
TopoShot: Uncovering Ethereum’s Network Topology
Leveraging Replacement Transactions

Kai Li
kli111@syr.edu

Syracuse University
Syracuse, NY, USA

Yuzhe Tang �
ytang100@syr.edu
Syracuse University
Syracuse, NY, USA

Jiaqi Chen
jchen217@syr.edu
Syracuse University
Syracuse, NY, USA

Yibo Wang
ywang349@syr.edu
Syracuse University
Syracuse, NY, USA

Xianghong Liu
xliu317@syr.edu

Syracuse University
Syracuse, NY, USA

ABSTRACT
Ethereum relies on a peer-to-peer overlay network to propagate
information. The knowledge of Ethereum network topology holds
the key to understanding Ethereum’s security, availability, and user
anonymity. However, an Ethereum network’s topology is stored in
individual nodes’ internal routing tables, measuring which poses
challenges and remains an open research problem in the existing
literature.

This paper presents TopoShot, a new method uniquely repur-
posing Ethereum’s transaction replacement/eviction policies for
topology measurement. TopoShot can be configured to support
Geth, Parity and other major Ethereum clients. As validated on
local nodes, TopoShot achieves 100% measurement precision and
high recall (88% ∼ 97%). To efficiently measure the large Ethereum
networks in the wild, we propose a non-trivial schedule to run
pair-wise measurements in parallel. To enable ethical measurement
on Ethereum mainnet, we propose workload-adaptive configura-
tions of TopoShot to minimize the service interruption to target
nodes/network.

We systematically measure a variety of Ethereum networks and
obtain new knowledge including the full-network topology in ma-
jor testnets (Ropsten, Rinkeby and Goerli) and critical sub-network
topology in the mainnet. The results on testnets show interest-
ing graph-theoretic properties, such as all testnets exhibit graph
modularity significantly lower than random graphs, implying re-
silience to network partitions. The mainnet results show biased
neighbor selection strategies adopted by critical Ethereum services
such as mining pools and transaction relays, implying a degree of
centralization in real Ethereum networks.

∗ � Yuzhe Tang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IMC ’21, November 2–4, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9129-0/21/11. . . $15.00
https://doi.org/10.1145/3487552.3487814

CCS CONCEPTS
• Networks → Peer-to-peer protocols; Peer-to-peer net-
works.

KEYWORDS
Blockchain, Overlay networks, Network measurements, Ethereum
transactions
ACM Reference Format:
Kai Li, Yuzhe Tang, Jiaqi Chen, Yibo Wang, and Xianghong Liu. 2021.
TopoShot: Uncovering Ethereum’s Network Topology Leveraging Replace-
ment Transactions. In ACM Internet Measurement Conference (IMC ’21),
November 2–4, 2021, Virtual Event, USA. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3487552.3487814

1 INTRODUCTION
A blockchain system relies on an underlying peer-to-peer (P2P)
network to propagate information including recent transactions
and blocks. The topology of the P2P network is foundational to
the blockchain’s availability under network partitions, its security
against a variety of attacks (e.g., eclipsing targeted nodes [29],
denial of specific node service [34, 35], and deanonymization of
transaction senders [20, 33]), and its performance (e.g., mining
power utilization [27] and the quality of RPC services [4, 7, 14]).
Details are in § 3. This value has motivated a line of measurement
studies on the network topology of popular blockchains including
Bitcoin [24, 28] and Monero [22]. However, although Ethereum
is the second largest blockchain network (after Bitcoin) and the
biggest smart-contract platform, measuring Ethereum’s network
topology remains an open research problem. The existing Ethereum
measurement studies [31, 32] focus on profiling individual peer
nodes, but not the connections among them.
Research goals: Specifically, the operational Ethereum P2P net-
work today runs tens of thousands nodes and host multiple overlays:
1) an underlying P2P overlay, called platform overlay, which forms
a structured DHT network by following Kademlia’s protocols [36]
for peer discovery (RLPx) and session establishment (DevP2P) [32],
and 2) a number of application-specific overlays [11, 32], among
which the dominant ones are Ethereum blockchains for information
propagation. In particular, the Ethereum P2P network hosts multi-
ple blockchain overlays with different “networkIDs” including the
mainnet and various testnets, such as Ropsten [16], Rinkeby [15]

https://doi.org/10.1145/3487552.3487814
https://doi.org/10.1145/3487552.3487814

IMC ’21, November 2–4, 2021, Virtual Event, USA Kai Li et al., Kai Li, Yuzhe Tang, Jiaqi Chen, Yibo Wang, and Xianghong Liu

Blockchain overlays

Platform overlay

(DevP2P + RLPx)

Ethereum Swarm

IPFS

...

Mainnet

Rinkeby

Ropsten

Goerli

Figure 1: P2P overlay networks on Ethereum. Shaded is the
measurement target of this work.

and Goerli [9]. This multi-layer view of Ethereum’s P2P network is
depicted in Figure 1. In the P2P network, each Ethereum node main-
tains “peer” connections at these two layers: 1) On the blockchain
overlay, a node maintains a list of active neighbors through which
local information is propagated. 2) On the platform overlay, a node
stores the inactive neighbors in a DHT routing table, from which
live nodes are promoted to active neighbors in the future.

This work aims at measuring the Ethereum P2P network’s
blockchain overlay and its active links.1 In practice, it is the
blockchain overlay’s active links, instead of platform overlay’s
inactive ones, that capture the exact flow of information propaga-
tion and are more informative. For instance, a node running the
Geth client [8] (which is the most popular Ethereum client and is
deployed on more than 80% nodes in the mainnet [6]) maintains
272 inactive neighbors and around 50 active neighbors, by default.
Knowing what these 50 neighbors are is helpful to understand the
node’s resilience to eclipse attacks (as information is propagated
through the 50 active neighbors, not the 272 inactive ones, and
an attacker only needs to disable the 50 active neighbors to block
information propagation). Also, knowing whether the 50 neighbors
contain nodes from top mining pools, such as Sparkpool [17] (or
popular transaction relay service, such as infura.io [4]), is useful to
estimate the timeliness and quality of the blocks (or transactions)
received on the node, as well as understanding the centralization
of the blockchain network.

Measuring Ethereum network’s active links is an open research
problem. In the existing literature, 1) the related works that measure
Ethereum networks focus on profiling individual nodes [31, 32]
or detecting inactive links [26, 41], but not the active connections.
Compared to the inactive links that are exposed in Ethereum peer
discovery messages (i.e., RLPx’s FIND_NODE packets) and can be
directly measured as in [26, 41], active links are hidden information
inside remote Ethereum nodes, directly measuring which without
inference is impossible as we thoroughly examine Ethereum pro-
tocol’s messages. 2) The other related works explore the topology
of non-Ethereum blockchains including Bitcoin [24, 28] and Mon-
ero [22]. Their measurement approaches exploit features specific
to Bitcoin/Monero and are inapplicable to Ethereum as will be de-
tailed in § 4. Notably, TxProbe’s approach [24] to infer Bitcoin’s
topology cannot be applied to measuring Ethereum topology, as
these two blockchains differ in transaction model (account-based
versus UTXO-based) and propagation model (direct propagation
versus announcement), as will be further explained in § 4.1.

1In this paper, we use terms “links”, “connections” and “edges”, interchangeably.

Measurement methods: In this work, we propose TopoShot
to measure an Ethereum blockchain overlay by repurposing
Ethereum’s transaction replacement and eviction policies. Briefly,
an Ethereum node buffers unconfirmed transactions (prior to min-
ing) in a local data structure named mempool, where an unconfirmed
transaction can be replaced or evicted by a subsequent transaction at
a sufficiently higher Gas price.2 Transaction replacement and evic-
tion are standard Ethereum features, widely supported by Ethereum
clients (including Geth [8], Parity [13] and others [1, 10, 12]), and
highly desirable by real-world applications. For instance, a com-
mon practice in blockchain-based decentralized applications is that
a user having sent a transaction can posthumously speed up its
inclusion into the blockchain by sending replacement transactions
at higher price per computation unit (or the so-called Gas price).
Leveraging these features, TopoShot runs a measurement nodeM
to detect the connection between two remote nodes A and B. In
TopoShot, node M propagates a high-priced transaction txA on
target node A, a low-priced transaction txB to target node B, and
a medium-priced transaction txC propagated to all other nodes in
the same network. It then observes txA’s presence on node B and, if
so, draws the conclusion that node A is actively connected to node
B. To ensure the accurate measurement, when node A is not linked
to node B, measurement transaction txA should not be propagated
and do not reach node B (the so-called “isolation” property [24]).
One of the key insights in this work is that Ethereum’s transaction
replacement policy can be repurposed to enforce isolation property
for accurate link measurement. Intuitively, the isolation is ensured
by the fact that TopoShot’s high-priced txA can replace the low-
priced txB on node B but not the medium-priced txC on other
nodes, through which txA cannot be propagated to reach node B.

To set up the measurement as above, TopoShot further leverages
Ethereum’s support of transaction eviction and future transactions,
that is, to evict an existing unconfirmed transaction on a node by
incoming future transactions (the concept of future transaction in
Ethereum is similar to orphan transactions in Bitcoin). Specifically,
when using TopoShot to measure the connectivity between Nodes
A and B, the measurement node M first needs to connect to both
nodes, propagates txC to all nodes, then sends future transactions
to evict txC (with other existing transactions) on node A and B
before sending txA and txB to node A and B, respectively. This
method can be applied to measuring the connectivity among all
possible pairs of nodes by the standard approach of launching a
“supernode” connecting to all other nodes in the network [31, 32].

The basic TopoShot achieves 100% result precision but not 100%
recall, which can be attributed to non-default settings of target
node. We further propose a pre-processing phase retrofittable with
TopoShot to profile the actual settings of target node and to im-
prove the result recall, proactively.

For large-scale measurement on real Ethereum networks, we
propose a non-trivial method to parallelize multiple pair-wise mea-
surements, reducing the rounds and overall time of measurement.
Measurement results: We systematically evaluate the validity of
TopoShot and conduct measurement studies on both testnets and
2The difference between transaction replacement and eviction is that a transaction tx
is replaced by another transaction from the same sender account with tx , and tx is
evicted by another transaction from a different sender from tx when the mempool is
full.

TopoShot: Uncovering Ethereum’s Network Topology Leveraging Replacement Transactions IMC ’21, November 2–4, 2021, Virtual Event, USA

the mainnet. The measurement results uncover, for the first time,
the full network topology of Ethereum’s major testnets (including
Ropsten, Rinkeby and Goerli) and the inter- and intra-connections
among the mainnet’s mining-pools and transaction relay services.

First, we validate the TopoShot’s correctness in terms of recall
and precision. We set up a local node under control and a remote
node in a testnet, and we use TopoShot to measure the connection
between the two nodes. By comparing against the ground-truth of
node connection (via querying the local node’s state), we confirm
that TopoShot achieves the perfect precision (100%) and a high
recall (up to 97%).

Second, we use TopoShot to measure, for the first time, the
network topology of major Ethereum testnets including Ropsten,
Goerli and Rinkeby. We also analyze the captured graphs which re-
veal a number of graph-theoretical properties including degree dis-
tribution, distances, assortativity, clustering and community struc-
tures. Our comparative analysis shows that the measured Ethereum
networks have particularly lower modularity than classic random
graphs [19, 25, 40], implying a better resilience against attacks to
partition the networks.

Third, we propose enhanced TopoShot configurations to allow
lightweight yet effective measurement on the mainnet without eth-
ical concerns. The TopoShot enhancement minimizes the impacts
on the target nodes being measured, and particularly ensures that
the set of transactions included in the blockchain do not change
under measurement. Using the approach, we measure a critical
substructure of Ethereum’s mainnet overlay. The result reveals bi-
ased neighbor selection strategy commonly practiced by critical
Ethereum services such as mining pools and transaction relays who
prioritize to connect other critical nodes over average nodes. We
acknowledge the high cost of our method and avoid measuring the
topology of entire mainnet network which would otherwise cost
60 million USD at the Ether price as of May 2021.
Contributions: This work makes the following contributions:
• Novel methods: We propose a novel method, named TopoShot, to
measure Ethereum network links and topology. TopoShot takes a
unique approach by exploiting Ethereum’s handling of unconfirmed
transactions (i.e., transaction replacement and eviction). TopoShot
is generic and supports all Ethereum clients (including Geth and
Parity). TopoShot is effective and achieves 100% result precision
and high recall (88% ∼ 97%).
• Large-scale measurements: We address the scalability and ethical
challenges raised in measuring large-scale, real Ethereum networks.
We propose to schedule pair-wise measurements in parallel for
efficiency. We propose workload-adaptive mechanisms to configure
TopoShot for minimal service interruption on the target nodes/net-
work.
• New systematic results: Without TopoShot, an Ethereum net-
work’s topology remains hidden information inside blackbox
Ethereum nodes, measuring which stays an open research prob-
lem. By systematically conducting measurements against a variety
of Ethereum networks, we obtain a series of new knowledge on
network topology and its graph-theoretic statistics, ranging from
full-network topology in popular testnets (Ropsten, Rinkeby and
Goerli) and critical sub-network topology in the mainnet.

The source code of TopoShot is on https://github.com/syracuse-
fullstacksecurity/Toposhot.
Roadmap: The paper is organized in the following order: § 2
presents the preliminary knowledge. Motivation of this work is pre-
sented in § 3. § 4 surveys the relatedworks and their (in)applicability
to measuring Ethereum’s topology. § 5 presents TopoShot’s mea-
surement primitive, parallel schedule, as well as correctness analy-
sis. § 6 presents the measurement results of Ethereum testnets and
the mainnet. The ethical aspects of this work are discussed in § 7,
and the conclusion is in § 8.

2 PRELIMINARY
Ethereum transactions: To begin with, we describe the transac-
tion model used in Ethereum. An Ethereum transaction binds a
sender account to a receiver account. Each transaction is associ-
ated with a nonce, which is a monotonically increasing counter per
sender. An Ethereum transaction is associated with Gas price, that
is, the amount of Ether the sender is willing to pay to the miner for
each unit of computation carried out by the miner to validate the
transaction.

Unconfirmed transaction buffer (mempool): Each Ethereum
node stores unconfirmed transactions in a local data structure,
named mempool. In a mempool, a transaction tx is pending, if its
nonce equals one plus the maximal nonce of the transactions of the
same sender in the mempool (i.e., equal to n + 1). Otherwise, if tx ’s
nonce is strictly larger than n + 1, tx is a future transaction.

When a transaction tx propagated from other nodes arrives at a
node N , node N determines whether to admit tx into its mempool.
Admitting a transaction tx may trigger two more mempool events:
1a) eviction of an existing transaction tx ′ by tx where tx and tx ′ are
of different accounts or nonces, and 1b) replacement of an existing
transaction tx ′ by tx where tx and tx ′ are of the same sender and
nonce.

Transaction propagation: When admitting a pending transac-
tion to its mempool, an Ethereum node propagates the transaction
to its active neighbors. If an incoming transaction is not admitted
or the admitted transaction is a future transaction, it will not be
propagated.

Normally, an Ethereum node directly pushes a pending transac-
tion to its neighbors. That is, it sends a message to its neighbors
encoding the transactions it wants to propagate. It may be the case
that the propagated transactions are already received on the neigh-
bors. This is the default transaction propagation protocol supported
widely in Geth, Parity and other clients.

Some Ethereum clients (e.g., Geth with version later than 1.9.11)
support announcements as an optional transaction-propagation pro-
tocol. It works in three messages: 1) The node announces its local
pending transactions by their hash and propagates the hash to its
neighbors. 2) Then within the next 5 seconds, its neighbors will re-
spond with requests if they want to receive the transaction. Within
these 5 seconds, the neighbors will not respond to other announce-
ments of the same transaction. 3) The node propagates the transac-
tions to all requesting neighbors. While this is similar to Bitcoin’s
transaction announcement as exploited in TxProbe [24], there is an
important distinction: Ethereum’s transaction announcement has

https://github.com/syracuse-fullstacksecurity/Toposhot
https://github.com/syracuse-fullstacksecurity/Toposhot

IMC ’21, November 2–4, 2021, Virtual Event, USA Kai Li et al., Kai Li, Yuzhe Tang, Jiaqi Chen, Yibo Wang, and Xianghong Liu

to co-exist with transaction pushing, and Ethereum’s pushing can
bypass the blocking of an announcement.

3 MOTIVATION: SIGNIFICANCE OF
KNOWING BLOCKCHAIN TOPOLOGY

The motivation of this work is that a blockchain network’s topology
is foundational to the blockchain’s security and performance. In this
section, we present a non-exhaustive list of “use cases” of blockchain
topology knowledge in the hope of justifying its significance.

3.1 Implication to Blockchain Security
The knowledge of blockchain network topology is crucial to under-
standing its security against various attack vectors, with examples
listed below.

Use case 1: Targeted eclipse attacks. In the network topol-
ogy, if a blockchain node is found to be of a low degree (i.e., few
neighbors), such a node is particularly vulnerable under a targeted
eclipse attack [29]. That is, such an eclipse attacker can concentrate
her attack payload to the few neighbors to disable the information
propagation and to isolate the victim node from the rest of the
network at low costs.

Use case 2: Single point of failure. The blockchain’s network
topology may reveal the centralization of network connection, lead-
ing to a single point of failure. Specifically, there may be supernodes
that connect to all other nodes, “bridge” nodes that control the con-
nection to the backend of critical services, and topology-critical
nodes removing which may lead to partitioned networks. Direct-
ing denial-of-service attacks onto these critical nodes, using attack
vectors recently discovered [34, 35], can lead to consequences such
as crippled blockchain services and the censorship of individual
transactions.

Use case 3: Deanonymizing transaction senders. With the
knowledge of the network topology, if nodes’ neighbors are distin-
guishing (i.e., node X ’s neighbors are distinct from another node
Y ’s neighbors), the neighbor set can be used to identify/finger-
print nodes and can be further used to facilitate the deanonymiza-
tion of transaction senders. Specifically, in the deanonymization
attack [20], a blockchain “client” node (i.e., a node behind the NAT)
is identified by its “server”-node neighbors (a server node is of
public IPs, is not behind the NAT and accepts incoming connec-
tions). An attacker then simply monitors the transaction traffic
on all server nodes in the blockchain (e.g., a Bitcoin network con-
tains much fewer server nodes than the client nodes, thus low-
ering the attacker’s costs). The attacker can link a transaction
sender’s blockchain address (her public key) to a client node’s IP
address, which can be further linked to a real-world identity, thus
deanonymizing the blockchain address.

3.2 Implication to Blockchain Performance
Blockchain network topology is essential to achieving its perfor-
mance promises and matters to both miners and client users.

Use case 4: Mining efficiency andmining pools’ QoS (qual-
ity of service). In a blockchain, the time to propagate a recently
found block from its miner to the entire network is critically impor-
tant: If it takes too long to propagate minerX ’s block, her block may
arrive after another miner Y ’s block, leading to X ’s block unable

to be included in the blockchain and X ’s loss of revenue. Thus, a
blockchain’s network topology that affects propagation delay can
influence a miner node’s revenue and mining-power utilization (i.e.,
how much mining power spent is useful and is reflected in the main
chain’s blocks). Thus, it is unfavorable to have a minor with limited
connectivity and incur long propagation delays.

For a client interested in joining a mining pool, she may want to
access the knowledge of blockchain topology andmake an informed
decision to choose the mining pool with better connectivity and
lower propagation delay to ensure high mining revenue.

Use case 5: RPC service’s QoS. For a client sending transac-
tions through RPC services (e.g., infura.io), she may want to choose
a service with better connectivity so that her transaction can be
relayed on a timely basis.

In summary, the knowledge of blockchain network topology is
critical to understanding its security, performance, and decentral-
ization. Given the high market capitalization of today’s blockchains
(e.g., $4106 billion USD for Ethereum as of Sep. 2021 [18]), we be-
lieve measuring blockchains’ network topology is valuable and
worthy even it may cost as much as 60 million USD, estimated in
§ 6.3.

4 RELATEDWORK
In this section, we present the existing measurement studies on
public blockchain networks. Existing works can be categorized into
three classes: W1) Measuring blockchain nodes, W2) measuring
blockchain inactive edges, and W3) measuring blockchain active
edges.
Measuring blockchain nodes (W1): Kim et al. [32] propose a
passive method to characterize the Ethereum mainnet by launching
a “supernode” to connect all reachable mainnet nodes and collect-
ing messages exchanged. The result reveals node-wise characteris-
tics including network size, node geo-distribution, clients’ age and
freshness, and others.

Neudecker et al. (2019) [38] is a passive measurement study that
last four years to characterize the behavior of individual Bitcoin
peers and their operators. Their approach is by launching “supern-
odes” and passively collecting transaction traffic, a method similar
to [32].
Measuring blockchain inactive edges (W2): Ethereum’s peer
discovery protocol (RLPx) has a FIND_NODEmessage through which
a node can discover another node’s current routing-table entries
(inactive neighbors). Recent research works [26, 41] directly mea-
sure Ethereum’s inactive links by sending FIND_NODE messages to
all nodes in an Ethereum network. This method cannot distinguish
a node’s (50) active neighbors from its (272) inactive ones and does
not reveal the exact topology information as TopoShot does.

Henningsen et al. [30] measure the Kademlia network topology
in IPFS by sending crafted peer-discovery queries. Despite other
findings, this work reveals IPFS’s network combines a structured
Kademlia DHT and an unstructured P2P overlay.
Inference of blockchains’ active edges (W3): Coinscope [37]
targets Bitcoin’s network topology and infers the links by leverag-
ing the expiration timestamps of Bitcoin’s ADDR messages.

TxProbe [24] infers Bitcoin’s network topology by exploiting
Bitcoin’s support of orphan transactions and announcement-based

TopoShot: Uncovering Ethereum’s Network Topology Leveraging Replacement Transactions IMC ’21, November 2–4, 2021, Virtual Event, USA

transaction propagation.Wewill describe how TxProbe works, with
more details in § 4.1, to understand its applicability to measuring
Ethereum networks.

Grundmann et al. [28] present two Bitcoin-topology inference
approaches among which the more accurate one exploits Bitcoin’s
behavior of dropping double-spending transactions. Neudecker
et al. (2016) [39] conducts a timing analysis of Bitcoin transaction
propagation to infer the network topology. Despite the optimization,
both works are limited in terms of low accuracy.

Daniel et al. [23] propose to exploit block relay mechanisms to
passively infer connections among mining nodes and their direct
neighbors in the ZCash network.

Cao et al. [22] measure Monero’s P2P network topology by
exploiting the timing of neighbors’ liveness probes. Specifically,
a Monero node maintains the liveness of its neighbors (the
last_seen label) by periodically discovering its hop-2 neighbors,
probing their liveness by sending PING messages, and selectively
promoting them to be hop-1 neighbors. Topology inference meth-
ods are proposed to exploit the timing difference of neighbor nodes’
last_seen labels. This method is specific to Monero’s liveness-
check protocol.
Table 1: Existing works on blockchain topology measure-
ment and TopoShot’s distinction

Research work Blockchain Measurement target
[38] Bitcoin Nodes
TxProbe [24] & oth-
ers [28, 37, 39]

Bitcoin Active edges (W3)

[22] Monero Active edges (W3)
[23] ZCash Active edges (W3)
[32] Ethereum Nodes (W1)
[26, 41] Ethereum Inactive edges (W2)
[30] IPFS Inactive edges (W2)
TopoShot Ethereum Active edges (W3)

The existing blockchain measurement studies are summarized in
Table 1. In general, existing techniques onW1 andW2 directly mea-
sure the target (as the target information of nodes and inactive edges
is exposed in collected messages), while measuring active edges
(W3) requires inference. Existing topology-inference techniques
focus on non-Ethereum blockchains and exploit blockchain spe-
cific features (e.g., Monero’s timing of liveness probes and Bitcoin’s
announcement-based propagation) that are absent in Ethereum.

4.1 TxProbe’s Applicability to Ethereum
To understand how TxProbe works and its (in)applicability to mea-
suring Ethereum network, we first describe the following measure-
ment framework: Suppose a measurement nodeM is to detect the
connection between a pair of target nodes, say A and B. Node M
can propagate a transaction txA to node A and observe txA’s pres-
ence on node B. If present, nodes A and B are actively linked. The
success of this method depends on the so-called isolation property.
That is, when node A and B are not actively linked, txA should not
be propagated to node B. In other words, there is no alternative
routing path beside the direct link between A and B that txA can
take to reach node B.

TxProbe [24, 28] materializes this framework to measure active
links in Bitcoin and ensures the isolation property by Bitcoin’s

transaction announcement mechanism. Briefly, Bitcoin’s transac-
tion announcement works as follows: a Bitcoin node propagates a
transaction to its neighbor by first sending a transaction announce-
ment (i.e., a hash value) to the neighbor and, upon neighbor’s
acknowledgment, then sending the actual transaction. Bitcoin has
a policy that the neighbor node receiving an announcement will
ignore the subsequent announcements of the same transaction from
other nodes for 120 seconds. TxProbe exploits this policy to ensure
the isolation during the 120-second period. This is done by hav-
ing Node M to announce txA to all nodes besides B so that these
nodes will not relay txA when Node A starts to propagate txA to B,
ensuring the isolation property.

However, TxProbe’s method is inapplicable to measuring
Ethereum. Ethereum’s transaction propagation only partially de-
pends on announcement, that is, a transaction is announced to some
neighbors and is directly sent to other neighbors without announce-
ment. The existence of direct propagation, no matter how small
portion it plays, negates the isolation property, as measurement
transaction txA can be propagated through the nodes taking direct
propagation as the alternative path to reach node B, introducing
false positives to the measurement results.

In addition, TxProbe relies on Bitcoin’s UTXO model, which dif-
fers from Ethereum’s account model. Directly applying TxProbe to
Ethereum risks incorrect measurement, as analyzed in Appendix A.

5 TOPOSHOTMEASUREMENT METHODS
We first present our observation on real Ethereum clients’ behavior
in transaction replacement and eviction, which lays the foundation
of TopoShot measurement method (§ 5.1). We then describe the
measurement primitive in TopoShot that detects just one link
between two nodes (§ 5.2). We will then describe how to use this
primitive to measure a network of a large number of links (§ 5.3).

5.1 Profiling Ethereum Clients’ Behavior
We first describe a parameterized model for mempool and then our
measurement study that reveals the mempool parameters of real
Ethereum clients.

mempoolmodel: Recall that transaction eviction (replacement)
is a mempool process that takes as input the initial state of mempool
and an incoming transaction tx1 and produces as output the end
state of the mempool and possibly, a transaction tx2 that is of the
same (different) sender with tx1 and that is evicted (replaced) from
the mempool. To formally describe the process, suppose the initial
state is a full mempool consisting of l pending transactions and L− l
future transactions, where L is the capacity of the mempool (denoted
in Table 2). The incoming transaction tx1 is a future transactionwith
Gas price higher than any transactions currently in the mempool.
There are u transactions currently in the mempool that are of the
same sender with tx1.

When there is another transaction tx2 in the mempool that has
the same sender and nonce with tx1, admitting tx1 to the mempool
triggers the replacement of tx2. The generic transaction replace-
ment strategy is that mempool decides to replace tx2 by tx1, if tx1’s
Gas price is 1 + R of tx2’s Gas price.

Otherwise (i.e., when there is no transaction of the same sender
and nonce with tx1), admitting tx1 may trigger transaction eviction.

IMC ’21, November 2–4, 2021, Virtual Event, USA Kai Li et al., Kai Li, Yuzhe Tang, Jiaqi Chen, Yibo Wang, and Xianghong Liu

For transaction eviction, the situation of interest to us is the evic-
tion victim tx2 being a pending transaction. Under this situation,
the transaction eviction strategy generally follows the template:
mempool decides to evict a pending transaction tx2 by tx1, if 1) tx1’s
Gas price is higher than tx2’s Gas price, and 2) there are more than P
pending transactions existing in the mempool, and 3) there are fewer
thanU existing transactions of the same sender with tx1. The three
mempool parameters, namely R, U and P , and their meanings are
presented in Table 2.

Table 2: Notations
Notation Meaning
R Minimal Gas price difference for an incoming transaction (tx) to replace

an existing tx in mempool
U Max number of future txs sent from the same account that can be admitted

to a node’s mempool
P Minimal number of pending txs buffered in a node to allow eviction by

future txs
L Maximal number of txs allowed to store in a mempool (mempool capacity)

Table 3: Profiling different Ethereum clients in terms of
transaction eviction and replacement policies The second
column refers to the percentage of mainnet nodes running
a specific client [6].
Ethereum
clients

Deployment
(mainnet)

Replacement
behavior

Eviction behavior

R U P L
Geth 83.24% 10% 4096 0 5120
Parity 14.57% 12.5% 81 2000 8192
Nethermind 1.53% 0% 17 0 2048
Besu 0.52% 10% ∞ 0 4096
Aleth 0% 0% 1 0 2048

mempool tests: The measurement is set up with 1) a measure-
ment node M running the test and 2) a target node T running
the Ethereum client to be measured. For each test, node T ’s initial
state of mempool contains l future transactions and L − l pending
transactions.

We design the first set of tests to trigger transaction replacement
and measure R. Specifically, tx1 has an identical sender and nonce
with an existing transaction tx2 in mempool. In each unit test, Node
M sends tx1 of a certain Gas price to nodeT , and observes if nodeT
replaces tx2 by tx1. We run a series of unit tests with varying tx1’s
Gas prices, in order to observe the minimal Gas price that triggers
the replacement, from which we calculate and report R.

We design the second set of tests to trigger transaction eviction
and measureU and P . Specifically, the mempool contains L−l future
transactions and l pending transactions, among which there are u
transactions sent from the same account with future transaction
tx1. As before, in each unit test, node M sends to node T tx1 at a
Gas price higher than any transactions in node T ’s mempool. We
run a series of unit tests with varying l and u. We observe the
maximal value of u that triggers a successful eviction by tx1 and
report such value by U . We observe the minimal value of l that
triggers a successful eviction by tx1 and report such value by P .
Test results on Ethereum clients: We conduct the tests on two
local nodes: We first set up a local measurement nodeM running
tests on an instrumented Geth client and a local target node T .
The statically instrumented Geth client allows node M to bypass
local checks and to propagate future transactions to node T . We

run the two sets of tests against target node T running five dif-
ferent Ethereum clients: Geth (Go), OpenEthereum/Parity (Rust),
Nethermind (.net), Besu (Java) and Aleth (C++). Here, we discard
the Python client (i.e., Trinity) as the incomplete implementation.
The distribution of mainnet nodes running the five Ethereum clients
is presented in the second column of Table 3, where Geth (83%) and
Parity (15%) are the dominant clients on the mainnet.

The measurement results are reported in Table 3. The mempool
model andmeasurement results will guide the design ofTopoShot’s
method and the configuration of the measurement on different
Ethereum clients. Noteworthy here is that Aleth’s and Nethermind’s
R values are both zero (0%), which renders our TopoShot unable to
work (as will be seen, it requires a non-zero R to enforce the isola-
tion property). Thus, TopoShot currently does not work with Aleth
and Nethermind clients. On the other hand, we deem a zero-value
R is a flawed setting that can be exploited to construct low-cost
denial of service or flooding. For instance, an attacker can send
multiple replacing transactions at almost the same Gas price, con-
suming network resources by propagating multiple transactions yet
without paying additional Ether. We sent bug reports to Ethereum
Foundation’s bug bounty program [5], and further updates, if any,
will be documented on a private link [2].

5.2 Measurement Primitive
We consider the basic system model consisting of a measurement
node M , target node A, target node B and the rest of Ethereum
network denoted by node(s) C . The measurement primitive’s goal
is to detect one link, that is, whether Node A and B are actively
connected in the Ethereum network. Note that this model assumes
a strongly connected Ethereum network without network partition.
Mechanism: We denote our measurement primitive by
measureOneLink(A,B,X ,Y ,Z ,R,U), which are parameter-
ized by target nodes A and B, target nodes’ mempool behavior R/U
(recall Table 2) and X /Y /Z that will be described below. As depicted
in Figure 2a, the measurement primitive works in four steps:

1 NodeM sends a pending transaction txC with Gas price Y
Gwei3 to A, andwaits forX seconds (e.g.,X = 10 in our study
as will be described) for txC to be propagated to other nodes
including node B. Setting Y at a low Gas price is intended to
slow down or even prevent the inclusion of txC in the next
block (recall Ethereum nodes decide which transactions to
be included in the next block based on Gas/Gas price).

2 Node M sends to Node B Z future transactions
{txO1, txO2, ...txOZ } at Gas price (1 + R) · Y Gwei.
These future transactions are uniformly sent from Z

U
accounts (i.e., there are U future transactions sent from
each account). Immediately after that, Node M sends a
transaction txB at Gas price (1 − 0.5R) · Y Gwei to Node B.
Transaction txB has the same nonce with txC .

3 Node M sends to Node A Z future transactions
{txO1, txO2, ...txOZ } which are at Gas price (1+R) ·Y Gwei
and sent from Z

U accounts. Immediately after that, NodeM
sends a transaction txA at Gas price (1 + 0.5R) · Y Gwei to
Node A. Transaction txA has the same nonce with txC .

3One Gwei equals 10−9 Ether.

TopoShot: Uncovering Ethereum’s Network Topology Leveraging Replacement Transactions IMC ’21, November 2–4, 2021, Virtual Event, USA

(a) Workflow: Shaded are transactions in the nodes’ mempool. Step 2 would
evict txC and add txB on node B’s mempool, and Step 3 evicts txC and adds
txA on node A’s mempool.

A BtxA
(0.105

Gwei)

txC
(0.1 Gwei)

txB

(0.095

Gwei)

C

M

Isolation

of txA & txB

(b) Snapshot right before Step 4

Figure 2: TopoShot’s measurement primitive: RunningmeasureOneLink with Y = 0.1 Gwei, Z = 5120, R = 10%,U = 1

The purpose of the future transactions is to fill up the
mempool on NodesA (and B), to evict txC there, and to make
room for txA (txB) of the same nonce to txC .

4 NodeM checks if it receives txA from Node B. If so, it draws
the conclusion that Node A is a neighbor of Node B, as will
be analyzed in § 5.2.1.

Configuration of R/U : Parameters of themeasureOneLink prim-
itive are configured as follows: On a target Ethereum client, pa-
rameters R/U will be set at the client’s value as in Table 3. Here,
note that Nethermind and Aleth are not measure-able by TopoShot
due to their zero-value R which is also flawed as explained before.
Besu has an infinite large value of U , and Geth has a fairly large
U . In these two cases, only one account is used to send the future
transactions {txO }. Geth/Parity have non-zero P , which are fairly
small compared with their mempool capability L. The working of
measureOneLink requires the following condition: The number of
pending transactions in the measured mempool should remain larger
than P in the entire process of measurement. We verify that this
condition holds on the mainnet for all Ethereum clients’ P and L.
Configuration of X : Parameter X , which is the time period that
Step 1 waits, is set to be large enough so that transaction txC
is propagated to all nodes in the network. In order to obtain a
proper value of X in an Ethereum network, we conduct a test by
running several local nodes (e.g., 11 nodes in our study) and joining
them to the Ethereum network. Among the 11 nodes, there are no
direct connections. During the test, we send a transaction through
one node, wait for X ′ seconds and observe the presence of the
transaction on the other 10 nodes. We conduct a series of such tests
with varying X ′es to obtain such a X ′ = X that with 99.9% chances,
the transaction is present on the 10 nodes after X seconds.

The four steps occur in order. That is, Step 1 occurs X seconds
before Step 2 , which finishes before Step 3 starts, which is before
Step 4 . Timing and ordering are essential to the success of our
measurement method, as is analyzed below.

5.2.1 Correctness Analysis. We analyze the correctness of the mea-
surement primitive (measureOneLink):

10 seconds after Step 1 , Transaction txC is propagated to the
entire Ethereum network and it is stored in all nodes’ mempools
including Nodes A and B.

During 2 , when Node B receives Z future transactions txO s,
its mempool becomes full. Based on the eviction policy in Table 3,
adding a new transaction to a full mempool triggers evicting the
transaction with the lowest Gas price. Assuming Gas price Y Gwei
is low enough (we will describe how to set Y next), transaction
txC at Y Gwei will be evicted on Node B. Then, without txC , trans-
action txB is stored in Node B’s mempool. In other words, Step 2

replaces txC with txB on Node B. Note that in the process, future
transactions {txO } are not propagated, thus C still stores txC .

Note that after the arrival of {txO } but before txB , there are
chances that certain Nodes C can propagate txC back to Node B,
which, if occurs, would invalidate the efforts of {txO } and leave
txB unable to replace (the re-propagated) txC on B. In TopoShot,
the actual chance of this event is very low and the reason is two-
fold: 1) 2 waits long enough (10 seconds) after 1 to start and 2)
txB is propagated immediately after {txO }. In addition, in our local
validation experiment (in § 6.1), we don’t observe the occurrence
of the event.

By a similar analysis, Step 3 can replace txC with txA on Node
A.

Now, we have established that after Steps 1 , 2 and 3 , Node A
stores txA, Node B stores txB and NodesC store txC . The snapshot
of our measurement system at this timing is illustrated in Figure 2b.

We consider two cases: Case 1) A and B are directly connected.
In this case, A will propagate txA to B, which will replace txB
because of txA’s R (e.g., 10% for Geth) higher Gas price than txB .
In this case,Awill also propagate txA toC , which however will not
replace txC as txA’s Gas price is lower than R (e.g., 10%) of txC ’s
price. The property that txA is stored only on Node A and cannot
be propagated through Nodes C is called isolation. That is, txA is
isolated on Node A. Thus, after a sufficient delay for propagation
from A to B,M can receive txA from Node B.

Case 2)A and B are not connected. In this case,A propagates txA
only to Node C . As analyzed, txA cannot replace txC on Node C
because of insufficient Gas price. Also, NodeC’s txC cannot replace
txB on Node B. Thus, txB stays on Node B, andM does not receive
txA from Node B.

To ensure correctness, TopoShot requires that the mempool on
the two measured nodes, namely nodes A and B, are full. This
condition holds quite commonly in Ethereum mainnet, as observed

IMC ’21, November 2–4, 2021, Virtual Event, USA Kai Li et al., Kai Li, Yuzhe Tang, Jiaqi Chen, Yibo Wang, and Xianghong Liu

in our measurement study (99% of the time during our mainnet
measurement, the measurement node’s mempool is full).
Configuration of Y /Z : Pending transactions like txC should stay
in the mempool of NodesC , in such a way that they are not included
in the next block or be evicted. To do so, the Gas price of txC
should be low enough so that it will not be included in the next
block, and at the same time, be high enough to avoid eviction
by incoming transactions. To estimate a proper Gas price in the
presence of current transactions, we rank all pending transactions
in the mempool of NodeM by their Gas prices, and use the median
Gas price for txC . In actual measurement studies, the value of Y
varies from testnets and at different times. We apply the estimation
method before every measurement study and obtain Y dynamically.

5.2.2 Cost Analysis. The cost of runningmeasureOneLink comes
from the pending transactions sent (i.e., either txA or txC), assum-
ing their inclusion in the blockchain. In practice, whether these two
transactions are included is not deterministic and depends on the
state of the miners’ mempool. Also, note that the future transactions
txO sent during the measurement are guaranteed not to be included
in the testnets and mainnet, thus incurring no costs.

5.2.3 Improving Result Recall. Based on the above analysis, the
TopoShot guarantees that any tested connection is a true positive
(i.e., no false positives) but may miss the detection of a connection
(i.e., false negative may exist). In other words, the 100% result pre-
cision is guaranteed by the protocol but not for the recall. Note
that 100% precision/recall means no false positive/no true negative
in the measurement result. In the following, we present several
heuristics to improve the result recalls in practice.

A passive method to improve the result recall is to repeat the
measurements multiple times and use the union of the results. This
passive method has limited applicability if the false negative is
caused by the non-default setting on the remote Geth node being
measured. In the following, we propose a proactive method to
improve the recall.

Handling node-specific configurations by pre-processing:
In Ethereum networks, client configurations (e.g., on mempool) are
specific to nodes. This is evident in our field experience where the
mempool capacities (i.e., L) differ across nodes. Using the same value
of L when measuring different nodes can lead to incorrect results.

To solve the problem, we add a pre-processing phase: Before the
measurement, we can launch a speculative B′ node locally and use
it to connect all other nodes in the network. For each other node,
sayA′, we then run TopoShot betweenA′ and B′. Because the local
node B′ is under our control and its actual neighbors can be known
(by sending peer_list RPC queries), we compare themeasurement
result with the ground truth. If there is a false negative, it implies the
remote nodeA′ has some non-default setting on its node (e.g., use a
mempool larger than the default Z). We then increase the mempool
size in additional pre-processing measurements to discover a proper
setting of the mempool. The result of the pre-processing can help
guide the actual measurement to use a “right” parameter on the
connections involving node A′.

5.3 Parallel Measurement Framework
We previously described the primitive of measuring one connection
between a source and a sink node. To measure a network, a native
schedule is to serially run the pair-wise primitive over all possible
pairs, which however incurs a long measurement time in the case of
large networks and is not a scalable method. For time efficiency, we
propose a parallel schedule that decomposes the set of all possible
pairwise connections into subsets and measures all connections
within each subset in parallel. In the following, we first describe
the parallel measurement primitive (§ 5.3.1) and then the schedule
that measures the entire network in parallel by repeatedly using
the primitives (§ 5.3.2).

5.3.1 Parallel Measurement Primitive. We consider a pair of nodes
whose connectivity is measured consist of a source node and a sink
node. For instance, in Figure 2b, node A is a source node and node
B is a sink node. In a parallel measurement, we consider measuring
the connectivity between not one pair of source and sink nodes,
but multiple such pairs. Specifically, suppose there are p “source”
nodes A1,A2, ...Ak , ...Ap and q “sink” nodes B1,B2, ...,Bl , ...,Bq ;
note k (l) is the index of a source (sink) node. In this bipartite graph,
there are a total of p · q possible edges from a source to a sink.
The objective here is to measure r specified edges out of the p · q
ones. We denote by sink(k, j) a sink node which is the j-th neighbor
of a source node Ak . Then, the edge between Ak and sink(k, j) is
“indexed” by (k, j). Initially, assume there are sufficient funds set up
in r Externally Owned Accounts (or EOAs).

p1 NodeM sends a total of r transactions {txC(k ,l)} and prop-
agates them to the Ethereum network. Any two different
transactions are sent from different EOAs.

p2 To each Node Ak , Node M 1) first sends Z (e.g., 5120 for
Geth) future transactions txF ’s followed immediately by 2)
sending {..., txC(k−1,qk−1), txC(k+1,1), ...}. 3) It then sends
{txA(k ,1), ...txA(k ,qk)}. Here, txA(k ,i) spends the same ac-
count with txC(k ,i) and its Gas is priced at 1.05Y Gwei. After
p2 , txC(k ,i) on Node Ai is replaced by txA(k ,i), while other
txC ’s stay.
It is noteworthy that after p2 , Node M checks whether
txA(k , ·) are actually stored on Node Ak . It proceeds only
if the checked condition holds. NodeM carries out the check
by observing if txC(k , ·) is propagated from Node Ak before
waiting for a timeout.

p3 NodeM sends to each Node Bl Z future transactions txF ’s
followed immediately by r transactions where the i-th trans-
action is a txB transaction (whose Gas is 95% of that of a txC
transaction) if the i-th edge’s sink is Node Bl , and otherwise,
is a txc .

p4 For edge connecting Ak and Bl , Node M checks if txA(k , j)
(note that sink(k, j) = l) is present on Node Bl . If so, Ak and
Bl are neighbors.

Note that Ethereum clients, including both Geth and Parity, limit
the number of future transactions in their mempool. In our parallel
measurements, we ensure the group size is much smaller than the
limit of future transactions, which further ensures the measurement
correctness, since all measurement transactions will be admitted
and stored on the participant nodes.

TopoShot: Uncovering Ethereum’s Network Topology Leveraging Replacement Transactions IMC ’21, November 2–4, 2021, Virtual Event, USA

A2

B1

txC(1,1)

txA(2,1)

txA(2,2)

txC(1,1)

txC(2,1)

txC(2,2)

txB(1,1)

txB(2,1)

txC(2,2)

C

M

A1

txA(1,1)

txC(2,1)

txC(2,2)

B2

txC(1,1)

txC(2,1)

txB(2,2)

(1,1)

(2,1)

(2,2)

(a) Network snapshot before Step p4

n1 n2 n3

n4 n5 n6

n7 n8

(b) Parallel-measurement schedule with an
example network of 8 nodes

Figure 3: TopoShot’s parallel measurement protocol; in Figure 3b, the four colors represent fourmeasurePar iterations where
a rectangle with rounded angles is the selected nodes A’s in the measurement and the arcs are the collection of edges being
measured. For instance, the blue iteration ismeasurePar ({n1,n2,n3}, {n4,n5,n6,n7,n8}, {�}).

Example: We use an example to illustrate the parallel mea-
surement protocol. Among two sources A1,A2 and two sinks
B1,B2, assume it measures the connections on three edges, that is,
⟨A1,B1⟩, ⟨A2,B1⟩, ⟨A2,B2⟩. Figure 3a depicts the snapshot of exer-
cising our parallel measure method right after p3 .

Ensuring isolation: As in the case of measurement primitive,
isolation is critical to the success of our measurement method. In
the parallel setting, a Node A needs to prevent propagating the txA
transactions to Nodes B’s via not only Nodes C’s but also other
Nodes A’s and Nodes B’s. For instance, in the example above, when
measuring the connection between Node A2 and B1, it needs to
ensure that txA(2, 1) is not propagated to Node B1 via Node A1 or
B2. This is guaranteed by our measurement method because Nodes
B2 and A1 store txC transactions and can be treated as a C node
when measuring the connection between Node A2 and B1.

5.3.2 Parallel Measurement Schedule. Given a network of nodes
{n1,n2, ...,nN }, we partition the nodes into N /K groups where
each group is of K distinct nodes; for instance, the i-th group (i
starting from 0) is of nodes {ni∗K+1,ni∗K+2, ...ni∗K+K−1}.

We schedule the network measurement in the two rounds: The
first round runs N /K iterations, where each iteration measures the
edges between group i and the rest of the network. The second
round measures the edges within a group.

To be more specific, we denote the parallel measurement prim-
itive described in § 5.3.1 by measurePar ({Ai }, {Bi }, {C}).
1) Given the i-th group, the first round calls
measurePar ({ni∗K+1,ni∗K+2, ...ni∗K+K−1}, {n1, ...,ni∗K−1,ni∗K+K ,
...nN }, {�}), where A is the i-th group, B is the rest of the
blockchain network, and C is empty. Each of these iterations sets a
goal to measure K · (N − K) possible edges.

2) The second round measures the edges within groups. Specif-
ically, given a group, it maps the first half of nodes as A and the
other half as Nodes B. An iteration measures intra-group edges for
all groups. It then applies the same splitting respectively for the
first and second half of the group. In other words, the next iteration

measures the intra-group edges for half of the original groups. This
process repeats until the group size reaches 2.

Example: Suppose N = 8 and K = 3. The parallel schedule is of
two rounds, each of two iterations, as illustrated by the four curved
rectangles (with different colors) in Figure 3b.

The first round runs the following two iterations:
measurePar ({n1,n2,n3}, {n4,n5,n6,n7,n8}, {�}) which mea-
sures the 3 ∗ 5 = 15 edges across node group {n1,n2,n3}
and group {n4,n5,n6,n7,n8}. This is visualized by the hori-
zontal rectangle in blue in the figure. The second iteration is
measurePar ({n4,n5,n6}, {n7,n8}, {n1,n2,n3}) which measures all
3 ∗ 2 = 6 edges and is visualized by the horizontal rectangle in red
in the figure.

The second round runs another two itera-
tions: measurePar ({n1,n4,n7}, {n2,n3,n5,n6,n8}, {�})
which measures 5 edges across groups (i.e., edges
(n1,n2), (n1,n3), (n4,n5), (n4,n6), (n7,n8)) by the vertical rec-
tangle in green, andmeasurePar ({n2,n5}, {n3,n6}, {n1,n4,n7,n8})
which measures 2 edges (i.e., (n2,n3), (n5,n6)) by the vertical
rectangle in orange.

Complexity Analysis and Configuration of K : On the mea-
surement of a network of N nodes with a group of size K , the total
number of iterations is N

K + logK where the first round runs N
K

iterations and the second round runs logK iterations. Roughly, the
number of iterations decreases with increasingK . However, making
the value of K too large would lead to the overflow of mempool as
it generates K ∗ (N − K) transactions in each iteration. In practice,
an Ethereum node’s mempool has a capacity of 5120 transactions
and to bound the interference, we only use no more than 2000
transaction slots in the mempool. For an Ethereum network of 500
nodes, such as Ropsten, we use K = 2000/500 = 4 which results in
a total of 500/4 + log 4=127 iterations.

6 MEASUREMENT RESULTS
Initially, we run a measurement node M that joins an Ethereum
network, such as the Ropsten testnet. The measurement nodeM is

IMC ’21, November 2–4, 2021, Virtual Event, USA Kai Li et al., Kai Li, Yuzhe Tang, Jiaqi Chen, Yibo Wang, and Xianghong Liu

1 2 4 8 16

Number of future transactions (X5120)

70

80

90

100

R
e
c
a
ll
 (

%
)

(a) Recall with TopoShot sending in-
creasing number of future transac-
tions.

1 10 30 50 79 99

Group size

40

50

60

70

80

90

100

110

P
e
rc

e
n
ta

g
e
 (

%
)

Recall

Precision

(b) Precision and recall with increas-
ing group size in parallel measure-
ment.

Figure 4: Measurement validation results

set up without bounds on its neighbors, so it can be connected to
the majority of the network.

6.1 Measurement Validation
The correct functioning of TopoShot relies on several factors that
may vary in a deployed Ethereum network. For instance, TopoShot
assumes the default mempool size on Geth nodes (i.e., 5120) that may
not hold if an Ethereum node is configured with a different mempool
size. The variance would introduce false negatives into TopoShot
results and affect the recall. In this subsection, we validate the
TopoShot results by evaluating/estimating the result recall. Here,
we use the “external” experiment setup; in Appendix B, we use a
fully local setup to conduct additional validation study.

Experiment setup: In addition to the measurement node M ,
we set up a local machine to play node B; the node joins the testnet
being measured (e.g., Ropsten) and is configured with a number
(e.g., 5000) larger than the size of testnet. After staying online for
12 hours in Ropsten, node B connects to 520 nodes, among which
471 nodes run Geth clients. The setup here is external as nodes A
and B join a remote Ethereum network.

Validating measurement primitive (measureOneLink): We
then iterate through the 471 nodes, selecting each node as node A
to measure the connection between B and A using an unmodified
TopoShot. In each iteration, the connection is measured three
times. When running the measurement primitive, we verify that
txC is evicted from nodes A and B. This is done by turning on the
RPC interface and sending an eth_getTransactionByHash query
to it. The final result is positive (i.e., there is a connection) if any of
the three measurements is positive. For each unit experiment, we
report the number of positive connections TopoShot can detect
and from there calculate the recall.

We increase the number of future transactions sent in TopoShot
and measure the recall using the validation method above. The
results are shown in Figure 4a. With the increasing number of
future transactions, the recall of TopoShot grows from 84% to 97%.
An implication here is that even with a large number of future
transactions, TopoShot does not reach 100% recall. We suspect
the following culprits: 1) The remote node is configured with a
custom mempool size much larger than the default 5120. 2) The
node is configured with a custom Gas price threshold other than
the default 10%; this threshold determines the mempool’s transaction
replacement policy. 3) There are nodes who join Ropsten testnet

but do not participate in forwarding transactions, preventing txA
being propagated.

Validating parallel method (measurePar : In the same experi-
ment we then validate TopoShot’s parallel measurement method.

Recall parallel TopoShot is parameterized with p and q. In this
experiment, we use q = 1 and vary p (referred to as the group size),
that is, a node B′ and p nodes A’s in a parallel measurement. p is
varied between 1 to 99.

Specifically, we set up a new node B′ with the default 50 active
neighbors and join the Ropsten testnet. It turned out its 35 active
neighbors run Geth. We then serially measure the 35 neighbors,
which successfully detects 29 neighbors. When running validation
of the parallel method, we need to choosep nodesA’s. Whenp ≤ 29,
we choose a subset of the 29 active neighbors of node B′ to play
nodes A’s. When p > 29, we choose the 29 neighbors of node B′, as
well as the nodes that do not have connections with node B′, to be
nodes A’s.

For each group size, we run the parallel measurement three times
and report a positive result if any of the three returns a positive
result. The results are presented in Figure 4b. The precision is
always 100%. The recall is initially 100% until the group size is
larger than 29. It then decreases as the group grows larger. For a
group of 99 nodes, the recall is about 60%. The reason for a non-100%
recall under a large group is that TopoShot does not guarantee
isolation among nodes {A}, and a larger group increases the chance
of non-isolation/interference among nodes {A}.

1 10 30 50 79 99

Group size

0

10

20

30

40

50

60

70

80

M
e
a
s
u
re

m
e
n
t

ti
m

e
 (

1
0
^

3
 s

e
c
o
n
d
s
)

Figure 5: Speedup of TopoShot’s parallel measurement over
the serial measurement

Measurement speedup of the parallel method: We also re-
port the time of measuring the same group of nodes with varying
group size, with the purpose to evaluate possible speedup by the
parallel measurement over the serial one. In a similar experiment
setup, the measurement target is a group of 100 nodes. With about
4950 edges detected, the measurement times are reported in Fig-
ure 5. It can be seen that as the group size K increases, the time to
measure the same group of nodes (as in the previous experiment)
decreases significantly. For instance, with a group size K = 30, the
measurement time is reduced by an order of magnitude (about 10×
times).

6.2 Testnet Measurement Results
6.2.1 Ropsten Results.

TopoShot: Uncovering Ethereum’s Network Topology Leveraging Replacement Transactions IMC ’21, November 2–4, 2021, Virtual Event, USA

0 10 20 30 40 50 60 70 80 90

Node degree

0

5

10

15

20

25
N

u
m

b
e
r

o
f

n
o
d
e
s

Figure 6: Node degree distribution in Ropsten

Table 4: Graph properties of the Ropsten testnet
Measured
Ropsten

ER (n = 588,
m = 7496)

CM BA (n = 588,
l ′ = 26)

Diameter 5 3.0 5.2 3.0
Periphery
size

36 293.5 24.9 509.4

Radius 3 3.0 3.0 2.0
Center size 36 293.5 51.7 78.6
Eccentricity 4.037 3.0 3.98 2.87
Clustering co-
efficient

0.207 0.044 0.139 0.159

Transitivity 0.127 0.044 0.122 0.156
Degree assor-
tativity

-0.1517 0.0026 -0.0664 -0.0181

Clique num-
ber

60.75 250.3 557.4 50.6

Modularity 0.0605 0.161 0.152 0.102

Table 5: Detected communities in Ropsten testnet
Community in-
dex

No. of nodes Intra-comm.
edges (density)

Inter-comm.
edges

1 92 423 (10%) 1547
2 142 603 (6%) 1612
3 107 548 (9.7%) 1827
4 84 391 (11%) 1505
5 75 379 (14%) 1704
6 51 127 (10%) 773
7 37 121 (18%) 840

We first conducted a measurement study on Ropsten testnet.
We use parallel measurement method with parameter K = 60.
In particular, the testnet is under loaded and there are not suffi-
cient “background” transactions in mempools. We tried to apply
TopoShot, as is, to measure Ropsten and found that however low
Gas price we set for txC (recall Step 1 in TopoShot), the trans-
action will always be included in the next block, leaving no time
for accurate measurement. To overcome this problem, we launch
another node that sends a number of “background” transactions
(from a different account than txC). This effectively populate an op-
erating mempool and helped txC stay in a mempool for long enough
during the measurement period. We encounter the same situation
when measuring Goerli and use the same trick here. Note that more
than 95% of peer nodes our supernodes initially connect to stay
connected throughout the measurement period.

In the testnet, a target node may run a non-default setting in
which they forward future transactions, invalidating the assump-
tion made in TopoShot. Such a custom node is avoided in our mea-
surement study as follows: In the pre-processing, one can launch
an additional monitor node (to the measurement node) to connect

to the target node one. The measurement node then sends a fu-
ture transaction to the target node. If the monitor node observes
the future transaction from the target node, the target node is re-
moved from the measurement. Besides, the pre-processing phase
in TopoShot also avoids unresponsive nodes.

We present a snapshot of the Ropsten testnet taken on Oct. 13,
2020. The precision of the measurement result is 100% and recall is
88% (under group size K = 60), using a validation method described
above. The network contains 588 (Geth) nodes and 7496 edges
among them. This result has the test node and its edges excluded.
The degree distribution is plotted in Figure 6. Most nodes have a
degree between 1 and 60: Particularly, 4% of nodes have degree 10,
another 4% have degree 1 and another 4% have degree 12. Omitted
in the figure are ten nodes with degree between 90 and 200. This
result shows that degrees by active links are much smaller than the
default number of inactive neighbors (250).

Table 4 summarizes the characteristics of the measured testnet
in terms of distances, assortativity, clustering and community struc-
ture. 1) For distances, the network diameter, defined as the maximal
distance between any pair of nodes, is 5, and the radius is 3. The
number of center nodes and periphery nodes, defined respectively
as the nodes with eccentricity equal to radius and diameter, are
both 36. 2) Degree assortativity, which measures how likely a node
connects to a similar node, is -0.1517. 3) The clustering coefficient,
which shows how well nodes in a graph tend to form cliques to-
gether, is 0.207. The transitivity, which considers the clustering of
particular 3-node substructure, is 0.127. 4) There are 60.748 unique
cliques detected in the testnet. The modularity of the testnet, which
measures the easiness of partitioning the graph into modules, is
0.0605.

As a baseline for comparison, we generate a random graph fol-
lowing the Erdos-Renyi [25] (ER) model which generates an edge
between each pair of nodes using the same probability, indepen-
dently. It follows a binomial degree distribution and is commonly
used as the network-analysis baselines. We use the same number
of vertices and edges with the measured Ropsten network (that is,
n = 588 andm = 7496) when generating the Erdos-Renyi random
graph. We run the graph generation algorithms for 10 times and
report the average properties of these random graphs in Table 5.
Particularly, the density is calculated by the number of measured
intra-community edges divided by the number of total possible
edges in that community. For instance, the density of a community
of 92 nodes and 423 intra-community edges is 423/

(8,000
2

)
= 0.10.

Besides, Table 5 shows other two random graphs, namely configu-
ration model [40] (CM), and Barabasi-Alber [19] (BA). The former
is generated using the same sequence of node degrees with the mea-
sured testnet, and the latter is generated using the same number of
nodes (n = 588) and same average node degree (l ′ = 26).

Compared with the ER random graph, the measured Ropsten net-
work has a much larger diameter, a smaller center size, a larger clus-
tering coefficient, and more importantly, fewer cliques and lower
modularity. This is similarly the case when comparing Ropsten with
CM (except for CM’s comparable diameter) and BA (except for BA’s
comparable number of cliques). The implication is that a Ropsten
network is much more resilient to network-partition attacks (e.g.,
eclipse and other DoS attacks) than these random graphs.

IMC ’21, November 2–4, 2021, Virtual Event, USA Kai Li et al., Kai Li, Yuzhe Tang, Jiaqi Chen, Yibo Wang, and Xianghong Liu

We also detect the communities in the Ropsten testnet, using the
NetworkX tool [3] implementing the Louvain method described
in [21]. The results are in Table 5. There are seven communities
detected. The biggest community is community number two with
22% of the nodes of the network. The average degree in the commu-
nity is 19, and 9% of the nodes (i.e., 13 out of 142 nodes) only have
a degree of 1. By comparison, community number five contains
12.7% of the nodes with the largest average degree 32.8.

6.2.2 Summary of Rinkeby & Goerli Results. We conduct similar
measurements on two other major Ethereum testnets, Rinkeby and
Goerli. Here, we summarize what’s noteworthy in the results while
deferring the full presentation to Appendix D. From our measure-
ment results, Rinkeby has smaller node degrees than Ropsten. Many
Geth nodes in Rinkeby are with degrees smaller than 15, and be-
tween degrees 15 and 180 the nodes are evenly distributed. In terms
of graph statistics, Rinkeby’s modularity (0.0106) is much lower
than Goerli’s (0.048) which is comparable with Ropsten’s modu-
larity (0.0605); this result implies that Rinkeby’s the most resilient
against network partitioning.

Explaining the results: In the measurement results, we consis-
tently observe smaller modularity in testnets than that in random
graphs. Full explainability of the measurement result is challenging
and out of the scope of this paper. We take preliminary efforts to
explain the measured results as follows.

We suspect themeasurement results, particularly the discrepancy
to the properties of random graphs and the much lower modularity,
are due to the way Ethereum nodes choose/promote active links
and the scale of the networks measured. Briefly, in the Ethereum
protocol, a node maintains a “buffer” of inactive neighbors from
which 50 active neighbors are selected in the case of existing active
neighbors go offline. At the first glimpse, the presence of this buffer
localizes the selection of active neighbors in a smaller candidate set
than all the nodes as in the random graph, and it should facilitate
forming the network of higher modularity. However, by looking
more closely at the Ethereum protocol, a node N ’s candidate buffer
consists of node N ’s inactive neighbors and node N ’s inactive
neighbors’ inactive neighbors. For instance, with each node of 272
inactive neighbors by default, the buffer size is 272 ∗ 272 = 73984
which is larger than the size of the testnets we measured. Thus, the
effect of localization is not reflected in the testnet results. In fact,
the deduplication of active neighbors (i.e., Ethereum clients, such
as Geth, check if a recently promoted neighbor is already an active
neighbor) may contribute to the much lower modularity in the mea-
sured testnets. While here we explain the measurement results by
qualitative analysis, we leave it to the future work the quantitative
modeling and analysis of Ethereum network-connection protocols.

6.3 Mainnet Measurement Results
Measuring the mainnet’s topology raises new challenges: 1) Due to
ethical concerns, the measurement should not interfere the normal
operation of live mainnet nodes. 2) Due to mainnet’s large scale
(about 8, 000 nodes and

(8,000
2

)
= 1

2 · 8, 000 · (8, 000 − 1) possible
links) and the high price of Ether, measuring the entire network
of mainnet incurs high cost, estimated to be more than 60 million
USD as will be analyzed.

To tackle the ethical challenge, we propose a TopoShot ex-
tension to additionally verify certain conditions and ensure the
non-interference to the service of target mainnet nodes. To bypass
the high-cost challenge, in this work, we focus on measuring the
topology of a small but critical subnetwork, instead of the entire
mainnet. We conduct the measurement study on the mainnet on
May 11th, 2021 and have spent 0.05858 Ether (amount to 197.94
USD at the price as of Aug 2021).

Non-interference extension of TopoShot: Consider a mea-
surement node M runs TopoShot against a target node S in the
Ethereum network C (S can be either A or B in our measurement
primitive as in Figure 2b). Suppose the measurement starts at time
t1 and ends at t2. NodeM sets txC ’s Gas price at Y = Y0 and moni-
tors the following two conditions. Only when both conditions are
met, the measurement proceeds.
V1) All blocks produced in [t1, t2 + e] are full in the sense that

the Gas limit of each block is filled. e denotes the expiration
time of an unconfirmed transaction buffered in an Ethereum
node. For instance, a Geth node would drop an unconfirmed
transaction e = 3 hours after it is submitted to the node, if it
is not mined.

V2) In the blocks produced during [t1, t2 + e], the included trans-
actions have Gas prices higher than Y0.

This extended TopoShot achieves the following non-
interference property: The Ethereum blocks produced with the
measurement turned on include the same set of transactions with the
blocks produced with the measurement turned off. We formally state
the property and prove it in Appendix C.

Goal: mainnet’s critical subnetwork: With the above pricing
strategy, measuring a pair of nodes on the mainnet costs 7.1 · 10−4
Ether or 1.91 USD (at the Ether price as of May, 2021). Thus, for
the mainnet that consists of more than 8, 000 nodes, measuring all
1
2 · 8, 000 · (8, 000 − 1) possible links would cost 22.845 · 103 Ether or
more than 60million USD. We thus refrain from directly measuring
the entire mainnet in this work.

Instead, we choose a smaller but critical subnetwork of the main-
net to measure. Our observation is that in today’s blockchain net-
works, essential transaction activities are centralized to few popular
“services” that account for a small portion of the nodes in the net-
work, such as popular transaction relay service (e.g., SrvR14 that
relays 63% of Ethereum transactions on the mainnet) and mining
pools.

We aim to answer the following research question: RQ: Do
Ethereum mainnet nodes prioritize the critical service nodes as their
active neighbors?

To address the research, we design a measurement study on
the mainnet that 1) discovers Ethereum nodes running behind the
known popular services (including transaction relay and mining
pools) and then 2) uses TopoShot to measure the pair-wise con-
nections among the discovered service-backend nodes.

Step 1: Discovering critical nodes: We discover the mainnet
nodes on the backend of critical services. We use the approach
described in the existing work [35]. Briefly, the approach is to
obtain the client version of the backend nodes by submitting the
standard Ethereum RPC query (i.e., web3_clientVersion) through
4We anonymize the names of critical services tested to protect their service.

TopoShot: Uncovering Ethereum’s Network Topology Leveraging Replacement Transactions IMC ’21, November 2–4, 2021, Virtual Event, USA

the service frontend and to match the version against the ones in
the Ethereum handshake messages received on a local “supernode”
joining the mainnet, which is similar to the existing measurement
work [32].

Using the above method, we discover the following mining-pool
nodes on the mainnet: 59 SrvM1 nodes, 8 SrvM2 nodes, 6 SrvM3
nodes, 2 SrvM4 nodes, 2 SrvM5 nodes, and 1 SrvM6 node. We also
discover the following transaction-relay nodes on the mainnet: 48
SrvR1 nodes and 1 SrvR2 node. When discovering the nodes, we use
the codename revealed through the web3_clientVersion query.
The measurement result is consistent with [35].

Table 6: Connections among critical nodes
Type Conn. Type Conn.
SrvR1- SrvM1 ✓ SrvM1- SrvM1 ✗

SrvR1- SrvM2 ✓ SrvM1- SrvM2 ✓

SrvR1- SrvM3 ✓ SrvM1- SrvM4 ✓

SrvR1- SrvM4 ✓ SrvM1- SrvM3 ✓

SrvR2- SrvM1 ✗ SrvM2- SrvM2 ✓

SrvR2- SrvM2 ✗ SrvM2- SrvM3 ✓

SrvR2- SrvM3 ✗ SrvM2- SrvM4 ✓

SrvR2- SrvM4 ✗ SrvM3- SrvM4 ✓

SrvR2- SrvR1 ✗ SrvR1- SrvR1 ✓

Step 2: Measuring topology among critical nodes: We run
the extended TopoShot to detect whether critical nodes discovered
as above are connected with each other. We consider three possible
connection types: the inter-connection between amining-pool node
and a relay-service node, the connection between two mining-pool
nodes and the connection between two relay-service node. For
each case, we select random nodes from each service and measure
all possible links. For measuring the connection between “SrvR1-
SrvM1”, for instance, we select two random SrvR1 nodes and two
random SrvM1 nodes, and measure the four combinations of links.
In addition, we select two nodes for SrvM2 and select one node for
each of the services: SrvR2, SrvM3, SrvM4. In total, we choose 9
mainnet nodes.

We report the result in Table 6. We make the following obser-
vation: 1) A node behind relay service SrvR1 connects to all tested
mining pools and other SrvR1 nodes. It does not connect to other
relay services such as SrvR2. 2) The single node behind relay ser-
vice SrvR2 does not connect to any mining pools or other relay
service. Here, SrvR2’s node may randomly choose neighbors as
vanilla Ethereum clients do. 3) Nodes behind all mining pools con-
nect to nodes of the same pool and other pools. They also connect
to SrvR1. The only exception is that SrvM1 nodes do not connect
to other SrvM1 node.

Explaining the results: There are two possible explanations of
the results: a) SrvR1 and all mining pools run supernodes internally,
which connect to all other nodes. SrvR2 runs a regular node that
declines incoming connection requests once its active neighbors
are full. b) An SrvR1 node prioritizes the connections to other SrvR1
nodes and mining-pool nodes. It does not prioritize connecting to
other RPC-service nodes like SrvR2. So are the mining pool nodes.

6.4 Summary of Measurement Costs/Time
We summarize the measurement costs/time in Table 7, which re-
ports the actual Ether cost spent for measuring the testnets and the
estimated cost of measuring the full topology of mainnet. The main-
net cost is estimated by multiplying the pairwise-measurement
cost by the number of possible edges in the network (as mentioned
before). Note that in the mainnet, the measurement transactions’
Gas prices are set to be higher than at least 10% of the pending
transactions in the mempool (for estimation purposes, we assume
the target node’s mempool has the same content as the measurement
node’s mempool).
Table 7: Summary of measurement studies on the testnets/-
mainnet. # refers to “number”.
Network Size (# of

nodes)
Cost (Ether) Date Duration

(hours)
Ropsten 588 0.067 Oct. 30, 2020 12
Rinkeby 446 2.10 Nov. 15, 2020 10
Goerli 1025 0.62 Oct. 20, 2020 20
mainnet 9 0.05858 May. 15, 2021 0.5

7 ETHICAL DISCUSSION
In this work, we use TopoShot to measure testnets. While the
approach is active measurement (to refill underwhelmed mempool
in the testnet), the testnets do not run business, and the possible
service interruption to the testnets will have limited impacts. We
also measure a limited sub-network on the Ethereum mainnet. As
analyzed before in § 6.3, the presence of measurement using the
TopoShot extension does not affect what set of transactions are
included in the blockchain. A more formal statement is in Theo-
rem C.2 which is proven in Appendix C.2. We believe TopoShot’s
impact to normal transactions when measuring the mainnet is
small.

8 CONCLUSION
This work presents TopoShot, a measurement study that uncovers
Ethereum’s network topology by exploiting transaction replace-
ment and eviction policies. TopoShot achieves the perfect precision
and high recall. A parallel schedule is proposed to apply the pair-
wise measurement to large-scale networks. TopoShot uncovers the
topology of three major Ethereum testnets, which show their differ-
ence to random graphs and high resilience to network partitioning.
We also use TopoShot to measure critical service interconnection
in the mainnet which reveals biased neighbor selection strategies
by top mining pools and relay service nodes.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers in ACM IMC’21,
SIGCOMM’21, and SIGMETRICS’21. The authors are partially
supported by the National Science Foundation under Grants
CNS1815814 and DGE2104532.

IMC ’21, November 2–4, 2021, Virtual Event, USA Kai Li et al., Kai Li, Yuzhe Tang, Jiaqi Chen, Yibo Wang, and Xianghong Liu

REFERENCES
[1] Retrieved May, 2021. Aleth – Ethereum C++ client, tools and libraries. https:

//github.com/ethereum/aleth.
[2] Retrieved May, 2021. Bug disclosure and authors’ conversations. Privately shared

link: https://shorturl.at/kuET6.
[3] Retrieved May, 2021. Community detection for NetworkX’s documentation.

https://python-louvain.readthedocs.io/en/latest/.
[4] Retrieved May, 2021. Ethereum & IPFS APIs. Develop now on Web 3.0. https:

//infura.io/.
[5] Retrieved May, 2021. Ethereum Bounty Program. https://bounty.ethereum.org/.
[6] Retrieved May, 2021. Ethereum Mainnet Statistics. https:

//www.ethernodes.org/.
[7] Retrieved May, 2021. Etherscan: Ethereum (ETH) Blockchain Explorer. https:

//etherscan.io/.
[8] Retrieved May, 2021. Geth: the Go Client for Ethereum. https://

www.ethereum.org/cli#geth.
[9] Retrieved May, 2021. The Goerli testnet of Ethereum. https://goerli.etherscan.io.
[10] RetrievedMay, 2021. Hyperledger Besu. https://www.hyperledger.org/use/besu.
[11] Retrieved May, 2021. Introduction to Swarm. https://swarm-

guide.readthedocs.io/en/latest/introduction.html.
[12] Retrieved May, 2021. Nethermind Ethereum client. https://nethermind.io/client.
[13] Retrieved May, 2021. Parity Ethereum is now OpenEthereum: Fast and feature-

rich multi-network Ethereum client. https://www.parity.io/ethereum/.
[14] Retrieved May, 2021. Quiknode: Blockchain Infrastructure Cloud. https:

//www.quiknode.io/.
[15] Retrieved May, 2021. The Rinkeby testnet of Ethereum. https://

rinkeby.etherscan.io.
[16] Retrieved May, 2021. The Ropsten testnet of Ethereum. https://

ropsten.etherscan.io.
[17] Retrieved May, 2021. Sparkpool: Crypto Mining and Staking Pool. https://

www.sparkpool.com/en/.
[18] Retrieved Sep., 2021. ETH live marketcap. https://coinmarketcap.com/currencies/

ethereum/.
[19] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex

networks. Reviews of modern physics 74, 1 (2002), 47.
[20] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. 2014. Deanonymisa-

tion of Clients in Bitcoin P2P Network. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM,
15–29. https://doi.org/10.1145/2660267.2660379

[21] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[22] Tong Cao, Jiangshan Yu, Jérémie Decouchant, Xiapu Luo, and Paulo Verís-
simo. 2020. Exploring the Monero Peer-to-Peer Network. In Financial
Cryptography and Data Security - 24th International Conference, FC 2020,
Kota Kinabalu, Malaysia, February 10-14, 2020 Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 12059), Joseph Bonneau and Nadia
Heninger (Eds.). Springer, 578–594. https://doi.org/10.1007/978-3-030-51280-
431

[23] Erik Daniel, Elias Rohrer, and Florian Tschorsch. 2019. Map-Z: Exposing the
Zcash Network in Times of Transition. In 44th IEEE Conference on Local
Computer Networks, LCN 2019, Osnabrueck, Germany, October 14-17, 2019,
Karl Andersson, Hwee-Pink Tan, and Sharief Oteafy (Eds.). IEEE, 84–92. https:
//doi.org/10.1109/LCN44214.2019.8990796

[24] Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton, Andrew
Pachulski, Andrew Miller, and Bobby Bhattacharjee. 2019. TxProbe: Discov-
ering Bitcoin’s Network Topology Using Orphan Transactions. In Financial
Cryptography and Data Security - 23rd International Conference, FC 2019,
Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers.
550–566. https://doi.org/10.1007/978-3-030-32101-732

[25] P. Erdos and A Renyi. 1960. On the Evolution of Random Graphs. In
PUBLICATION OF THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN
ACADEMY OF SCIENCES. 17–61.

[26] Yue Gao, Jinqiao Shi, Xuebin Wang, Qingfeng Tan, Can Zhao, and Zelin
Yin. 2019. Topology Measurement and Analysis on Ethereum P2P Network.
In 2019 IEEE Symposium on Computers and Communications, ISCC 2019,
Barcelona, Spain, June 29 - July 3, 2019. IEEE, 1–7. https://doi.org/10.1109/
ISCC47284.2019.8969695

[27] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün
Sirer. 2018. Decentralization in Bitcoin and Ethereum Networks. In Financial
Cryptography and Data Security - 22nd International Conference, FC 2018,
Nieuwpoort, Curaçao, February 26 - March 2, 2018, Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 10957), Sarah Meiklejohn and Kazue
Sako (Eds.). Springer, 439–457. https://doi.org/10.1007/978-3-662-58387-624

[28] Matthias Grundmann, Till Neudecker, and Hannes Hartenstein. 2018. Exploiting
Transaction Accumulation and Double Spends for Topology Inference in Bitcoin.

In Financial Cryptography andData Security - FC 2018 InternationalWorkshops,
BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 10958), Aviv Zohar, It-
tay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore, and
Massimiliano Sala (Eds.). Springer, 113–126. https://doi.org/10.1007/978-3-662-
58820-89

[29] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015.
Eclipse Attacks on Bitcoin’s Peer-to-Peer Network. In USENIX Security 2015,
Washington, D.C., USA, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Associ-
ation, 129–144. https://www.usenix.org/conference/usenixsecurity15

[30] Sebastian A. Henningsen, Martin Florian, Sebastian Rust, and Björn Scheuer-
mann. 2020. Mapping the Interplanetary Filesystem. In 2020 IFIP Networking
Conference, Networking 2020, Paris, France, June 22-26, 2020. IEEE, 289–297.
https://ieeexplore.ieee.org/document/9142766

[31] Lucianna Kiffer, Asad Salman, Dave Levin, AlanMislove, and Cristina Nita-Rotaru.
[n.d.]. Under the Hood of the Ethereum Gossip Protocol. ([n. d.]).

[32] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew Miller,
and Michael Bailey. 2018. Measuring Ethereum Network Peers. In Proceedings
of IMC 2018. 91–104. https://dl.acm.org/citation.cfm?id=3278542

[33] Philip Koshy, Diana Koshy, and Patrick D. McDaniel. 2014. An Analysis of
Anonymity in Bitcoin Using P2P Network Traffic. In Financial Cryptography and
Data Security - 18th International Conference, FC 2014, Christ Church, Barbados,
March 3-7, 2014, Revised Selected Papers (Lecture Notes in Computer Science,
Vol. 8437), Nicolas Christin and Reihaneh Safavi-Naini (Eds.). Springer, 469–485.
https://doi.org/10.1007/978-3-662-45472-530

[34] Kai Li, Jiaqi Chen, Xianghong Liu, Yuzhe Richard Tang, XiaoFeng Wang, and
Xiapu Luo. 2021. As Strong As Its Weakest Link: How to Break Blockchain
DApps at RPC Service. In 28th Annual Network and Distributed System Security
Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss-paper/as-strong-as-its-weakest-
link-how-to-break-blockchain-dapps-at-rpc-service/

[35] Kai Li, Yibo Wang, and Yuzhe Tang. 2021. DETER: Denial of Ethereum Txpool
sERvices. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’21), November 15 - 19, 2021, Virtual Event,
Republic of Korea.

[36] Petar Maymounkov and David Mazières. 2002. Kademlia: A Peer-to-Peer In-
formation System Based on the XOR Metric. In Peer-to-Peer Systems, First
International Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002,
Revised Papers (Lecture Notes in Computer Science, Vol. 2429), Peter Druschel,
M. Frans Kaashoek, and Antony I. T. Rowstron (Eds.). Springer, 53–65. https:
//doi.org/10.1007/3-540-45748-85

[37] Andrew Miller, James Litton, Andrew Pachulski, Neal Gupta, Dave Levin, Neil
Spring, and Bobby Bhattacharjee. 2015. Discovering bitcoin’s network topology
and influential nodes. University of Maryland, Tech. Rep (2015).

[38] Till Neudecker. 2019. Characterization of the Bitcoin Peer-to-Peer Network
(2015-2018). Technical Report 1. Karlsruher Institut für Technologie (KIT).
https://doi.org/10.5445/IR/1000091933

[39] Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein. 2016. Tim-
ing Analysis for Inferring the Topology of the Bitcoin Peer-to-Peer Net-
work. In 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, France, July 18-21,
2016. IEEE Computer Society, 358–367. https://doi.org/10.1109/UIC-ATC-
ScalCom-CBDCom-IoP-SmartWorld.2016.0070

[40] Mark EJ Newman. 2003. The structure and function of complex networks. SIAM
review 45, 2 (2003), 167–256.

[41] Aristodemos Paphitis, Nicolas Kourtellis, and Michael Sirivianos. 2021. A First
Look into the Structural Properties and Resilience of Blockchain Overlays. CoRR
abs/2104.03044 (2021). arXiv:2104.03044 https://arxiv.org/abs/2104.03044

https://github.com/ethereum/aleth
https://github.com/ethereum/aleth
 https://shorturl.at/kuET6
https://python-louvain.readthedocs.io/en/latest/
 https://infura.io/
 https://infura.io/
https://bounty.ethereum.org/
https://www.ethernodes.org/
https://www.ethernodes.org/
 https://etherscan.io/
 https://etherscan.io/
https://www.ethereum.org/cli#geth
https://www.ethereum.org/cli#geth
https://goerli.etherscan.io
https://www.hyperledger.org/use/besu
https://swarm-guide.readthedocs.io/en/latest/introduction.html
https://swarm-guide.readthedocs.io/en/latest/introduction.html
https://nethermind.io/client
https://www.parity.io/ethereum/
 https://www.quiknode.io/
 https://www.quiknode.io/
https://rinkeby.etherscan.io
https://rinkeby.etherscan.io
https://ropsten.etherscan.io
https://ropsten.etherscan.io
 https://www.sparkpool.com/en/
 https://www.sparkpool.com/en/
 https://coinmarketcap.com/currencies/ethereum/
 https://coinmarketcap.com/currencies/ethereum/
https://doi.org/10.1145/2660267.2660379
https://doi.org/10.1007/978-3-030-51280-4_31
https://doi.org/10.1007/978-3-030-51280-4_31
https://doi.org/10.1109/LCN44214.2019.8990796
https://doi.org/10.1109/LCN44214.2019.8990796
https://doi.org/10.1007/978-3-030-32101-7_32
https://doi.org/10.1109/ISCC47284.2019.8969695
https://doi.org/10.1109/ISCC47284.2019.8969695
https://doi.org/10.1007/978-3-662-58387-6_24
https://doi.org/10.1007/978-3-662-58820-8_9
https://doi.org/10.1007/978-3-662-58820-8_9
https://www.usenix.org/conference/usenixsecurity15
https://ieeexplore.ieee.org/document/9142766
https://dl.acm.org/citation.cfm?id=3278542
https://doi.org/10.1007/978-3-662-45472-5_30
https://www.ndss-symposium.org/ndss-paper/as-strong-as-its-weakest-link-how-to-break-blockchain-dapps-at-rpc-service/
https://www.ndss-symposium.org/ndss-paper/as-strong-as-its-weakest-link-how-to-break-blockchain-dapps-at-rpc-service/
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.5445/IR/1000091933
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://arxiv.org/abs/2104.03044
https://arxiv.org/abs/2104.03044

TopoShot: Uncovering Ethereum’s Network Topology Leveraging Replacement Transactions IMC ’21, November 2–4, 2021, Virtual Event, USA

Appendices

A TXPROBE’S APPLICABILITY TO
ETHEREUM: ADDITIONAL DETAILS

TxProbe is inapplicable to measuring the topology of Ethereum
network, due to two distinct features in Ethereum: 1) Ethereum’s
propagation model where transactions can be directly propagated
without announcement, and 2) Ethereum’s account-based model
where the balance state can be arbitrarily recharged while a Bitcoin
balance can only transit one way, from unspent to spent (as in
its UTXO model). In the main text, we explain why TxProbe’s
inapplicable in Ethereum due to 2). Here, we explain TxProbe’s
inapplicable in Ethereum due to 1).

Briefly, before sending txA, TxProbe sends two double-spending
transactions respectively to node A and B such that txA on node B
will become an orphan transaction that is not propagated further.
However, with Ethereum’s account model, txA on node B would
not necessarily be an orphan transaction (or equivalently a future
transaction in Ethereum’s jargon). It can be an overdraft transaction
that is propagated. More detailed description is below:

TxProbe [24] actively measures Bitcoin network topology, by
exploiting its handling of orphan/double-spending transactions in
transaction propagation. Other works [28] measure the Bitcoin
topology using a similar approach. In the following, we describe
the working of TxProbe [24] in detail, with the purpose to dis-
cuss its applicability to measuring Ethereum topology. Suppose
using TxProbe to measure the connection between nodes A and B.
The measurement node first sends to nodes A and B two double-
spending transactions, say tx ′A and tx ′B . It then sends the third
transaction txA spending tx ′A to nodeA. It observes the presence of
the transaction txA on node B. If it is present, there is a connection
between nodes A and B.

Applying TxProbe to measuring Ethereum topology is unfeasi-
ble due to Ethereum’s account model: Ethereum adopts a different
model to store ledger states than Bitcoin, and the definition of
orphan transactions in Ethereum is different than that in Bitcoin.
Specifically, Ethereum stores ledger state (how much cryptocur-
rency an address/account has) in per-account balances, namely
the account model, while Bitcoin stores the balance state in per-
transaction UTXO, namely the UTXO model. Under UTXO, an
orphan transaction is a transaction that spends an input whose
state is yet to be determined. This makes the third transaction in
the TxProbe protocol an orphan on Node B, which does not propa-
gate. However, under the account model, an orphan transaction (or
so-called future transaction) is one with a noncontinuous nonce to
any previous transaction, where a nonce is per a sender account.
Thus, the third transaction that spends a double-spending trans-
action is not necessarily an orphan, as it may be an over-drafting
transaction with a valid nonce (in which case, the transaction will
be propagated by node B).

B LOCAL VALIDATIONS
B.1 Local Validation of Serial Measurement
Local evaluation: In this experiment, we set up three local
Ethereum nodes, mutually connected and without the communi-
cation to any external Ethereum nodes. The three nodes represent

nodesM , A and B in the TopoShot protocol. In this local environ-
ment, we aim at evaluating TopoShot’s correctness with respect
to varying mempool sizes on node A.

On node A, we vary node A’s mempool sizes from 3120 to 9120.
In the experiments, we also populate the three-node network with
a varying number of pending transactions txO ’s, such as 1, 1000,
2000, and 3000 such transactions.

We use the measurement results from TopoShot and compare
it against the ground-truth to report the recall in Figure 7. The
result shows that given mempool size X and the number of pending
transactions X ′, TopoShot achieves 100% recall when X − X ′ <=

5120. Otherwise, the recall drops to 0%.

3120 4120 5120 6120 7120 8120 9120

Txpool size

0

20

40

60

80

100

R
e
c
a
ll
 (

%
)

0 pending txs

1000 pending txs

2000 pending txs

3000 pending txs

Figure 7: Recall with increasing mempool size

This validation study implies that matching the number of pend-
ing transactions to the actual mempool size is crucial to achieving
100% measurement recall.

B.1.1 Local Validation of Parallel Measurement. We conduct a vali-
dation of the parallel measurement method in a local environment
without connection to a remote Ethereum network. Here, the mea-
surement nodeM , two nodes A1 and A2, as well as node B, are run
on local machines under our control.

In terms of the connections among A1, A2 and B, there are two
permutations of three possibilities, that is, P(3, 2) = 8. Given the
symmetry (e.g., ⟨A2,B⟩ is equivalent to ⟨A1,B⟩), we consider six
possibilities as listed below. For each possibility, we use TopoShot
to conduct measurements for 100 times. The final result is positive
if any of the 100measurements returns a positive result (i.e., there is
a connection). Then by comparing the measurement results and the
ground-truth, we obtain the precision and recall of themeasurement
results.

As can be seen from table 8, all results are with 100% recall and
precision, even when there is a connection betweenA1 andA2. The
theoretic measurement inaccuracy when A1 connects to A2 seems
unlikely to occur in practice.

IMC ’21, November 2–4, 2021, Virtual Event, USA Kai Li et al., Kai Li, Yuzhe Tang, Jiaqi Chen, Yibo Wang, and Xianghong Liu

(a) Community in Rinkeby (b) Geo distribution of Rinkeby (c) Community in Goerli (d) Geo distribution of Goerli

Figure 8: Visualization of measured Rinkeby and Goerli networks

Table 8: Recall and precision of using TopoShot on local
nodes

Recall Precision
⟨A1, A2 ⟩, ⟨A1, B ⟩, ⟨A2, B ⟩ 100% 100%
⟨A1, A2 ⟩, ⟨A1, B ⟩ 100% 100%
⟨A1, A2 ⟩, ⟨A2, B ⟩
⟨A1, A2 ⟩ 100% 100%
⟨A1, B ⟩, ⟨A2, B ⟩ 100% 100%
⟨A1, B ⟩ (also ⟨A2, B ⟩) 100% 100%
Null 100% 100%

C MEASUREMENT EXTENSION FOR
NON-INTERFERENCE

C.1 Extending TopoShot with
Non-interference Verification

Goals: When running our TopoShot against an operational
Ethereum network, notably the mainnet, it is required that the mea-
surement does not interfere with the normal operations of the net-
work; for instance, the TopoShot should not evict any transactions
that are otherwise included in the blockchain. This non-interference
property is formally described in our analysis framework in § C.2.

Design rationale: To design TopoShot extension for assurance
of non-interference, one possible approach is to set a low Gas price
(i.e., TopoShot’s parameter Y) and prove the non-interference,
a priori, by considering the theoretically worst case that could
occur after the measurement starts. Our initial design follows this
approach, but just to find it is unfeasible with the current Ethereum-
node settings.5

Instead of proving non-interference a priori, we aim at verify-
ing the non-interference a posteriori. That is, the measurement
nodeM initially sets a conservatively low Gas price (e.g., based on
heuristics) and conducts the measurement. Meanwhile the node
monitors several conditions on the tested network during and after
the measurement, in order to establish non-interference posterior.

Measurement extension for verification: Consider a mea-
surement nodeM runs TopoShot against a subject node S in the
Ethereum network C (S can be either Node A or B as in our serial-
measurement model in Figure 2b). The measurement starts at time
t1 and ends at t2. Node M sets a low Gas price at Y = Y0 and
monitors the blockchain on the following conditions:

5To be specific, Geth’s default mempool length 5120 is too small to feed all the blocks
produced in the three-hour span (expiration time), by considering the worst case that
no new transactions are submitted to the Ethereum network after the measurement.

V1) All blocks produced in [t1, t2 + e] are full in the sense that
the Gas limit of each block is filled. Here, e denotes the
expiration time of a transaction in Ethereum-node mempool,
for instance, e = 3 hours in Geth by default.

V2) In the blocks produced in [t1, t2 + e], all transactions’ Gas
prices are higher than the preset Gas price Y0.

C.2 Non-interference Analysis
In this subsection, we first define what the measurement interfer-
ence means. We then prove that verified Conditions V1 and V2
ensure non-interference on the measured nodes.

Intuitively, non-interference means the action of measurement
does not affect what blocks are produced by the Ethereum network
being tested. In other words, with and without the measurement P ,
the blocks produced by the Ethereum network should be the same.

Formally, we consider a node M runs a measurement process
against a subject node S , which is connected to the rest of an
Ethereum network C . In the case that TopoShot is used to de-
tect the link between A and B, S can be either node A or B. The
measurement process starts at time t1 and ends at time t2.

Definition C.1. Consider a measurement process parameterized
by P(M, S,C, t1, t2). Denote by {bi } the sequence of blocks produced
by the Ethereum network (S,C) in period [t1, t2 + e].

Now consider a hypothetical world in which the measurement
did not occur at t1 and the Ethereumnetwork produces the sequence
of block headers with {b ′i }. The hypothetical world is deterministic
in the sense that it produces the same block from the same miner
at the same time with the actual world with measurement, that is,
block b ′i has the same timing with bi .

P(M, S,C, t1, t2) does not interfere with the measured Ethereum
network (S,C), if and only if the transactions included in each block
bi (i.e., the block at the index i of the sequence) in the actual world
with measurement are identical to those included in block b ′i in the
hypothetical world without measurement.

Theorem C.2. Consider a measurement P(M, S,C, t1, t2) is con-
ducted using the method of TopoShot. If Conditions V1 and V2 hold,
P does not interfere with the Ethereum network (S,C).

Proof. Generally speaking, blocks can be produced by node S
or other nodes in Ethereum networkC . Because TopoShot will not
evict transactions on nodes besides S , the measurement will not
affect the block produced by nodes other than S . Thus, we consider

TopoShot: Uncovering Ethereum’s Network Topology Leveraging Replacement Transactions IMC ’21, November 2–4, 2021, Virtual Event, USA

in this proof the “worst case” that all blocks {bi } are produced by
node S .

Due to the design of TopoShot, the measurement process will
evict only the transactions in S’s mempool (as late as of time t2)
whose Gas prices are lower than Y0. For other transactions whose
Gas prices are higher than Y0 and transactions submitted after t2,
measurement process P will not affect them.

Now, we are ready to prove the theorem by contradiction: As-
suming there is interference under Conditions V1 and V2, our goal
of the proof is to find contradictory. That is, with V1 and V2, there
is at least one transaction included in a block produced hypotheti-
cally without measurement, say b ′i , and that is not included in the
corresponding actual block bi . We name this transaction by txl .
Since the measurement will only affect the transactions with Gas
prices lower than Y0, txl ’s Gas price must be lower than Y0.

Because of V 1, bi must be full. Thus, there must be a “victim”
transaction in the hypothetical world, say txh , that is included in bi
but is replaced by txl in b ′i . Because txh ’s Gas price is higher than
Y0 and is not affected by the presence of measurement, txh must
reside in the node’s mempool in the hypothetical world without
measurement.

Now, we can constitute a scenario in the hypothetical world that
Miner S is faced with two transactions in its mempool, txl and txh .
To make txl in the blockchain, S must prioritize txl (with Gas price
lower thanY0) over txh (with Gas price higher thanY0) tomine. This
contradicts with the property in Ethereum client implementations
(both Geth and Parity) that transactions of higher Gas price have
higher priority to be mined than those of lower Gas price. Note
that here both txl and txh have small enough Gas and can fit into
block bi under the block Gas limit. □

D MEASUREMENT RESULTS OF RINKEBY &
GOERLI
Table 9: Graph properties of the Rinkeby testnet

Measured
Rinkeby

ER (n=446,
m=15380)

CM BA (n=446,
l=69)

Diameter 4 2.7 4.6 2.0
Periphery
size

203 512.0 76.1 446.0

Radius 3 2.0 3.0 2.0
Center size 243 442.4 233.3 446.0
Eccentricity 3.455 2.008 3.4953 2.0
Clustering
coefficient

0.4375 0.1548 0.3407 0.3592

Transitivity 0.4981 0.1548 0.3589 0.3513
Degree as-
sortativity

-0.03202 -0.001536 -0.03275 -0.04555

Clique num-
ber

274775.0 150.6 383.2 82.5

Modularity 0.01063 0.08198 0.07332 0.05310

We similarly apply the TopoShot method to measure the
Rinkeby testnet. Compared with Ropsten, Rinkeby is more heav-
ily used and the mempools there contain more transactions. For
instance, on our local node M connected to Rinkeby, it is not un-
common that the mempool hasmore than 4500 transactions.We thus
estimate the median Gas price in the mempool (using the method
described in § 5.2.1) and use it as txC ’s Gas price.

Noteworthy is that during this measurement, we found when
our measurement nodeM sends future transactions (as in Step 2)

Table 10: Graph properties of the Goerli testnet
Measured
Goerli

ER (n=1025,
m=18530)

CM BA (n=1025,
l=36)

Diameter 5 3.0 5.1 3.0
Periphery
size

23 1025.0 31.3 866.3

Radius 3 3.0 3.0 2.0
Center size 115 1025.0 154.7 158.7
Eccentricity 3.775 3.0 3.911 2.845
Clustering
coefficient

0.0354 0.0355 0.1281 0.1380

Transitivity 0.09616 0.0354 0.1052 0.1374
Degree as-
sortativity

-0.1573 -0.0036 -0.0742 -0.0050

Clique num-
ber

134.49 416.8 1007.2 63.4

Modularity 0.048 0.132 0.125 0.084

to certain nodes in Rinkeby, these nodes return the same future
transactions back to nodeM . To avoid overloadingM with the fu-
ture transactions bounced back, we modify the Geth client running
onM to discard figure transactions received from other nodes.

We present the similar measurement metrics of Rinkeby with
Ropsten. The node degree distribution is in Figure 9 where node
degrees are distributed from 1 to 180. There are many nodes with
degree smaller than 15, and between degrees 15 and 180 the nodes
are evenly distributed. Graph statistics of Rinkeby, in comparison
with the three random graphs, are presented in Table 9, where the
measured testnet similarly shows most traits, such as with much
lower modularity, which implies the testnet’s higher resilience to
network partitioning. Particularly, there are many more cliques
found on Rinkeby than on the random graphs, which corroborates
the low modularity of the testnet and hardness to partition its
topology.

Compared with Ropsten, Rinkeby has a much larger center size
(more nodes in the center of the graph), a higher transitivity (more
likely the adjacent nodes are connected) and a lower-level modular-
ity (harder to partition the graph into densely connected modules).

We conducted a similar measurement study on Goerli, another
Ethereum testnet, and present results in node degree distribution in
Figure 10 and Figure 11, and graph statistical properties in Table 10.
Notably, there are nodes in the Goerli network that are globally
connected and are with very high degrees (e.g., more than 700
neighbors). It has a very low clustering coefficient (0.0354) com-
pared with those of Rinkeby (0.4375) and Ropsten (0.207). In terms
of modularity, Goerli (0.048) is comparably lower than Ropsten
(0.0605), and is much higher than Rinkeby (0.0106). This implies
that Rinkeby is the most resilient to network partitioning (in terms
of low graph modularity), and Ropsten is the least partitioning
resilient.

D.1 Visualization of Rinkeby & Goerli
Using the NetworkX tool [3], we detect the communities of the
Rinkeby and Goerli, respectively in Figures 8a and 8c. In Rinkeby,
there are four communities detected, and the biggest one (in green)
are of 33.9% of the nodes of the network. The average degree in the
community is 52.3, and 5.3% of the nodes (i.e., 8 out of 151 nodes)
only have a degree of 1. In Goerli, there are seven communities
detected, and the biggest one (in black) are of 24.6% of the nodes of
the network. The average degree in the community is 40.5, and 2%
of the nodes (i.e., 5 out of 252 nodes) only have a degree of 1.

IMC ’21, November 2–4, 2021, Virtual Event, USA Kai Li et al., Kai Li, Yuzhe Tang, Jiaqi Chen, Yibo Wang, and Xianghong Liu

1 22 54 83 109 134 157 180

Node degree

0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f

n
o
d
e
s

Figure 9: Degree distribution in
Rinkeby

0 10 20 30 40 50 60 71 81 91

Node degree

0

20

40

60

80

N
u
m

b
e
r

o
f

n
o
d
e
s

Figure 10: Node degree distribution in
Goerli

Figure 11: Nodes of large degree in Goerli
Degree range Count Degree range Count
100-150 12 150-200 3
200-300 4 300-500 3
697 1 711 1

We plot the geographical distributions of the Rinkeby and Goerli
testnets using GeoLite2 database service6. Figures 8b and 8d re-
spectively show the Rinkeby and Goerli nodes in a world map and
their connections. In both testnets, most nodes are located in the
United States, Europe, and East Asia. Particularly in Goerli, there
are a significant portion of nodes located in Australia.

E DISCUSSION ON THE IMPACTS OF EIP1559
In EIP1559, there are three fee components: a base fee that is auto-
matically set by the blockchain based on the recent block utilization,
a priority fee set by the sender and a max fee also set by the sender.
A transaction included in the blockchain always pays the base fee

(burnt) and pays the priority fees to the miner. It is also ensured
that the sum of the base fee and priority fee is lower than the max
fee.

Under EIP1559, the mempool uses the max fee to make admis-
sion/eviction decisions. Noteworthy is that when a pending trans-
action’s max fee is below the base fee (i.e., negative priority fee), the
transaction becomes underpriced and is dropped. Thus, in EIP1559,
as long as we ensure the max fee in measurement transactions (i.e.,
txA, txC , txO) is above the base fee, the measurement process is
not affected by the presence of EIP1559.

6(https://github.com/maxmind/GeoIP2-python

(https://github.com/maxmind/GeoIP2-python

	Abstract
	1 Introduction
	2 Preliminary
	3 Motivation: Significance of Knowing Blockchain Topology
	3.1 Implication to Blockchain Security
	3.2 Implication to Blockchain Performance

	4 Related Work
	4.1 TxProbe's Applicability to Ethereum

	5 TopoShot Measurement Methods
	5.1 Profiling Ethereum Clients' Behavior
	5.2 Measurement Primitive
	5.3 Parallel Measurement Framework

	6 Measurement Results
	6.1 Measurement Validation
	6.2 Testnet Measurement Results
	6.3 Mainnet Measurement Results
	6.4 Summary of Measurement Costs/Time

	7 Ethical Discussion
	8 Conclusion
	References
	A TxProbe's Applicability to Ethereum: Additional Details
	B Local Validations
	B.1 Local Validation of Serial Measurement

	C Measurement Extension for Non-interference
	C.1 Extending TopoShot with Non-interference Verification
	C.2 Non-interference Analysis

	D Measurement Results of Rinkeby & Goerli
	D.1 Visualization of Rinkeby & Goerli

	E Discussion on the Impacts of EIP1559

