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Abstract
Authenticated data storage on an untrusted platform is an
important computing paradigm for cloud applications ranging
from data outsourcing, to cryptocurrency and general trans-
parency logs. These modern applications increasingly feature
update-intensive workloads, whereas existing authenticated
data structures (ADSs) designed with in-place updates are
inefficient to handle such workloads. This work addresses the
issue and presents a novel authenticated log-structured merge
tree (eLSM) based key-value store built on Intel SGX.

We present a system design that runs the code of eLSM
store inside enclave. To circumvent the limited enclave mem-
ory (128 MB with the latest Intel CPUs), we propose to place
the memory buffer of the eLSM store outside the enclave and
protect the buffer using a new authenticated data structure by
digesting individual LSM-tree levels. We design protocols
to support data integrity, (range) query completeness, and
freshness. Our protocol causes small proofs by including the
Merkle proofs at selected levels.

We implement eLSM on top of Google LevelDB and Face-
book RocksDB with minimal code change and performance
interference. We evaluate the performance of eLSM under
the YCSB workload benchmark and show a performance
advantage of up to 4.5X speedup.

CCS Concepts: • Security and privacy → Distributed sys-
tems security; Trusted computing.

Keywords: Data integrity, Query authentication, Storage con-
sistency, Key-value stores, LSM trees, SGX, Enclave.
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1 Introduction
Outsourcing data storage to a third-party host, such as the
public cloud, has been an emerging practice with increas-
ing popularity in security-critical applications. For instance,
using Amazon S3 to store the Bitcoin ledger or transaction
history or to host general transparency logs (e.g., in Google
Certificate Transparency [3, 25]) can significantly bring down
the operational cost and are adopted in practice [12]. The
modern security applications features user-generated content
continuously generated in an intensive data-write stream.

Data authenticity is the primary concern for storing and
serving data on the untrusted cloud services which are con-
stantly caught compromised in the real world. To guarantee
data authenticity, a common approach is to employ the pro-
tocols of authenticated data structures (ADSs) between an
untrusted cloud server and trusted clients (i.e., data owner and
query users). However, existing ADS schemes [21, 22, 24, 28,
29, 31, 35, 37, 42, 43] have several major limitations. First,
they are designed based on update-in-place data structures
(i.e., requiring excessive communication and large proofs be-
tween the data owner and the cloud for updating the ADS),
leading to known inefficiency problems in handling data up-
dates [30, 33]. Second, existing schemes require the users
to verify the proof of results obtained from the cloud, thus
incurring high bandwidth and computation overheads.

To address these limitations, in this paper, we leverage
off-the-shelf hardware enclaves, in particular Intel Software
Guard eXtension (SGX) [10], and propose a novel authenti-
cated key-value store based on LSM trees. The motivation of
our design is two-fold: 1. (Why LSM tree?) An LSM tree (log-
structured merge tree) is a data structure that supports append-
only writes and random-access data reads. Periodically, it
conducts a batch operation, called COMPACTION, that reorga-
nizes the data layout for better read performance in the future.
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By this design, an LSM tree has performance advantages in
serving high-speed write streams and is widely adopted as
the external-memory index structure in modern storage sys-
tems including Google’s BigTable [19]/LevelDB [8], Face-
book RocksDB [7], Apache HBase [2], Apache Cassan-
dra [1]. 2. (Why Intel SGX?) Without a trusted party, re-
alizing an authenticated LSM tree on the cloud requires using
costly cryptographic protocols, such as verifiable computa-
tions (VC [15, 18, 32, 34, 41]), to support verifiable COM-
PACTION.1 With the advent of commercial trusted execution
environments, notably Intel Software Guard eXtension or
SGX [10], it becomes practically feasible to build a trusted
execution environment or enclave in proximity to the un-
trusted cloud platform. This makes bulk data transfer viable
and is promising to support verifiable and efficient COM-
PACTION for authenticated LSM trees. Besides, query users
are alleviated from the burden of result verification. Note
that our trusted design is specific to Intel SGX and should
be differentiated from blockchain-based hardening of storage
systems [23, 38, 39].

In our envisioned architecture, trusted cloud applications
(e.g., a database server) run inside SGX enclaves and issue
data read/write requests to our authenticated key-value store
that is co-located in the cloud. In our system design, the code
(namely the codebase of a vanilla LSM store2) is placed in-
side the enclave, which relies on the Intel SGX SDK [11] or
an in-enclave Library OS (LibOS) [17, 40] to handle system
calls. In terms of placing data (e.g., program states), a naive
design is to store the data in the memory region inside the en-
clave. When handling data of Gigabytes, this design, however,
imposes huge memory pressure inside enclave and would
cause significant performance slowdown. To be more specific,
the current family of Intel CPUs support 128 MB physical
memory in the enclave, and when the enclave memory hosts
more than 128 MB, it causes expensive enclave paging [27],
leading to performance slowdown. More fundamentally, the
slowdown is inevitably caused by the security needs to protect
enclave memory. Even if Intel may remove the hard memory
limits of 128 MB in future releases, putting data in a enclave
incurs slowdown caused by memory protection.

To circumvent the inefficiency, we propose to place the
memory data outside the enclave. More precisely, among var-
ious memory data structures in an LSM store, we place the
read buffer outside the enclave and leave other structures that
often grow sublinearly with the data size inside the enclave,
including index structures (e.g., a bloom filter), write buffer,
etc. To ensure the integrity of the data placed outside the
enclave, we propose an authenticated LSM tree, named by
eLSM. eLSM builds a forest of Merkle trees, each digest-
ing a “level” in an LSM tree. eLSM supports efficient reads
1Another possible approach is to transfer the whole dataset back to trusted
data owners over the Internet, which is also expensive.
2“LSM store” denotes the class of key-value stores designed based on LSM
trees.

and small-sized query proofs by presenting Merkle proofs at
selected levels. We proved the security of the query authenti-
cation schemes in eLSM (deferred in technical report [36]).

We also build the eLSM systems on Google LevelDB [8]
and Facebook RocksDB [7]. In our systems, the eLSM
Merkle proofs are embedded in individual data records in
such a way that the proof of a query can be naturally con-
structed from the Merkle proofs embedded in the data records
included in the query result. By this means, we minimize
the code change needed in Google LevelDB, reducing per-
formance interference at runtime. For RocksDB, the eLSM
system is implemented as a middleware that does not require
code change of the underlying RocksDB, but instead just
relies on its callback interface [4]. More specifically, we im-
plement authenticated COMPACTION in some event handlers
in the COMPACTION path of RocksDB. With this, we believe
the add-on design of eLSM is generally applicable to any
LSM stores. By contrast, existing work in the field, notably
Speicher [16], all requires significant code change of underly-
ing LSM store. At last, the code of eLSM is open-source [5].

We conduct a comprehensive performance study of eLSM
under the YCSB workload benchmark [20]. The performance
result shows that eLSM achieves lower operation latency than
the baseline of update-in-place data structures by more than
one order of magnitudes. Compared with in-enclave memory
buffers, the design of data buffer outside the enclave achieves
up to 4.5X speedup in most YCSB workloads.

The contributions made in this paper include the following:
1. This work addresses an emerging security workload, that

is, supporting query authentication in the presence of frequent
data updates. We propose a novel SGX-enabled authenticated
key-value store.

2. We present the system designs of eLSM that are secure,
efficient and generic. It places the memory data outside the
enclave to circumvent the limited memory size in the enclave.
It builds an authenticated LSM tree with small query proofs
at selected tree levels. To the best of our knowledge, eLSM
is the first data-authentication middleware on LSM stores,
without any code change of the underlying store.

3. We implemented functional prototypes of eLSM on
Google LevelDB and Facebook RocksDB. The code of our
prototype is open-sourced [5]. We conducted a comprehensive
performance study under the YCSB workload benchmark that
shows up to 4.5X performance advantage.

2 eLSM-P2 System
2.1 System Design & Overview
Baseline design: We consider a strawman design of the sys-
tem, named eLSM-P1, that places the entire user-space code-
base of an LSM store inside the enclave. The data files, named
SSTables, are stored outside the enclave. The interaction
between the enclave and the untrusted host occurs at the
syscall levels, primarily for file management (e.g., fwrite
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and fread). Specifically, eLSM-P1 places outside the en-
clave the files at all LSM-tree levels, including the WAL file
at level L0 and data files at levels L≥1. Inside the enclave are
the codebase of an LSM store and metadata including indices
and data buffers.
Overview: Figure 1a depicts the system architecture
of eLSM-P2 which runs the code for operations
PUT,GET,COMPACTION inside enclave. The memory data in-
cluding the buffer at Level L0 and file indices at Levels L≥1 are
also placed inside the enclave. The read buffers and all data
files at Levels L≥1 are placed outside the enclave. The WAL
file is also stored outside enclave. The figure also illustrates
the dataset in the LSM store, which we will use throughout
this section to describe the details of eLSM-P2 system. In
this example dataset, there is an LSM tree of three levels
and six key-value records. Level L1 contains record ⟨A, 9⟩,
level L2 contains three records ⟨T , 4⟩, ⟨Z , 7⟩, ⟨Z , 6⟩ and level
L3 contains four records ⟨A, 2⟩, ⟨T , 0⟩, ⟨Y , 3⟩, ⟨Z , 1⟩. Here,
we show the key-value record by its data key and timestamp.
Record ⟨T , 0⟩ is the oldest and is of key T and timestamp 0.
For simplicity, the data is omitted in the example.

Protecting data outside enclave: Because eLSM-P2 places
outside enclave the data at non-zero levels, it entails data
protection mechanisms. For data confidentiality, we require
the data key in each record to be encrypted with deterministic
encryption (DE), such that it can directly search the domain
of ciphertext. We discuss data confidentiality in technical
report [36]. Data authenticity is handled by the eLSM digest
structure, as described next.

2.2 Digest Structure
To digest an LSM tree, we propose a novel authenticated data
structure, eLSM-P2 digests. There are two key designs: 1)
eLSM-P2 builds a “forest” of Merkle trees, each digesting
one LSM-tree level and each having its root stored in the
enclave. 2) In a per-level Merkle tree, data records of the
same key are digested in hash chains and records of different
keys are digested in a Merkle tree. In particular, the hash
chain is built in a temporal order where the chain header is
the oldest record and the tail is the newest record. In Figure 1a,
each of the three LSM tree levels is associated with a Merkle
tree. Case 1): For a level of distinct data keys, such as level L3
in Figure 1a, it builds the leaf set of the Merkle tree directly
on the data records. For instance, h7 = H (⟨A, 2⟩) (H is a
standard cryptographic hash algorithm with variable-length
input) and h6 = H (⟨T , 0⟩). An intermediate node is the hash
digest of the concatenation of the two children, for instance,
h8 = H (h6∥h7) (here, ∥ is a concatenation operation). Case
2) For a level that contains some records of the same keys, it
constructs a hash chain over these records. For instance, level
L2 contains two records of the same key, ⟨Z , 7⟩ and ⟨Z , 6⟩.
eLSM-P2 builds a hash chain on these two records, that is,
h4 = H (⟨Z , 7⟩∥H (⟨Z , 6⟩)). Then, it builds the Merkle tree

over h4 (for records of key Z ) and h2 (for record ⟨T , 4⟩) for
level L2.

To materialize the eLSM-P2 digest structure, we present a
simple storage design: Given a level Li and its Merkle tree,
each record at the level ⟨k,v⟩ is augmented with its eLSM-
P2 proof π , that is, ⟨k,v ∥π i ⟩. Given a record, an eLSM-P2
proof is the set of Merkle tree nodes that surround the path
from the leaf node of the record to the root node. For instance,
in Figure 1a, the eLSM-P2 proof for record ⟨A, 2⟩ consists
of hashes h7 and h11 (i.e., the siblings to nodes h6 and h8).

2.3 Read/Write Protocol
Data read path starts with the trusted application issuing
a read operation, v = GET(k). The enclave looks up its in-
dex to locate the target level and file, and it then notifies
the eLSM-P2 store. r1 The untrusted store serves the read
operation on the target file and, in addition, runs algorithm
π ,v = QUERYGET(m,k) to prepare a proof for authenticating
the read result (m is the key-value dataset). The proof consists
of Merkle authentication paths or Merkle proofs [26] at “rel-
evant” LSM tree levels. Recall that a Merkle authentication
path consists of the hashes surrounding the path from a leaf
to the root in a Merkle tree and it can be used to verify the
membership and non-membership of a record in a dataset.
r2 The eLSM-P2 store in the untrusted host then sends the
result of GET (k) as well as the proofs (π ) to the enclave.
The enclave verifies the authenticity of the read result, by
running algorithm Yes|No= VRFYGET(π ,v). The verification
algorithm iterates through relevant levels, and, for each level,
verifies the (non)-membership of the queried data key (k)
using the Merkle proof (in π ) and the locally stored root hash.

To verify the non-membership of a key on a level, it com-
monly returns the two Merkle authentication paths that sur-
rounds the key. If the queried key is smaller than the smallest
key on a level, it simply returns the single Merkle proof that
would authenticate the membership of the leftmost key. For
instance, consider authenticating the non-membership of a
queried key B on level L2 in Figure 1b. The proof is ⟨T , 4⟩,h4,
with which and root h5 the enclave would verify that ⟨T , 4⟩
is the smallest key on the level, thus queried key B does not
exist on Level L2. Note that our in-enclave compaction (will
be described) ensures the invariant that data is sorted by key
at the same level.

A strawman of designing the eLSM-P2 proof is to scan all
levels to prepare a proof (in algorithm QUERY). We propose
to reduce the proof size by including only Merkle proofs of
the levels no higher than the level of the result record. This
will allow algorithm QUERY to stop early when it reaches the
first level, say Li , that finds a matching record. The returned
proof π = π1, ...π i , where π1, ...π i−1 are the Merkle proofs
for non-membership (there is not any matching record at
levels L1, L2, ...Li−1). π i is the Merkle proof for membership
(there is a matching record at level Li ). All Merkle proofs after
level Li , as will be seen, do not contain fresher records and
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Figure 1. eLSM-P2 system with an LSM tree of three levels: A rectangle depicts data and a rounded rectangle depicts code.
Shapes in red are where eLSM-P2 makes code change over the original LSM store. The root hashes (red dots in green boxes)
are maintained with copies inside enclave.

are deliberately omitted. When there is no matching record,
i = q.

An example: In Figure 1a, suppose the trusted application
issues GET(Z ) over datasetm. In step r1 , the untrusted host
serves QUERYGET(m,Z ) with authentic result ⟨Z , 7⟩ (the be-
nign case). ⟨Z , 7⟩ is the newest record matching queried key
Z and is located at level L2. The proof is two Merkle authen-
tication paths at levels L1 and L2. Note that there is no need
to include level L3 in the eLSM-P2 proof. Concretely, the
proof at the first level is ⟨A, 9⟩ (denoted by π1). The proof at
the second level is h3,h2 (denoted by π2). Then in step r2 ,
the enclave can verify the result authenticity in freshness and
completeness based on the proof π = [π1, π2] (i.e., algorithm
VRFY([π1, π2], ⟨Z , 7⟩, [h1,h5])).

Concretely, with the first-level proof π1 = ⟨A, 9⟩, the en-
clave verifies result authenticity by checking H (π1)

?
= h1. If

the VRFY algorithm runs through, it authenticates the fact
that record ⟨A, 9⟩ is the only record at level L1. From this,
it can be derived that level L1 does not contain any record
of key Z (i.e., the non-membership of a data key Z at level
L1). With the second-level proof π2 = h3,h2, the enclave
verifies by checking H (h2∥H (⟨Z , 7⟩∥h3))

?
= h5. If successful,

it authenticates the fact that a) record ⟨Z , 7⟩ is a valid record
at level L2 (result integrity), b) record ⟨Z , 7⟩ is the newest
record with key Z (result freshness). Fact b) is based on that
there are no other records of key Z in the proof π2. Based on
these two proofs, one can establish that record ⟨Z , 7⟩ is the
newest record in the datasetm.

Consider the malicious case when the untrusted host can
return a stale record, say ⟨Z , 6⟩, to the enclave. In this case,
the malicious host can only present the following as a valid
level-L2 proof, that is, π ′

2 = ⟨Z , 7⟩,h2. By this means, the

enclave can verify the result integrity successfully by check-
ing H (h2∥H (⟨Z , 7⟩∥H (⟨Z , 6⟩)))

?
= h5. However, as the newer

result record ⟨Z , 7⟩ has to be included in the proof π2, the
enclave can detect that ⟨Z , 6⟩ is not the most fresh record
(violating freshness).

Data write path starts with the trusted application issuing
a write operation PUT(k,v). To serve the write, the enclave
maintains two in-enclave structures, a write buffer of level L0
and, for data recovery, a digest of the write-ahead log (WAL).
Recall that a WAL stores recent data writes in temporal order
and serves as the base to recover recent data in the case of
fault. The storage of WAL is placed outside the enclave, while
the enclave stores the hash digests of the WAL.

w1 Serving the write PUT (k,v), the enclave first assigns
to the record to write the latest timestamp ts. It then writes to
the memory buffer of level L0 inside enclave. Serving a times-
tamped write PUT(k,v, ts), the enclave iteratively update its
WAL digest by diд′ = H (diд∥⟨k,v, ts⟩). w2 When the write
buffer at level L0 overflows, it is triggered to flush the content
at Level L0 and to generate a file at Level L1. In the system
of an LSM store, the codebase for flush is shared with that
for COMPACTION. w3 The enclave switches out to append
the write to the WAL in the untrusted domain. Enclave WAL
can be extended to defend rollback attacks, as discussed in
technical report [36].

An example: In Figure 1a, suppose the application calls
PUT(Y ). The enclave assigns to the record the latest times-
tamp 10. It updates the WAL digest from diд to diд’, such that
diд′ = H (diд∥⟨Y , 10⟩)) ( w1 ). The host appends the record to
the WAL outside enclave ( w3 ). If the buffer of Level L0 is
overflown by the new record, it will sort all records stored in
L0, and flush them to a new file at L1 ( w2 ).
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COMPACTION path starts with the trusted ap-
plication in enclave issuing operation (L′i , L

′
i+1) =

COMPACTION(Li , Li+1). For simplicity, we consider
the most basic form of COMPACTION, namely, merging two
adjacent levels. It is natural to extend it to more complicated
cases such as merging more than two levels or merging
subsets at the two levels. For the COMPACTION across
two levels, eLSM-P2 carries out the computation inside
enclave and only switches the execution outside enclave
for file access. The process runs in the following steps: m1

the enclave starts to issue OCalls to load all input files to
untrusted memory so that the enclave can read the streams
of data records (in their sorted order). m2 The enclave
then runs “authenticated COMPACTION” that merges input
data at the two levels into one level. Internally, the enclave
needs to verify the authenticity of input data, to conduct
the actual computation for COMPACTION, to produce the
digest of output data, and to generate the proofs embedded
in the output data. m3 The untrusted host makes effect of
the COMPACTION by flushing merged data and proof to
disk. The enclave updates the per-level digests by the newly
produced ones.

An example: In Figure 1a, suppose the application calls
COMPACTION(L2, L3). In step m1 , the host loads the data
at the two levels from disk to memory (in the untrusted
world). In step m2 , the enclave verifies the data authenticity
of input levels by reconstructing the Merkle tree at level
L2 (and L3) and by checking if its root hash is equal with
h5 (and h12). It will then merge the two levels’ data into
one merged list, that is, from L2 = [⟨T , 4⟩, ⟨Z , 7⟩, ⟨Z , 6⟩]
and L3 = [⟨A, 2⟩, ⟨T , 0⟩, ⟨Y , 3⟩, ⟨Z , 1⟩] to output level
L′3 = [⟨A, 2⟩, ⟨T , 4⟩, ⟨T , 0⟩, ⟨Y , 3⟩, ⟨Z , 7⟩, ⟨Z , 6⟩, ⟨Z , 1⟩].
Meanwhile, it builds the Merkle tree over the output list, and
based on it, generates the proofs embedded in data records.
In step m3 , the digest of the new Merkle tree replaces that
of level L3 (i.e., h12). L2 becomes an empty list, which also
updates its digest. We defer the security protocol analysis to
technical report [36].

2.4 System Implementation
We have implemented eLSM-P2 on Google LevelDB [8]
and Facebook RocksDB [7]. For LevelDB, eLSM is imple-
mented by directly changing the LevelDB codebase. This
implementation approach has the advantage in performance.
For RocksDB, eLSM is implemented as a RocksDB add-on,
that is, without code changes to RocksDB. In this subsection,
we present the RocksDB implementation in § 2.4.1.

In the protocol of eLSM-P2, a key-value record is stored
with its proof, that is, ⟨k,v ∥π i ⟩, where i is the index of the
level where the record is currently located. To implement
the embedded proof in an LSM store, it is required to add
the code change in two paths, that is, a) the COMPACTION
paths for updating records’ proof when they are merged to a

different level (Note that the proof is sensitive to which level
the record is located), and b) the GET path where the proof is
used to authenticate the record membership/non-membership
in a level.

2.4.1 Implementation as a RocksDB Add-on. The
eLSM-P2 implementation on LevelDB requires the change
of LevelDB’s codebase. A more modular approach (with ben-
efits in easy maintenance and deployment, etc.) is to imple-
ment eLSM-P2 without the code change of underlying LSM
stores. For this reason, we present the second implementation
on RocksDB.

Comparing with LevelDB, the system of RocksDB exposes
callbacks through which application programs can listen to
and handle RocksDB’s internal events. Different RocksDB
events exposed occur at the granularity of level, file, record,
etc. The callback API is similar to stored procedures (sup-
ported in commercial database systems) and is widely avail-
able in other LSM stores (e.g., HBase Coprocessor [9]).

The RocksDB-based eLSM is implemented as a series
of event handlers. 1) As previously described, the authenti-
cated COMPACTION is implemented as handlers for events
Filter and OnTableFileCreated. The former event
is triggered every time the underlying RocksDB encounters
a key-value record during a COMPACTION, and the latter
is when a new file is written to the disk. 2) The embedded
proof on RocksDB is extended to cover not only the Merkle
proof at the current file, but also all Merkle proofs at the
current level and previous non-hit levels. The Merkle proofs
at non-hit levels are for the non-membership. 3) To imple-
ment the authenticated flush, it wraps the code for digesting a
MemTable in the iterator (i.e., next()) exposed by a plug-
gable MemTable [13].

3 Performance Evaluation
This section presents performance evaluation of eLSM-P2
and eLSM-P1 under YCSB benchmarks [20].
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Figure 2. Performance of eLSM-P2 and eLSM-P1 under
YCSB workloads

Experiment setup: In our experiments, we use a laptop
equipped with an SGX CPU. Specifically, the hardware specs
include an Intel 8-core i7-6820HK CPU of 2.70 GHz with 8
MB cache, a 16 GB RAM and 1 TB disk.
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We run our experiments in the YCSB framework [20]. We
use YCSB to both generate the workload and to execute the
experiments. YCSB framework works in two phases: the
load phase when it initializes the system by populating the
dataset, and the evaluation phase when it drives the target
workload to the system and measures the performance. When
initializing each experiment, we typically scan the loaded
dataset so that it is loaded in the untrusted memory. By this
means, we mainly consider the setting of memory-resident
data with size ranging from several hundreds of megabytes
to four gigabytes (that is, millions of records, each with a
16-byte key and 100-byte value by default). With such small
record size, four gigabytes is the maximal data size that we
can tolerate in experiment time.

We port the open-source LevelDB-YCSB adapter [14] to
the SGX architecture. This is done by running the YCSB plat-
form in the untrusted world and wrap each PUT/GET request
as an ECall (as in SGX SDK) into the enclave. Inside the
enclave, we run the YCSB measurement code that measures
various performance metrics.

Baseline: Eleos: We implement a baseline of an in-
memory data store. In this in-memory store, the entire dataset
is stored in enclave as a sorted array. To make data update
efficient, we leave 30% of the array space empty to accom-
modate data insertions without moving existing data. For
implementation, we use Eleos [27], a state-of-the-art virtual
memory management engine in enclave without calling ex-
pensive enclave paging. Their approach, briefly, is to monitor
all memory references and to relocate data between enclave
and untrusted memory. We implement a sorted array in en-
clave linked with Eleos. The array serves data reads with
binary search and is updated “in place”. For a fair compar-
ison, the data in Eleos is persisted to disk periodically, by
using a write buffer to store recent data and switching out of
enclave (through an OCall).

Macrobenchmark performance: We present the perfor-
mance result of eLSM under YCSB. In this set of experiments,
we vary the workloads in terms read-write ratio, key distri-
bution, etc. and evaluate eLSM performance. The purpose
is to present a holistic view regarding the performance of
eLSM-P1 and eLSM-P2.

To conduct the experiments, we fix the initial dataset at 3
GB (or 25 million records). In the evaluation phase, we drive
millions of operations to the key-value store for performance
measurement. We use the uniform distribution to generate
the dataset and queries. We configure the authenticated com-
paction using default parameters (e.g., in terms of the scope
of keys to be compacted). By this means, we conduct a se-
ries of experiments with varying the read-write ratio of the
workload. Each experiment runs three times and the average
performance metric and standard deviation are reported. The
operation latency numbers of eLSM-P1, eLSM-P2 and the
unsecured LevelDB under varying read-write ratios are shown
in Figure 2a. The result shows that eLSM-P2 outperforms

eLSM-P1 in most workloads except for a small set of write-
only workloads. Specifically, as the workload becomes more
read intensive, eLSM-P2 has its operation latency decreased.
This performance characteristic is due to that eLSM-P2 has to
cause disk IO for data persistence on the write path while on
the read path it can read the memory (through the mmap files).
As the workload transitions from writes to reads, eLSM-P1’s
latency first increases and then decreases near the end. The
increase of latency is caused by overflowing the enclave mem-
ory (of 128 MB) and enclave paging. In addition, compared
with the ideal approach (running an unsecured LevelDB), the
slowdown caused by eLSM-P2 is between 1.5× and 4X .

Comparing eLSM-P2 and eLSM-P1, when the workload
is write-only, eLSM-P1 is faster. For most workloads, eLSM-
P2 has a smaller operation latency than eLSM-P1, and the
performance discrepancy reaches the highest when the work-
load consists of 70% reads (Note the uniform key distribution
in this workload). In this setting, eLSM-P2 achieves 4.5X per-
formance speedup comparing eLSM-P1. This performance
result clearly supports the design tradeoff made in eLSM-P1
and eLSM-P2, where eLSM-P2 optimizes the read path by
placing the read buffer outside enclave and avoiding enclave
paging, which inevitably causes the write overhead, includ-
ing authenticating COMPACTION and embedding eLSM-P2
proofs in the software layer. eLSM-P1 does not have such
write overhead (data security is provided by the hardware-
level memory protection in SGX). From the performance
result, it can be seen that the eLSM-P2’s design to trade off
write performance for read is worthwhile, as the majority of
workloads favors eLSM-P2.

The second experiment is to report the operation latency
under varying data sizes. We initialize the system with data
of varying sizes from 0.6 GB (5 million records) to 3 GB
(25 million records). In the evaluation phase, we drive into
the system YCSB workload A which consists of 50% reads
and 50% writes with data keys generated following a Zipfian
distribution. We measure the operation latency for eLSM-
P2 (in mmap configuration), eLSM-P1 and the baseline of
Eleos. The result is shown in Figure 2b. With the increas-
ing data sizes, Eleos can scale only to 1 GB data which is
limited by their open-source project [6, 27]. The discrepancy
between the latency of eLSM-P2 and eLSM-P1 increases,
and reaches 7X when the data size is 3 GB.
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