins the network with an empty mempool. The attacker
node mounts a locking attack XT8 with transactions of price
5 Gwei to occupy the Reth node’s mempool.

We report the total fees of normal transactions included in
the blocks – the lower the fees are, the more successful the
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locking attack is. We also report the adversarial transaction
fees as the attack cost shown in Figure 5. When the locking
attack begins at the 45-th block, the normal transaction fees in-
crease because of the empty mempool on the Reth node which
accepts some normal transactions in addition to the adversar-
ial locking transactions. Then, after three blocks, the normal
transaction fees quickly drop to near-zero Ether, showing the
success of locking attacks. Interestingly, unlike the eviction
attacks that cause low Gas utilization per block, the locking
attacks just reduce the total Ether fees without reducing Gas
utilization (i.e., the blocks produced under locking attacks
from height 45 to 60 use the Gas of almost 100% block limit).
Due to the high Gas utilization, block BasePrice keeps in-
creasing during the locking attack. When reaching the 60-th
block, the BasePrice is higher than the maximal transaction
price tolerable by the attacker. In our experiment, the lock-
ing attacker stops at 60-th block, and the normal transaction
fees immediately recover to the “normal” level. In practice,
the attacker can repeat sending eviction attacks to reduce the
BasePrice before mounting the locking attack again.

7 Evaluation of MPFUZZ

7.1 Performance

Preliminary of GoFuzz: Upon each fuzzing iteration, Go-
Fuzz [16] generates a bit-string of variable length, feeds it to
our fuzzer code, and receives from our fuzzer a binary value
of feedback, be either positive or negative. The GoFuzz fur-
ther checks if this run increases the code coverage. If the
feedback is positive and code coverage increases, GoFuzz
adds the current bit-string to the seeds before running into the
next iteration.
Baseline B1: Stateless fuzzer. We implement a stateless
fuzzer in the GoFuzz framework described above. 1) Given
a bit string generated by GoFuzz, our fuzzer code parses it
into a sequence of transactions; the length of the sequence
depends on the length of the bit string. It skips a bitstring
that is too short. 2) The fuzzer sets up and initializes a Geth
txpool instance with m normal transactions, each sent from
a distinct account, of nonce 1, of value 1 Ether (lower than
the account balance), and of GasPrice 3 wei. 3) The fuzzer
sends the transaction sequence to the initialized mempool for
execution. 4) It checks the mempool state after execution: If
the test oracle is met, it emits the current transaction sequence
as an exploit.
Baseline B2: Concrete-state-coverage fuzzer. We build
the second baseline, a mempool fuzzer that takes concrete
state coverage as feedback. Specifically, in each iteration, the
fuzzer appends a new transaction to the current transaction
sequence. Given the m-slot mempool, the fuzzer tries m val-
ues for senders, nonces, GasPrice, and Ether amount. After
sending the current transaction sequence to the mempool, it
sorts the transactions in the mempool by senders and nonces.
It then hashes the sorted transactions in the mempool and

checks the presence of the hash digest in the seeds. If no hash
exists, the current transaction sequence would increase the
concrete-state coverage and is inserted to the corpus. The
corpus is a FIFO queue where the seed inserted earlier has
high priority to be de-queued.
Baseline B3: Invalid-tx energy fuzzer. Baseline B3 is simi-
lar to B2 except that it uses as the energy the number of invalid
transactions on a mempool state. The seed with more invalid
transactions in the mempool has higher energy or priority to
be selected for the next round of fuzzing.
Baseline B4: feedback of no promising states: We de-
sign Baseline B4 for an ablation study on the effective-
ness of using promising states as feedback in improving
fuzzing performance. B4 is the same with MPFUZZ except
that it removes the state promising-ness from its feedback.
Specifically, the feedback formula in B4 includes only state
coverage (st_coverage) and excludes state promisingness
(st_promising as in Equation 7).

We implement Baseline B1 in Go/GoFuzz and implement
B2, B3 and B4 in Python. We use a test oracle that can detect
DETER attacks, that is, the number of invalid transactions in
a mempool state equal m−1.
Experimental settings of fuzzing: We run the four baselines
and MPFUZZ against a MUT in a Geth client reconfigured
under two settings: A small setting where the mempool is
resized to 6 slots m = 6 and all fuzzers run for two hours
(if test oracle is not triggered), and a medium setting where
m= 16 and fuzzers run for 16 hours. The fuzzing experiments
are run on a local machine with an Intel i7-7700k CPU of 4
cores and 64 GB RAM.
Table 4: Fuzzing Geth v1.11.3’s mempool (in minutes) by
different approaches to detect Exploit XT3.

Settings B1 B2 B3 B4 MPFUZZ

6slot-2h Timeout 54 8 1.22 0.03
16slot-16h Timeout Timeout 447 Timeout 0.06

Results: Table 4 reports the results under the small and
medium MUT settings. For the small MUT, B1 cannot find
any DETER attack in two hours. B2, B3 and B4 can find XT3
in 54 minutes, 8 minutes and 1.22 minutes respectively. By
contrast, MPFUZZ finds the same exploit in 0.03 minutes.

For the medium setting, with 16 slots, baselines B1, B2,
and B4 cannot find any DETER exploit in 16 hours, and B3
can find Exploit XT3 in 7.4 hours. By contrast, MPFUZZ finds
the same exploit in under a minute.

The evaluation on different clients is in Appendix C.

7.2 True/False Positive Rates

This section evaluates the true/false positives of the short
exploits found by MPFUZZ. Recall that MPFUZZ runs against
a small mempool (MUT) and may introduce false positives,
that is, the exploits that satisfy bug oracles in MUT but do
not in the actual larger mempool. We formally define true and
false positives as follows:



Definition 7.1 (TP/FP exploits) Consider a short exploit
found by MPFUZZ on a MUT, ⟨st0,dc0⟩,ops ⇒ ⟨stn,dcn⟩,
and a (manually) extended exploit on an actual mempool,
⟨st ′0,dc′0,ops′ ⇒ ⟨st ′n,dc′n⟩.

The pair of exploits constitute a true positive eviction attack
w.r.t. ε (λ), if.f. st0 ∩ stn = ∅∧ asymE(st0,ops) < ε∧ st ′0 ∩
st ′n =∅∧asymE(st ′0,ops′)< ε .

The pair of exploits constitute a false positive eviction
attack w.r.t. ε (λ), if.f. st0 ∩ stn = ∅ ∧ asymE(st0,ops) <
ε∧ (st ′0 ∩ st ′n ̸=∅∨asymE(st ′0,ops′)> ε).

True/false positives on locking attacks can be similarly
defined from bug-oracle definitions 4.2 and 4.3.

We evaluate the false positives of the exploits found by
MPFUZZ under varying ε and λ. Specifically, we design a
two-step experiment: First, given a MUT, we run MPFUZZ
with varying ε (and λ). Increasing ε allows MPFUZZ to find
more short exploits; for each distinct short exploit, we man-
ually extend it to an actual exploit. Second, we evaluate the
extended exploits on an actual mempool (in the same local
experimental setting as described in § D.1).

Table 5: True/false positives (TP/FP) of eviction and locking
attacks discovered with varying ε and λ. ✓means satisfied.

Exploit ε m = 16 (MUT) Default m TP?
Eq. 1 asymE Eq. 1 asym′

E
Geth-XT1 10−4 ✓ 0 ✓ 0 ✓

Geth-XT3 .09 ✓ 0.083 ✓ 0.0002 ✓

Geth-XT6 .125 ✓ 0.125 ✓ 0.0003 ✓

Geth-XT2 0.2 ✓ 0.167 ✓ 0.0698 ✓

Geth-XT4 0.23 ✓ 0.208 ✓ 0.0768 ✓

Geth-XT5 0.23 ✓ 0.208 ✓ 0.0768 ✓

Nethermind-XT1 10−4 ✓ 0 ✓ 0 ✓

Nethermind-XT4 0.11 ✓ 0.104 ✓ 0.0008 ✓

Nethermind-XT7 0.36 ✓ 0.355 ✓ 0.0012 ✓

Besu-XT2 0.2 ✓ .167 ✓ 0.0754 ✓

Besu-XT4 0.23 ✓ .208 ✓ 0.0083 ✓

Erigon-XT4 0.23 ✓ 0.208 ✓ 0.0894 ✓

Exploit λ m = 16 (MUT) Default m TP?
Eq. 4 asymD Eq. 4 asym′

D
Reth-XT8 0.34 ✓ 0.34 ✓ 0.015 ✓

OpenEthereum-
XT9

0.46 ✓ 0.46 ✓ 0.0439 ✓

Table 5 presents the details of exploits discovered by MP-
FUZZ. For instance, when setting epsilon at 0.0001 to find
eviction attacks on Geth, MPFUZZ discovered one short ex-
ploit XT1 with asymE = 0 on MUT, which can be extended
to an actual exploit on Geth mempool (of m = 6144) with
asym′

E = 0 < 0.0001 = ε. This makes it a true positive
(marked by ✓in the table). Increasing ε to 0.23 leads to dis-
covering all six exploits XT1−6 on Geth. All these exploits are
true positives. The table also includes the results of eviction
exploits found on other clients and locking exploits. Over-
all, the true-positive rate of MPFUZZ remains at 100% for
ε ≤ 0.36 and for λ ≤ 0.46 across Ethereum clients.

8 Discussions

Root causes of the exploits: We attribute all found exploits
XT1−9 to four distinct causes: 1) the presence of certain admis-
sion patterns (including XT1/XT2/XT3/XT4/XT6/XT7). For
instance, XT4 allows transaction replacement to cause latent
overdrafts in place of valid transactions. 2) the absence of cer-
tain admission patterns to cause mempool locking (including
XT9 and XT8). For instance, the cause of XT8 on Reth is that
Reth mempool is a FIFO queue, and it disallows transaction
eviction of any kind, which is risky. 3) Inconsistency across
multiple admission patterns, notably XT7. In XT7, the cause is
that a mempool allows an eviction and its reversed eviction at
the same time. 4) Evadable conditions to context-sensitive ad-
mission patterns, including XT3 and XT6. Both exploits work
on Geth, where the mempool triggers the limit of transactions
per send under an evadable condition (when the mempool
stores more than py′3 = 5120 pending transactions).
Mitigation: We propose schemes to mitigate all newly dis-
covered exploits comprehensively. In principle, given an ex-
ploit under a known cause, our mitigation design is to negate
the cause. For instance, to mitigate XT4, we propose declin-
ing transaction replacements that cause latent overdrafts. We
have implemented this mitigation strategy on Geth, which
was merged into the release of Geth v1.11.4 [10] . Similarly,
to mitigate XT7, we propose ensuring the consistency between
eviction events and reversed events (e.g., if admitting tx1 by
evicting tx2 is allowed, then admitting tx2 by evicting tx1 is
not allowed). XT1/XT2 are mitigated by disallowing eviction
of valid transactions by future/latent-overdraft transactions.
XT3/XT6 are mitigated by removing the triggering condition
of transaction sender limit (i.e., making py′3 = 0). XT8 can
be mitigated by re-enabling transaction evictions in certain
cases, such as price-based transaction eviction (i.e., a pending
transaction arriving later and of higher price can evict another
pending transaction of lower price and admitted earlier).

If an exploit relies on multiple causes (e.g., XT3 on Causes
1 and 4), negating one cause suffices to mitigate the exploit.

There are more sophisticated cases where one exploit relies
on the presence of an admission pattern, and another exploit
relies on the absence of the pattern. For instance, XT5 relies
on the presence of an admission policy named SAP5 that
turns child transactions into future ones (as in Geth), and the
success of XT9 relies on the absence of the same policy, that
is, ¬SAP5 (as in OpenEthereum).

To mitigate both XT5 and XT9, we propose a defense strat-
egy in which the admission decision regarding SAP5 is non-
deterministic or randomized so that SAP is not always on or
off, making it hard for either XT5 or XT9 to always succeed.
Responsible bug disclosure: We have disclosed the dis-
covered ADAMS vulnerabilities to the Ethereum Founda-
tion, which oversees the bug bounty program across ma-
jor Ethereum clients, including Geth, Besu, Nethermind, and
Erigon. We also reported the found bugs to the developers of
Reth, Flashbot, EigenPhi, bloXroute, BSC, Ethereum Classic,
and Fantom. Besides 7 DETER bugs that MPFUZZ rediscov-



ered, 24 newly discovered ADAMS bugs are reported. As of
March 2024, 15 bugs are confirmed: XT1 (Nethermind, Eigen-
Phi), XT2 (EigenPhi), XT3 (EigenPhi), XT4 (Geth, Erigon,
Nethermind, Besu, EigenPhi), XT5 (Geth), XT6 (Geth, Eigen-
Phi and Flashbot builder), XT7 (Nethermind), and XT8 (Reth).
After our reporting, XT4/XT7/XT8 have been fixed on Geth
v1.11.4/Nethermind v1.21.0/Reth v0.1.0−al pha.6. Bug re-
porting is documented [20].
Ethical concerns: When evaluating attacks, we only mounted
attacks on the testnet and did so with minimal impacts on the
tested network. For instance, our attack lasts a short period
of time, say no more than 4 blocks produced. We did not
test our attack on the Ethereum mainnet. We also mask part
of the block numbers in the screenshots (e.g., Figure 3) to
prevent detailed attack inspection and reproduction. When
reporting bugs, we disclose to the developers the mitigation
design tradeoff and the risk of fixing one attack by enabling
another attack (described above). To prevent introducing new
bugs, we did not suggest fixes against turning-based locking
(XT5, XT6) and locking (XT8).

9 Conclusion and Future Works
Conclusion: This paper presents MPFUZZ, the first mempool
fuzzer to find asymmetric DoS bugs by exploring symbolized
mempool states and optimistically estimating the promising-
ness of an intermediate state in reaching bug oracles. Run-
ning MPFUZZ on popular Ethereum clients discovers new
mempool-DoS vulnerabilities, which exhibit various sophisti-
cated patterns, including stealthy mempool eviction and mem-
pool locking.
Limitations and future works: The exploit generation in this
work is not fully automated. Manual tasks include mempool
reduction, MPFUZZ setup (configuring ε and symbols), exploit
extension, etc. Automating these tasks is the future work.

MPFUZZ’s bug oracles neither captures complete dependen-
cies among concrete transactions nor guarantees completeness
in finding vulnerabilities. Certified mempool security with
completeness is also an open problem.

MPFUZZ targets a victim mempool of limited size: the
vulnerabilities found in this work are related to transaction
eviction, which does not occur in a mempool of infinite capac-
ity. Thus, the MPFUZZ workflow cannot find exploits in the
mempool of infinite capacity. It is an open problem whether a
mempool of large or infinite capacity has DoS vulnerabilities.
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A Observations Motivating MPFUZZ Design

(In)feasibility of code-coverage-only stateless fuzzing: To
fuzz a mempool, a baseline design is to use a code-coverage-
based fuzzer. In each iteration, the fuzzer generates a bit string,
parses it into a sequence of transactions and sends them to the
tested mempool for execution. Upon each end state, it checks
whether the test oracle defined above is satisfied. This design
takes code coverage as the only feedback and is stateless
because the feedback does not consider the end state.

The stateless design would be ineffective in fuzzing mem-
pool or finding ADAMS exploits. For example, consider
fuzzing a three-slot mempool to find a DETER-X exploit
consisting of three future transactions [28]. Suppose the cur-
rent mempool input is a sequence of one future transaction.
After mutation, it may try an input of two future transactions,
which, however, does not increase code coverage (the second
future transaction is executed by the same code path in a mem-
pool as the first future transaction). Thus, the fuzzer discards
the two-future-transaction input and misses finding the three-
future-transaction exploit. We validate the ineffectiveness of
stateless fuzzer by experiments in § 7.

A more promising design is stateful mempool fuzzing, in
which the mempool state is included in the feedback to guide
next-iteration fuzzing. In the previous example of finding
a three-future-transaction exploit (DETER-X), sending two
future transactions leads to a different mempool state than
sending one. A simple state-coverage-based fuzzer would
view this as positive feedback and further explore this direc-
tion toward finding the three-future-transaction exploit.
(In)feasibility of existing consensus fuzzers: Existing con-
sensus fuzzers [25, 29, 36] cannot detect mempool DoS or
ADAMS bugs. Specifically, Loki’s test oracle is detecting sys-
tem crashes, while a successful ADAMS attack does not nec-
essarily trigger system crashes. Using Loki to detect ADAMS
would cause many false negatives.

Fluffy detects the unsynchronizable difference of post-
consensus states as vulnerability. However, the mempools
in two clients, say Geth and Besu under benign transactions,
would be different. In other words, post-consensus state dif-
ferences across clients could indicate insecurity, but the dif-
ference in pre-consensus states across clients, like mempool,
does not mean insecurity. Using Fluffly to detect ADAMS
could cause false positives.

Tyr’s test oracle detects property violations on post-
consensus states. Particularly, while Tyr models state liveness,
their definition “valid transactions should be executed even-
tually” is, unfortunately, over-simplifying and fails to model
the legitimate pre-consensus cases in real Ethereum clients;
for instance, valid transactions of low price can be dropped
by Ethereum mempools and will not be eventually executed.
Besides, they model double-spending transactions as the only
type of invalid transaction. In Ethereum, double-spending
transactions are of the same nonce. And there are many more

sophisticated invalid transactions in Ethereum that Tyr does
not model, including future transactions, latent overdrafts, etc.

We analyze the case of existing consensus fuzzers in detect-
ing known DETER attacks [28]. Loki cannot detect DETER
because DETER does not cause system crashes. Fluffy does
not model future transactions and can not find the DETER
attacks that rely on future transactions. Similarly, Tyr that
does not model sophisticated invalid transactions would miss
detecting DETER attacks.

A.1 Further Rationale of Symbolization
We now describe the design rationale of our symbolization
technique.

• The first observation is that real-world mempools admit
transactions based on the symbolic value, not concrete
value, of nonce and Ether amount. Our design reflects this
intuition. For instance, symbols of valid transactions, e.g.,
P ,C ,N , are instantiated by MPFUZZ to a minimal amount
1 Ether. As long as the transferred value does not exceed
the sender balance, transactions remain valid (i.e., no over-
draft). Admission decisions remain the same for two valid
transactions despite their difference in nonces or values.

Likewise, Symbol F is instantiated by MPFUZZ to fixed
nonce n+1: As long as the nonce is non-consecutive, no
matter what specific value it takes (e.g., 3 or m+ 1), the
mempool would deem it as a future transaction and makes
the same admission decision.

As a side note, the nonce of Symbol F is fixed at a large
nonce n+1 (we denote it by far future transactions) instead
of a small nonce, say 5 (we denote it by near future trans-
actions), because near future transactions’ nonce could be
reconnected as consecutive and lead to duplicated states.

• The second observation is that restricting eviction/replace-
ment victims to only parent transactions can facilitate find-
ing exploits quickly. Specifically, while any transactions can
be evicted/replaced, MPFUZZ evicts/replaces only parent
transactions; such a strategy can cause maximal damage
(i.e., the most child transactions turned) while saving the
search space. Our symbol design reflects this idea. For in-
stance, Symbol R covers any transaction of the same sender
and nonce as a transaction in state st, but it is instantiated by
MPFUZZ to only the transaction of nonce 1 (i.e., replacing
a parent transaction).

B Case Study: How MPFUZZ Finds Exploits

We describe how MPFUZZ finds an exploit by presenting a
case study on finding XT6 in the latest Geth ≥ v1.11.4.
Mempool reduction: Recall that a Geth mempool has a ca-
pacity of m′ = 6144 slots, and its transaction-admission poli-
cies are characterized by three essential parameters: admit-



ting up to py′1 = 1024 future transactions and limiting up
to py′2 = 16 pending transactions from any senders when
more than py′3 = 5120 pending transactions are residing in
the mempool. We set up the MUT to run the same codebase
or the same admission policy but with smaller parameters:
m = 3, py1 = 1, py2 = 2, py3 = 2 . What follows is a descrip-
tion of how MPFUZZ find a short exploit on this MUT.
Fuzzing: How MPFUZZ automatically finds exploits: Ini-
tially, the mempool is filled with m = 3 normal transactions.
That is, the initial symbolized state is N N N . The seed cor-
pus sdb initially contains an empty string. MPFUZZ retrieves
the empty string and appends to it with different symbols O0,
C0, P0. Because of the initial state N N N , only Symbol P0 is
feasible. It generates the mutated input P and instantiates it to
a parent transaction of a higher GasPrice than normal transac-
tions (as described in § 5). Sending the input to the mempool
gets the transaction admitted, leading to transitioned state
st1 = N N P . This is a new state that is not in the corpus, and
it evicts more normal transactions N than the previous state
st0; the input produces positive feedback, and the associated
input-state pair ⟨P,st1 = N N P ⟩ is added to the corpus.

Figure 6: Snapshot of the
MPFUZZ state-search tree
when finding Exploit XT6 on
Geth v1.11.4.

Next, MPFUZZ retrieves
from sdb a seed by high en-
ergy. According to Table 2,
the energy of state N N N
is 1

3∗3 ∗ 0, and the energy
of state N N P is 1

3∗2+4 ∗
1 = 1/10 > 0. Hence, seed
N N P is selected. MP-
FUZZ tries input mutation
and appends to the selected
input P one of four new
symbols, that is, O1, C1, P0
or P1. On state N N P ,
1) mutation transaction in-
stantiated from symbol O1
is declined admission. 2)
Mutation transaction from C1 is admitted, transitioning the
state to N P C , which produces positive feedback and is added
to sdb. 3) Likewise, transaction P0 is admitted and produces
state N P P of positive feedback; the mutated input is also
added to sdb. 4) Mutation P1 is admitted but produces an
identical state with mutation P0; thus, the mutated input is not
added to sdb.

Now, there are four seeds in sdb: N N N (0), N N P (0),
N P C (1/8), and N P P (1/12). In parentheses are their en-
ergy numbers. The seed of the highest energy N P C is se-
lected ( 1 in Figure 6). MPFUZZ then mutates N P C with 4
possibilities, that is, O1, C1, P0, and P1, which produce two
end states with positive-feedback, that is, P P C and P CP .
They are added to the sdb with energy P P C (1/10) and
P CP (1/10).

Let’s say P P C (1/10) is selected ( 2 ). MPFUZZ mutates
input P C1P0 with 7 mutation transactions, that is, O1, O2, C1,

C2, P0, P1, P2, which produces one end state with positive
feedback, that is, mutation C1 is admitted and transitions state
to F P C . After that, F P C is the one with the highest energy
and is chosen for the next-round fuzzing ( 4 ). MPFUZZ mu-
tates input P C1P0C1 with 4 mutations and produces 2 state
transitions with positive feedback. Upon state F P C , mutation
C1 is admitted and leads to state F EE , which satisfies the
bug oracle of eviction attacks under ε = 0. The algorithm then
emits the found short exploit: ⟨st0 =N N N ,dc0 =∅⟩,ops=
P C1P0C1C1 (recall Definition 4.1). The snapshot of the state-
search tree is depicted in Figure 6.
Exploit extension: Given the short exploit automatically
found on MUT (with m = 3, py1 = 1, py2 = 2, py3 = 2), the
next step is to extend it to a longer exploit functional on the
actual Geth mempool (with m′ = 6144, py′1 = 1024, py′2 =
16, py′3 = 5120).

Exploit extension requires manual efforts: After identify-
ing exploit ⟨st0 = N N N ,dc0 = ∅⟩,ops = P C1P0C1C1 is
unique, we extend it to the longer exploit by ensuring the
same admission event occurs on the actual mempool as on
the smaller MUT. In this process, it tries the next transaction
of the same sender with the previous one but with an incre-
mented nonce. If it fails, it switches to the next sender. It also
tries transaction fees/prices based on measuring the fees of
actual normal transactions, which may not be fixed as 3 in the
MPFUZZ setting.

C Additional Eval. of MPFUZZ Performance

We further run our MPFUZZ on different clients, including
Geth v1.10.11, Geth v1.11.4, Erigon v2.42.0, and Nethermind
v1.18.0. The tested mempool is configured at 16 slots. We
report the number of exploits found by MPFUZZ in a 16-hour
period. Figure 7 presents the result that MPFUZZ finds 4096
short exploits in the first 8 hours on Geth-v1.10.11. On Geth-
v1.11.4, MPFUZZ quickly finds one exploit (i.e., exploit XT6
as described in § 6.1) within 2 minutes and does not find
anymore in the next 16 hours. On Nethermind, it finds one
exploit (exploit XT1) within two minutes and finds the next
one (exploit XT4) near the end of 16-th hour. On Erigon, it
finds one exploit (XT4) in the 16-th hour.
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Figure 7: # exploits found
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Figure 8: # states covered

Figure 8 shows the number of states that are explored by
MPFUZZ on a 16-slot mempool in 16 hours. MPFUZZ explores
749 and 91428 states on Geth v1.10.11 in 2 minutes and
16 hours respectively. On Geth v1.11.4, MPFUZZ explores



372 and 23286 states in 2 minutes and 16 hours respectively.
However, the performance of Erigon and Nethermind is much
lower than that of Geth. MPFUZZ explores 12 and 1239 states
on Erigon in 2 minutes and 16 hours respectively. On Nether-
mind, MPFUZZ explores 15 and 1433 states in 2 minutes and
16 hours, respectively. The reason MPFUZZ is more perfor-
mant on Geth is that we implemented an external API on Geth
to initialize the mempool; in each iteration of fuzzing on Geth,
MPFUZZ calls the API to initialize the mempool. In contrast,
on Nethermind and Erigon, MPFUZZ restarts the client in each
iteration, which is consuming.

D Additional Attack Evaluation

D.1 Experiment on a Single Victim Node

Figure 9: Experimental setup

Evaluation settings: Our goal is to evaluate the success rate
and cost of different ADAMS attacks on a single victim node.
Because some ADAMS attacks are sensitive to the workload
of normal transactions, we first collect transaction workloads
from the mainnet. Specifically, we instrumented a Geth client
(denoted by Geth-m) to log every message it receives from
every neighbor. The logged messages contain transactions,
transaction hashes (announcements), and blocks. When the
client receives the same message from multiple neighbors, it
logs it as multiple message-neighbor pairs. We also log the
arrival time of a transaction or a block.

Workload collection: We launched a Geth-m node in the
mainnet on May 17, 2023, turned on logging for 5 hours, and
collected the transactions propagated to it. We make the col-
lected transactions replayable as follows: We use the account
balances and nonces on the mainnet to set up the initial state
locally. We then replace the original sender in the collected
transactions with the public keys that we generated. By this
means, we know the secret keys of transaction senders and are
able to send the otherwise same transactions for experiments.

For experiments, we set up three nodes, an attack node
sending crafted transactions, a workload node sending normal
transactions collected, and a victim node receiving transac-
tions from the other two nodes. The victim node is connected
to both the attack and workload nodes. There is no direct con-
nection between the attack node and the workload node. The
attacker node runs an instrumented Geth v1.11.4 client that
can propagate invalid transactions. The victim node runs the
tested client. The workload node runs a vanilla Geth v1.11.4
client. On each node, we also run a Prysm v3.3.0 client at
the consensus layer. The experiment platform is denoted in
Figure 9. Among the three nodes, only the victim node is

staked as a validator and would propose or produce blocks.
In each experiment, we first run the above “attacked” setup.

We then run a “regular” setup that excludes the attack node.
Under the regular setup, the workload node sends the normal
transactions and blocks to the victim node. We compare the
experiment results under the attacked setup and regular setup
to show the success of the attack.

In the “attacked” setup, we collect the blocks produced and,
given a block, we report two metrics: 1) total fees of benign
transactions included, 2) total fees of attack transactions in-
cluded. We also re-run the workload and victim nodes with the
“regular” setup. We collect the blocks produced, and, given
a block, we report two metrics: 3) total fees of transactions
included, and 4) the cost of a baseline spamming attack with
100% success rate. For the latter, given a block, we select the
transaction of the highest GasPrice and report the GasPrice
multiplied by the Ethereum block Gas limit.

Table 6: Attack success rate and cost (Ether/block)
Clients Exploit Success rate Cost Baseline
Geth v1.10.25 XT1 99.80% 0 11.39

XT2 99.42% 0.725 11.39
XT3 93.02% 0.0021 11.39

Geth v1.11.4 XT4 99.42% 0.806 11.39
XT5 92.65% 0.806 11.39
XT6 94.74% 0.0022 11.39

Erigon v2.42.0 XT4 92.53% 1.172 17.7
Nethermind v1.18.0 XT4 99.60% 0.0021 10.75

XT7 84.63% 0.20 10.75
Besu v22.7.4 XT2 99.63% 1.04 17.7

XT4 99.60% 1.06 17.7
Reth v0.1.0-al pha.6 XT4 92.53% 0.672 17.6
Flashbot builder v1.11.5 XT6 94.74% 0.0022 11.39
EigenPhi XT1 99.80% 0 11.39
builder XT2 99.42% 0.725 11.39

XT3 93.02% 0.0021 11.39
XT4 99.42% 0.806 11.39
XT6 94.74% 0.0022 11.39

bloXroute builder-ws XT6 94.74% 0.0022 11.39
go-opera v1.1.3 XT2 99.12% 0.201 11.39

XT3 92.60% 0.0021 11.39
XT4 99.13% 0.221 11.39
XT6 93.76% 0.0022 11.39

BSC v1.3.8 XT6 94.74% 0.0022 11.39
core-geth v1.12.18 XT6 94.74% 0.0022 11.39
Reth v0.1.0-al pha.4 XT8 99.04% 0.151 7.14
OpenEthereum v3.3.5 XT4 99.56% 0.233 11.39

XT9 98.36% 0.177 18.35

The evaluation results of all attacks on all clients are in
Table 6. On the six Ethereum clients in the public transaction
path, the attack success rates are all higher than 84.63%, and
the attack costs are all lower than 1.172 Ether per block, which
is significantly lower than the baseline.

We also evaluate the attacks found on PBS and Ethereum-
like clients. Under the same experimental settings as § D.1, the
results show similar success rates and costs with the attacks
on Geth (recall these clients are Geth forks). More specifically,
Table 6 shows that the success rates are higher than 92.60%,
and attack costs are lower than 0.806 Ether per block.
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