

TopoShot: Uncovering Ethereum's Network Topology Leveraging Replacement Transactions

TX1. TX2. TX3

Kai Li Yuzhe Tang Jiaqi Chen Yibo Wang Xianghong Liu

Dept. of EECS, Syracuse University

Motivation: Why uncover Ethereum topology?

- Help understand Blockchain's security
 - Practical network attacks: e.g., eclipse attacks

 [SEC'15], single-point of failure, deanonymization attacks.
- Help understand Blockchain's performance
 - Mining efficiency and mining pools' quality of service (QoS), transaction relay service' QoS

Existing works focus on measuring Bitcoin[1], Monero[2]' topology. Measuring Ethereum is still an open problem.

Preliminary: Ethereum memory pool

- TX types nonce
 - o Included (TX1..3)
 - Pending (TX4..6)
 - o Future (TX8..10), not profitable
 - o Replacement: same nonce but diff. Gas price
- Memory pool policies
 - Replacement
 - new Gas price >= 110%
 - for faster inclusion and defending against spam attacks
 - Eviction
 - new Gas price > the lowest
 - for mining profit

Approach	Node M	Node A	Node B	Other nodes C		
	tx_{C} (Price: 0.1 GWei) 2 5120 tx_{O} + tx_{B} (0.095 GWei)	→ tx _C	$ \xrightarrow{tx_C} $ $ \xrightarrow{tx_B} $	$\longrightarrow _{tx_C}$		
	$35120 tx_o + tx_A (0.105 GWei)$ Local test	\rightarrow tx_A				
	*	TXC (0.1)				
17A (0.169) A						
M 77XA						

Testnets Results

Ropsten graph

- 588 nodes, 7496 edges
- Compared with random graphs(Erdos-renyi, Barabasi-Alber, etc.)
 - o fewer cliques and lower modularity.
 - more resilient to network partition attacks.

Similar results on other testnets (Rinkeby, Goerli).

	Measured Ropsten	ER (n = 588, m = 7496)	CM	BA (n = 588 l' = 26)
Diameter	5	3.0	5.2	3.0
Periphery size	36	293.5	24.9	509.4
Radius	3	3.0	3.0	2.0
Center size	36	293.5	51.7	78.6
Eccentricity	4.037	3.0	3.98	2.87
Clustering co- efficient	0.207	0.044	0.139	0.159
Transitivity	0.127	0.044	0.122	0.156
Degree assor- tativity	-0.1517	0.0026	-0.0664	-0.0181
Clique num- ber	60.75	250.3	557.4	50.6
Modularity	0.0605	0.161	0.152	0.102

Mainnet Results

- SrvR1 connects to all mining pools and other SrvR1 nodes.
- SrvR2 does not connect to any other services.
- All mining pools connect to the same pool and other pools.

Table 6: Connections among critical nodes

mempoo

TX4, TX5, TX6 TX8, TX9, TX10

Size: 5120

Туре	Conn.	Туре	Conn.
SrvR1- SrvM1	1	SrvM1- SrvM1	Х
SrvR1- SrvM2	1	SrvM1- SrvM2	✓
SrvR1- SrvM3	1	SrvM1- SrvM4	✓
SrvR1- SrvM4	✓	SrvM1- SrvM3	✓
SrvR2- SrvM1	Х	SrvM2- SrvM2	✓
SrvR2- SrvM2	Х	SrvM2- SrvM3	✓
SrvR2- SrvM3	Х	SrvM2- SrvM4	✓
SrvR2- SrvM4	Х	SrvM3- SrvM4	1
SrvR2- SrvR1	Х	SrvR1- SrvR1	1

Network	Size (# of	Cost (Ether)	Date	Duration
	nodes)	, ,		(hours)
Ropsten	588	0.067	Oct. 30, 2020	12
Rinkeby	446	2.10	Nov. 15, 2020	10
Goerli	1025	0.62	Oct. 20, 2020	20
mainnet	9	0.05858	May. 15, 2021	0.5

Summary

- 1. Toposhot is the first work uncovered Ethereum topology
- 2. Repurpose transaction eviction and replacement policies
- 3. Local validation shows a perfect precision and high recall
- 4. Interesting results on real Ethereum networks

References

- 1. Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton, Andrew Pachulski, Andrew Miller, and Bobby Bhattacharjee. TxProbe: Discovering Bitcoin's Network Topology Using Orphan Transactions. FC '19.
- 2. Tong Cao, Jiangshan Yu, Jérémie Decouchant, Xiapu Luo, and Paulo Veríssimo. 2020. Exploring the Monero Peer-to-Peer Network. FC '20.
- 3. Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse Attacks on Bitcoin's Peer-to-Peer Network. Usenix '15

Contact Info

- kli111@syr.edu
- ytang100@syr.edu