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ABSTRACT

This paper presents iBatch, a middleware system running on top
of an operational Ethereum network to enable secure batching of
smart-contract invocations against an untrusted relay server off-
chain. iBatch does so at a low overhead by validating the server’s
batched invocations in smart contracts without additional states.
The iBatch mechanism supports a variety of policies, ranging
from conservative to aggressive batching, and can be configured
adaptively to the current workloads. iBatch automatically rewrites
smart contracts to integrate with legacy applications and support
large-scale deployment.

For cost evaluation, we develop a platform with fast and cost-
accurate transaction replaying, build real transaction benchmarks
on popular Ethereum applications, and build a functional prototype
of iBatch on Ethereum. The evaluation results show that iBatch
saves 14.6% ∼ 59.1% Gas cost per invocation with a moderate 2-
minute delay and 19.06% ∼ 31.52% Ether cost per invocation with
a delay of 0.26 ∼ 1.66 blocks.
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• Security and privacy → Security protocols; • Software and

its engineering→ Ultra-large-scale systems.
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1 INTRODUCTION

The recent paradigm shift to building decentralized applications
(DApps) on blockchains has nurtured a number of fast-growing
domains, such as decentralized finance (DeFi), decentralized on-
line gaming, et al. that have the potential of disrupting conven-
tional business in finance, gaming, et al. The core value brought by
DApps is their decentralized system architecture that is amendable
to tackle the mistrust crisis in many security-oriented businesses
(e.g., “trusted” authorities are constantly caught misbehaving). How-
ever, despite the attractive trustless architecture and moderate pop-
ularity in practice, an impediment to DApps’ broader adoption is
their intensive use of underlying blockchain and the associated
high costs. Ethereum [13], the second largest blockchain after Bit-
coin and the most popular DApp platform, charges a high unit
cost for data movement (via transactions) and for data processing
(via smart-contract execution). For instance, sending one-megabyte
application data to Ethereum costs 17.5 Ether or more than 25, 000
USD (at the exchange rate as of Jan. 2021), which is much more ex-
pensive than alternative centralized solutions (e.g., cloud services)
and has scared away customers (e.g., Binance [21]).

Towards cost-effective use of blockchains, existing research
mainly tackles the problem from the angle of designing new proto-
cols at blockchain layer one (i.e., redesigning the consensus protocol
and building a new blockchain system [29, 32]) and at layer two (i.e.,
by offloading the workload from the blockchain to off-chain clients,
such as in payment channel networks [19, 26, 28, 38]). However,
these new protocols are designed without the legacy platform of an
operational blockchain and deployed DApps in mind and result in
unsatisfactory deployability: For instance, existing protocols either
require bootstrapping a brand new blockchain network (as in the
layer-one approach) or develop from scratch the on-chain and off-
chain components of a DApp (i.e., to support payment networks).
As a result, there is a lack of adoption of these protocols among
legacy DApps at scale.

This work aims at optimizing legacy DApps’ use of expensive
Ethereum blockchain and achieving cost effectiveness. Towards
the goal, we focus on designing a middleware system on top of an
unmodified Ethereum network and DApp clients. We also develop
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software tools to facilitate integrating the middleware with legacy
DApps’ smart contracts.

To motivate our approach, consider a typical DApp architecture
where a DApp client holding an Ethereum account sends a transac-
tion on the Ethereum blockchain to invoke a smart-contract func-
tion there. A typical DApp’s smart contract runs event-driven logic,
and a popular DApp would receive a “large” number of “small” invo-
cations: 1) An individual invocation is often with a small amount of
data and triggers few lines of smart-contract code; think as an exam-
ple the transfer() function in an ERC20 token smart contract. 2)
A popular DApp features an intensive stream of invocations that ar-
rive at a high rate. This workload characteristic holds over time, as
we verified on various Ethereum traces (see the IDEX trace in § 2.1
and Chainlink/Binance (BNB)/Tether traces in § 6), and it is also
corroborated by external Ethereum exploration services [12, 15].
The workload with a high rate of small invocations renders the
transaction fee a significant cost component that alone is worth
optimization. To optimize the transaction fee, a natural idea is to
batch multiple smart-contract invocations in a single transaction so
that the fee can be amortized [1, 30]. For instance, under Ethereum’s
current block limit, one can theoretically batch up to 20 normal
invocations in a transaction, leading to a potential fee reduction by
1
20×. By this promise, invocation batching has long been craved for
among Ethereum developers, evidenced by a number of Ethereum
Improvement Proposals (EIPs) [6, 7, 20]. Despite the strong interest,
it still lacks real-world support of invocation batching in Ethereum,
as these EIPs are not made into production after years of discussion.
We believe this unsatisfactory status is due to the design challenges
raised by the tradeoff among batching’s security, cost-effectiveness
and timeliness (short delay), as presented next.

Batcher 

service

Dispatcher

Requests

Batch 

transaction

Caller accounts

Callee smart 

contracts

Internal calls*

On the blockchainOff the blockchain

Call validator

Access control

Figure 1: Batching smart-contract invocations in Ethereum:

Note that the Dispatcher can be a standalone smart contract

or be a function inlining the callee function; in the latter

case, the “internal call
∗
” is straight-line code execution.

Challenges: First, Ethereum does not have native support of batch-
ing in the sense that an Ethereum transaction transfers Ether from
one account to another account. This is different from Bitcoin and
other blockchains whose transaction can encodemultiple coin trans-
fers. This difference renders the existing architectures to batch
transfers in non-Ethereum blockchains [1, 24, 31, 37, 39] inappli-
cable to batch invocations on Ethereum. To address the challenge,
we introduce two intermediaries between a caller account and a
callee smart contract. As depicted in Figure 1, they are a relay ser-
vice off-chain, called Batcher, and an on-chain component, called
Dispatcher. The Batcher’s job is to batch multiple invocation
requests sent from the caller accounts and send them in a single
transaction to the Dispatcher, which further unmarshalls the orig-
inal invocations and relays them individual to the intended callee
smart contracts.

Second, the off-chain Batcher service need not be trusted by
the callers (who, in a decentralized world, are reluctant to trust
any third-parties beyond the blockchain). Defending against the
untrusted Batcher incurs overhead that may offset the cost saving
from batching and instead result in net cost increases. Specifically,
in our threat model, the adversarial Batcher is financially incen-
tivized to mount attacks and to modify, forge, replay or omit the
invocation requests in the batch transaction; for instance, replaying
a transfer() of an ERC20 token can benefit the receiver of the
transfer. To defend against the threat, a baseline design is to run the
entire transaction validation logic in the trusted Dispatcher smart
contract on-chain, which bloats the contract program and incurs
overhead (e.g., to maintain additional program states). Our evalu-
ation study in Technical Report [40] shows this baseline denoted
by B2 increases the net cost per invocation rather than decreasing
it. For secure and cost-effective batching, we propose a security
protocol that allows off-chain DApp callers in the same batch to
jointly sign the batch transaction so that the additional program
states (e.g., the per-account nonces as a defense to replaying attacks)
can be offloaded offline and the Dispatcher smart contract can be
stateless, rendering low overhead and positive net cost savings.

Third, batching requires waiting for enough invocations and can
introduce delay to when the batched invocations are included in
the blockchain. For the many DApps sensitive to invocation timing
(e.g., real-time trading, auctions and other DeFi applications), such
delay is undesirable. To attain delay-free batching, we propose to
use the transaction price to the rescue. Briefly, Ethereum blockchain
admits a limited number of transaction per block and prioritizes the
processing of incoming transactions with a higher “price” (i.e., the
so-call Gas price which is the amount of Ether per computation unit
paid to miners). Thus, our idea is to generate a batch transaction
with a higher price so that it can be included in the blockchain more
quickly, and this saved time can offset the waiting time caused by
batching, resulting in an overall zero delay in blockchain inclu-
sion. We propose an online mechanism to conservatively batch
invocations originally in one block and carefully set Gas price of
batch transactions with several heuristics to counter the limited
knowledge in online batching.
Systems solutions: Overall, this work systematically addresses
the challenges above and presents a comprehensive framework,
named iBatch, that incorporates the proposed techniques under
one roof. iBatch includes the middleware system of Dispatcher
and Batcher and a series of policies that configure the system to
adapt the batching to specific DApps’ workloads. Concretely, the
middleware system exposes knobs to tune the batching in timing
(how long to wait for invocations to be batched), target invocations
(what invocations to batch) and other conditions. Through this,
policies that range from conservative to aggressive batching are
proposed, so that the system can be tailored to the different needs of
DApps. For instance, the DApps sensitive to invocation timing can
be best supported by the conservative batching policy with minimal
delay. Other DApps more tolerable with delays can be supported by
more aggressive batching policies, which result in a higher degree of
cost saving. We demonstrate the feasibility of iBatch’s middleware
design by building a functional prototype with Ethereum’s Geth
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client [16]. Particularly, we statically instrument Geth to hook the
Batcher’s code.

We further address the integration of iBatchwith legacy DApps
and the operational Ethereum network by automatically rewrit-
ing their smart contracts. Briefly, with batching, the internal calls
are sent from Dispatcher (instead of the original caller account),
which makes them unauthorized access to the original callee, lead-
ing to failed invocations. In iBatch, we propose techniques to
rewrite callee smart contracts, particularly their access-control
structure to white-list Dispatcher. We acknowledge the recent
Ethereum development EIP-3074 [8], which, if made into an op-
erational Ethereum network, will facilitate iBatch’s integration
without rewriting smart contracts (discussed in § 5 and full details
in Technical Report [40]).
Systematic evaluation: We systematically evaluate the invoca-
tion cost and delay in iBatch, under both real and synthetic work-
loads. First, we build a fast transaction-replay engine that executes
transactions at a much higher speed than the transactions are orig-
inally included in the blockchain. This allows us to conduct large-
scale measurements, say replaying a trace of transactions that last
for months in real life within hours in the experiments. Second,
we collect the trace of transactions/calls under four representative
DApps, that is, IDEX [33] representing decentralized exchanges
(DEX), BNB [4] and Tether [22] for tokens, and Chainlink [3] for
data feeding. From there, we build a benchmark of traces that can be
replayed in our platform. Third, we conduct extensive evaluations
based on the developed platform (i.e., replay engine, benchmarks,
and prototype we built). The target performance metrics are the
system’s costs (in terms of Ether and Gas) and delays between
invocation submission time and block inclusion time.

The result under the BNB-token/IDEX/Chainlink trace shows
that iBatch configured with a time window of 120 seconds to batch
all invocations can save around 50%/24%/17.6% of the Gas per
invocation of the unbatched baseline. For delay-sensitive DApps,
as evaluated under the workloads of Tether tokens, iBatch saves
19.06% (31.52%) cost at the expense of a delay of 0.26 (1.66) blocks.
Contributions: This work makes the following contributions:
• Security protocol: We design a lightweight security protocol for
batching of smart contract invocations in Ethereum without trust-
ing third-party servers (i.e., the Batcher). The security protocol
defends against a variety of invocation manipulations. New tech-
niques are proposed to jointly sign invocations off-chain and vali-
date invocations on-chain without states against replay attacks.
• Cost-effective systems: We design a middleware system imple-
menting the above protocol and propose batching policies from
conservative to aggressive batching. Particularly, we propose an
online mechanism to optimize the cost without delaying invoca-
tion execution. We further address the integration with the current
Ethereum client by automatically rewrite smart contracts.
• Systematic evaluation: We built an evaluation platform for fast and
cost-accurate transaction replaying and constructed transaction
benchmarks on popular Ethereum applications. With a functional
prototype of iBatch, we conduct extensive cost evaluations, which
shows iBatch saves 14.6% ∼ 59.1% Gas cost per invocation with

a moderate 2-minute delay and 19.06% ∼ 31.52% Ether cost per
invocation with a delay of 0.26 ∼ 1.66 blocks.

Overall, this work tackles the design tradeoff among security,
cost-effectiveness and delays in batching invocations. While the
implementation and evaluation in this work are on Ethereum, we
believe the design tradeoffs and principles are directly applicable
to Ethereum forks (e.g., Binance smart chain [2]) and generalizable
to other smart-contract platforms [10].
Roadmap: Section § 2 formulates the research. § 3 presents the
iBatch’s security protocol. iBatch’s batching policies are described
in § 4. § 5 presents the smart-contract rewriters to facilitate iBatch’s
integration with legacy smart contracts. § 6 shows the evaluation
results in cost and invocation delay. Related works are described in
§ 7 and conclusion in § 8.

2 RESEARCH FORMULATION

2.1 Motivating Example

We use a real-world scenario, namely IDEX [5, 33], to motivate
our work. IDEX is a decentralized exchange protocol that allows
owners of different ERC20 tokens to exchange their tokens at the
preferred price/volume. Consider that account Alice sells her tokens
mToken to another account Bob in return of his tokens tToken. To
do so, Alice makes an order to be taken by Bob, and Alice (Bob)
is called a maker (a taker). The IDEX protocol is executed among
six Ethereum accounts include a maker account, a taker account,
maker’s token contract mToken, taker’s token contract tToken, the
core IDEX smart contract IDEX1 [18], and IDEX1’s off-chain owner
IDEX2 [9]. The protocol execution is depicted and described in
Figure 2a.

In particular, there are four types of transactions in IDEX that
invoke smart contracts, that is, maker’s (taker’s) call to approve
her (his) token contract (i.e., 1 and 1’ ), maker’s (taker’s) call to
deposit to IDEX1 (i.e., 2 and 2’ ), IDEX2’s call to trade on IDEX1
(i.e., 4 ), and maker’s (taker’s) call to withdraw (i.e., 5 ). Among
the transaction-triggered external calls, trade is most intensively
invoked. As we examine the Ethereum history via Ethereum-ETL
service on Google BigQuery [11], 61.59% of the invocations received
by the IDEX1 contract from its launch on Sep. 27, 2017 to Feb. 23,
2019 are on trade().1 More importantly, the trade invocations

are so intensively issued that many of them wind up in the same

Ethereum block. We measured the number of trade calls in the
same Ethereum block, on the call trace above. Figure 2b plots the
cumulative distribution of Ethereum blocks by the per-block call
number. For instance, about 30% of Ethereum blocks have more
than one trade calls in them, 5% of blocks have more than four
trade calls, and 0.36% of blocks have 20 trade calls. If one batches
the 20 trade invocations of these Ethereum blocks into a single
transaction, the transaction fee can be reduced to 1

20 , although it
may incur additional costs for smart-contract execution. In general,

1 We did not take the IDEX transactions after Feb. 2019 when IDEX’s traffic started to
decline and was then shadowed by other more popular DEX, such as Uniswap [23].
Here, we stress that although our IDEX’s trace ends in Feb. 2019 (as of this writing
in May 2021), Ethereum’s transaction rate steadily increases over time. Particularly,
recent years see drastic rate growth as Ether price soars since early 2020. This is verified
by the more recent traces we collected in 2020, such as Chainlink and Tether tokens,
as in the cost evaluation in § 6, and also corroborates external Ethereum exploration
websites [12, 15].
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Figure 2: IDEX protocol and call distribution over blocks. The protocol execution in Figure 2a involves five steps: 1)

The maker deposits her tokens to IDEX1, which invokes three functions: 1 maker.approve(), 2 maker.deposit() and 2a

IDEX1.transferFrom(maker,DEX1). 2) The taker similarly deposits his tokens by issuing 1’ taker.approve(), 2’ taker.deposit()
and IDEX1.transferFrom(taker,DEX1) (not shown in the figure). 3) Themaker and taker sends their respective selling and buy-

ing orders ( 3 and 3’ ) to the off-chain IDEX2, who match-make orders in an order-book. 4) The owner IDEX2 calls contract

IDEX1’s function trade(taker,maker) ( 4 ) to execute the trade on-chain. 5) The maker issues withdraw ( 5 ) which further sends

transfer() calls ( 5a ) to tToken contract. Similarly, the taker can submit calls to withdraw her tokens ( 5’ ). The icons used in

the figure are by www.freepik.com.

for blocks with X trade calls, one can batch the calls into one
transaction, leading to an X -fold fee reduction. By plugging into
X the measurement results in Figure 2b, we can expect the overall
fee-saving in the case IDEX to be 10.7%. This is the saving from
trade calls only. Note that because the original trade calls are
in the same block, batching them in a single transaction does not
introduce additional delay/inconsistency.

Generally, there are four types of batching strategies: Type S1)
Batch invocations of the same caller and same callee, such as all
trade calls from the same caller (IDEX2) and sent to the same
callee smart contract (IDEX1), S2) batch invocations of different
callers and the same callee, such as all the deposit calls, S3) batch
invocations of the same caller and different callees, and S4) batch
invocations of different callers and different callees, such as the
approve calls in IDEX. We mainly consider the general case of S4
in the paper and tailor the system to other invocation types in § 4.

2.2 Threat Model

Recall the system model in Figure 1 that introduces the Batcher
and Dispatcher, as two intermediaries between caller accounts
and callee smart contracts. For generalizability, our threat model
considers an untrusted third-party Batcher. For instance, in the
case of IDEX, the Batcher can batch approve, deposit and trade,
and does not require the trust from their callers. The third-party
Batcher can mount attacks to forge, replay, modify and even omit
the invocations from the callers. Our model assumes unmodified
the trust relationship among callers; for instance, if there is a coun-
terparty risk between a maker account and a taker account in the
vanilla IDEX, the same trust remains in iBatch.

The smart contracts, including both Dispatcher and application
contracts, are trusted in terms of program security (no exploitable
security bugs), execution unstoppability, etc. We also make a stan-
dard assumption on blockchain security that the blockchain is im-
mutable, fork-consistent, and Sybil-secure. The underlying security
assumption is that a deployed blockchain system runs among a
large number of peers with an honest majority, and compromising
the majority of peers is hard. This work is built on Ethereum’s smart
contracts, cost model, and transaction model. It treats Ethereum’s
consensus and underlying P2P networks as a blackbox.

2.3 Design Goals & Baselines

The design goal of iBatch is this: Through batching invocations,
there should be a significant portion of the transaction cost saved (1.
cost saving) for calling generic smart contracts (2. generalizability),
while staying secure against the newly introduced adversary of
off-chain Batcher (3. security). Specifically, the cost-saving goal
is to reduce a significant portion of the Gas cost per invocation,
via batching calls under the constraint of maximal transaction size.
The generalizability goal is that the system should work with the
general case of Batch Type S4. The security goal is to detect and
prevent attacks mounted by the untrusted Batcher and protect the
integrity of invocation information.

There is limited research on batching smart-contract invocations.
In Table 1, we compare iBatch’s research goal with the two baseline
designs (covering the existing research, e.g., Airdrop batching [30]),
which we will describe next.

www.freepik.com
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Table 1: iBatch’s design choices and related works

Generalizable Cost Saving
Baseline B1 ✗ ✗

Baseline B2 ✓ ✗

iBatch ✓ ✓

Baseline B1: This baseline design of batching considers a special
case. Suppose account A is about to transfer tokens to N other ac-
counts B1,B2, . . . ,BN . Instead of sending N transactions, account
A can set up a smart contract C and send one transaction to C that
sends the N transfers (e.g., by calling solidity’s transfer() func-
tion N times) in one shot. This is essentially the batching scheme
used in existing works [30] for airdropping tokens (a common
practice to give away free tokens [17]). While this scheme handles
the case of a single sender A, it can be naturally extended to sup-
port multiple senders A1,A2 . . . . In this case, multiple senders calls
approve to delegate their account balance to a smart contract C
before C can batch-transfer tokens to multiple receivers.

Overall, this batching scheme is limited as it depends on ERC20
functions (approve/transfer). Also, it does not necessarily lead
to cost saving, as each transfer still incurs at least one transaction
(i.e., approve).

3 THE IBATCH SECURITY PROTOCOL

This section presents the design rationale, protocol description, its
security analysis (sketch), and the resultant system design. We defer
the full protocol analysis to § A.

3.1 Design Space: Security-Cost Tradeoff

Batching framework: We start by describing the design frame-
work to support batching of invocations to generic smart contracts.
In this framework, the Batcher batches a number of invocation
requests and sends them in a batch translation to the Dispatcher
smart contract. The Dispatcher extracts the invocations and relays
them to the callee smart contracts.

In our threat model, the Batcher mount invocation-
manipulation attacks. To prevent a forged invocation, the
Dispatcher verifies the signatures of the original callers.

Baseline B2: To prevent replaying an invocation, a baseline
design (B2) is to elevate a blockchain’s native replay protection into
the smart-contract level. Specifically, existing blockchain systems
defend against transaction replaying attacks by maintaining certain
states on blockchain and check any incoming transaction against
such states to detect replay. For instance, Ethereum maintains a
monotonic counter per account, called nonce, and checks if the
nonce in any incoming transaction increments the nonce state
on-chain; a false condition implies replayed transaction. Bitcoin
maintains the states of UTXO to detect replayed transactions.

In B2, we implement per-account nonces in the Dispatcher
smart contract and use them to check against incoming invocations,
in order to detect replayed invocations.

A cost observation: In our preliminary cost evaluation on
Ethereum, we found a sweet spot that the batching framework with-

out replay protection can lead to positive cost saving, while adding

the baseline design (B2) of replay protection end up with a negative

cost saving. That is, the overhead of maintaining nonces in smart
contracts in B2 offsets the cost saving by batching invocations.

Thus, in iBatch, we avoid placing nonces in Dispatcher and
focus on an off-chain defense against invocation replaying. With
an untrusted Batcher, we assume every caller is online for an ex-
tended period that covers the batch time window its invocation
is submitted. We propose an off-chain protocol in which callers
interactively sign a batch transaction. Note that there is an alter-
native design that callers audit batch transactions after they are
acknowledged from the blockchain; however, the audit scheme does
not prevent (only detects) a replayed invocation.

3.2 Protocol Description

The protocol supports the general-case batching, that is, batching
Type S4 invocations. Suppose in a batch time window, there are N
invocations submitted from different callers. The iBatch protocol
follows the batching framework described above and it works in
the following four steps:

1) In the batch time window, a caller submits the i-th invocation
request, denoted by calli , to the Batcher service. As in Equation 1,
the request calli contains the caller’s address/public key accounti ,
callee smart contract address cntri , function name funci , and
argument list argsi . With i ∈ [1,N ], there are N such invocations
in the time window.

2) By the end of the batch time window, the Batcher prepares a
batch message bmsg and sends it to the callers for validation and
signing. As shown in Equation 2, message bmsg is a concatena-
tion of the N requests, calli ’s, their caller nonces noncei ’s, and
Batcher account’s nonce, nonceB. Then, the Batcher broadcasts
the batch message bmsg in parallel to all N callers of this batch.
Each of the callers checks if there is one and only one copy of its
invocation call1 in the batch message; specifically, this is done by
checking equality between nonce1 in the batch message and the
nonce maintained locally by the caller. After a successful check
of equality, the caller signs the message bmsg_sign, that is, bmsg
without callers’ nonces as shown in Equation 3. The caller signs
bmsg_sign using the private key in her Ethereum account. She
then sends her signature to the Batcher. This step finishes until all
N callers have signed the message and return their signatures to
the Batcher.

3) Batcher includes the signed batch message in a transaction’s
data field and sends the transaction, called batch transaction, to
be received by the Dispatcher smart contract.This is presented in
Equation 4 where CA is the address of smart contract Dispatcher.

∀i , calli = ⟨accounti , cntri , funci , argsi ⟩ (1)
bmsg = call1 ∥nonce1 ∥call2 ∥nonce2 ∥ . . .

∥callN ∥nonceN ∥nonceB (2)
bmsg_sign = call1 ∥call2 ∥ . . . ∥callN ∥nonceB (3)

∀i , sigi = siдnaccounti (bmsg_sign)

bsig = sig1 ∥sig2 ∥ . . . ∥sigN

data = ⟨dispatch_func, bmsg_sign∥bsig⟩

tx = ⟨accountB, nonceB, CAD,

sigB, value, data⟩ (4)
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Figure 3: Generation of batch transaction off-chain among

Batcher and two caller accounts

On the blockchain, 4) in function dispatch_func, smart con-
tract Dispatcher parses the transaction and extract the origi-
nal invocations calli before forwarding them to callees, namely
cntri and funci . Particularly, smart contract Dispatcher inter-
nally verifies the signature of each extracted invocation against
its caller’s public key; this can be done by using Solidity function
ecrecover(calli , sigi , accounti ). If successful, the Dispatcher
then internal-calls the callee smart contract. At last, the callee func-
tion executes the body of the function under the given arguments
argsi .

An example: Figure 3 shows an example of the interactive sign-
ing process, which involves N = 2 callers respectively sending two
invocations. The process is executed in five messages among the
two callers and the Batcher off-chain.

3.3 Security Analysis (Sketch)

The iBatch protocol achieves invocation integrity against mali-
cious Batcher. Specifically, it prevents the Batcher from forging or
replaying a caller’s invocation in a batch transaction. It also ensures
the Batcher’s attempt to omit a caller’s invocations can be detected
by the victim caller. In addition, iBatch can be extended to prevent
a denial-of-service caller from delaying a batch. iBatch assumes
the availability of Batcher which is reasonable on today’s highly
available platforms (e.g., clouds). Briefly, the security proof is due
to the following intuition: The hardness of forging/replaying invo-
cations and the hardness of omitting invocations without detection
in iBatch can be reduced to the unforgeability of digital signatures
and the hardness of double-spending attacks in the underlying
blockchain. The full protocol security analysis is in Appendix A.
3.4 System Overview

To materialize the protocol, we design a middleware system atop
the underlying Ethereum-DApp ecosystem. Specifically, the sys-
tem runs the Batcher middleware on an Ethereum node (e.g., a
Geth client) that is synchronized with an Ethereum network. The
Dispatcher smart contract runs on the Ethereum network and
forwards invocations to the callee smart contracts.

The off-chain Batcher is a middleware running on an untrusted
third-party host. In general, the Batcher buffers incoming invoca-
tions submitted by callers and under certain conditions (as described
below) triggers the batching of invocations. Once a batch of invoca-
tions is determined, the Batcher jointly works with original callers
to generate the batch transaction (as described by the joint-signing
process in § 3.2).
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Figure 4: Retrofitting iBatch to Ethereum-based DApps:

The right-hand side of this figure illustrates the general

mechanism where the two dark shades are the core system

components of iBatch, and the light shade is a statically in-

strumented Ethereum full node (running Geth).

Implementation: To transparently support unmodified DApp
clients, we statically instrument Geth’s handling of raw trans-
actions and expose hooks to call back the Batcher’s code that
makes decisions on batching, as will be described next. Specifi-
cally, the instrumented Geth node unmarshalls a raw transaction
received, extracts its arguments, places it in Batcher’ internal
buffer (e.g., bpool as will be described) and makes essential de-
cisions regarding which invocations to be included in the next
batch transaction before actually generating and sending it (as de-
scribed above). The statically instrumented Geth node retains the
same sendRawTransaction()/sendTransaction() API and thus
supports unmodified DApp clients.

Next in § 4, we propose policies for Batcher’s decision-making
that strikes a balance between costs and delay. To integrate iBatch
with legacy smart contracts, we propose schemes to automatically
rewrite smart contracts at scale, which is described in § 5.

4 BATCHER’S POLICIES

In this section, we proposemechanisms and policies for the Batcher
to properly batch invocations for design goals in cost and delay. We
first formulate the design goal of optimizing Gas cost per invocation
in the presence of the workload. We then formulate the design goal
of reducing Ether cost per invocation without causing delay to
when the invocation is executed on Ethereum.
4.1 Optimizing Gas Cost

The degree of amortizing the cost by iBatch is dependent on the
number and type of invocations put in a batch. In this subsection,
we propose a series of policies that the Batcher can use in practice.
The motivating observation is that there is no single policy that
fits all (workloads), and under different workloads, the most cost-
effective policy may differ.

Note that the cost unit we consider here is Gas per invocation
(which measures the amount of computational load an Ethereum
node needs to carry out to serve an invocation). The proposed
policies may cause invocation delay, and the policies are suitable
for DApps that are insensitive to such delay.

• PolicyW sec: Batching all invocations that arrive in a time

window, sayW seconds. In practice, the largerW it is, the
more invocations will end up in a batch and hence the lower
Gas each invocation is amortized. However, a largerW value
means the Batcher needs to wait longer, potentially causing
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inconsistency and delay of invocation execution. We will
systematically study the cost-delay tradeoff when taking
into account the factor of Gas price in § 4.2.

• Policy Top1: Batching only the invocations that are sent from
one account, such as the most intensive sender. The motivation
for doing this is that if all invocations needed batching are
from one sender account, the batch transaction (of multiple
invocations) only needs to be verified for once, thus elimi-
nating the needs of verifying signatures in smart contracts
and lowering the overhead.
In practice, Top1 can be toggled on top of aW sec policy. For
instance,X second-Top1means batching only the invocations
that arrive in aW -second window and are from the most
intensive sender in that window.
Whether the presence of Top1 batching policy can actually
lead to positive Gas saving is dependent on workloads. If
there is an institutional account sending invocations much
more intensive than others, applying Top1 can lead to suffi-
cient invocations in a batch and positive Gas saving. Other-
wise, if the workload does not contain enough such invoca-
tions, the batch may be smaller than the one without Top1,
which limits the degree of cost amortization.

• Policy MinX : Only batch when there are more than X candi-

date invocations in a batch time window. The intuition here is
that if there are too few invocations, the degree of cost amor-
tization may be too low and can be offset by the batching
overhead to result in negative cost saving. In the Technical
Report [40], we conduct cost analysis based on Ethereum’s
Gas cost profile on different transaction operations and de-
rive the minimal value of X should be 5. That is, a batch is
only beneficial when it has at least 5 invocations.

4.2 Optimizing Ether Cost with Minimal Delay

In this subsection, we consider a class of DApps, notably DeFi ap-
plications, that are sensitive to invocation timing. In these DApps,
manipulating invocation timing or introducing invocation delay
may cause consequences ranging from DApp service unrespon-
siveness to security damage (e.g., under the front-running attacks).
Thus, we formulate the design goal to be optimizing Ether cost per
invocation without introducing any invocation delay. We call the
no-delay policy described in this subsection by 1block. Note that
in Ethereum, the Ether cost of a transaction is the product of the
transaction’s Gas and its Gas price.

Assume an oracle who can predict what invocations are included
in a block (without batching) at the time when the invocations
are submitted. An ideal, optimal offline algorithm is to batch the
invocations in a future block and generate a batch transaction. If
the Gas price of the batch transaction is set to be higher than at
least one transaction in that future block, it is bound the batch
transaction can be included in the same block with the unbatched
case. In other words, no block delay is introduced. We call this
approach by offline optimal batching as an ideal scheme.

In practice, the Batcher at the invocation submission time may
not accurately predict when a block will be found and which block
will include the invocation. We propose a realistic, online batching
mechanism to reduce or eliminate the block delay.

Online batching w. minimal delay (1block): We propose a
system design of Batcher atop an Ethereum client extending its
memory pool (or txpool) functionality. We call this design by
1block. We first describe the proposed system design and then
decision-making heuristics. In a vanilla Ethereum client, a transac-
tion is first buffered inmemory (in a data structure called txpool), is
then selected (by comparing its Gas price against other transactions
in the txpool) by miners, and is included in the next block.

In iBatch, the Ethereum client running on Batcher is extended
with an additional memory buffer that we call bpool and that stores
submitted invocations prior to the batch transaction.

The Batcher service continuously receives the submitted invo-
cations of registered DApps and buffers them into the bpool. To
manage and evict invocations, the service periodically runs the
following process: Every time it receives a block, the service waits
for d seconds and then executes Procedure bpoolEvict which pro-
duces a batch transaction to send to the Ethereum network. More
specifically, the bpoolEvict procedure reads as input the transac-
tions residing in the txpool and the invocations residing in the
bpool. The procedure produces a batch transaction encoding se-
lected invocations to be sent to the Ethereum network. There are
two essential decisions to make by Procedure bpoolEvict: C1)
What invocations to be evicted from bpool and to be put in the
batch transaction. It also needs to decide C2) What Gas-price value
should be set on the batch transaction.

In addition to C1 and C2, the batching mechanism can be config-
ured by d , that is, how long it waits after a received block to run
Procedure bpoolEvict. In the following, we describe a series of
policies to configure C1), C2) and d of the Batcher.

Example: We show an example process illustrated in Figure 5:
It shows the timeline in which bpool on the Batcher operates and
interacts with the remote Ethereum network. At the beginning (0-th
second), the Batcher receives a block B0 of 2 transactions, which
evicts the 2 transactions from txpool and leaves it of 10 transac-
tions. Also assume there are 10 invocations in the bpool in the
beginning. On the d = 10-th seconds, the service runs bpoolEvict
which results in a batch transaction of 3 invocations. It sends the
batch transaction to the Ethereum network. As the Gas price of the
batch transaction is high, it will be selected by the miners in the re-
mote Ethereum network upon the next block B1 being propagated,
say on the 13-th second. If the next-next block B2 is found on the
20-th second, the batch transaction will be included in B2.

Heuristics: For C1), we propose to select the invocations in the
bpool that have higher Gas price than h such that the total Gas
of transactions (and invocations) whose prices are higher than h
is under the block limit. Moreover, the total Gas of transactions
whose prices are higher than h − 1 is above the block limit.

For C2), a baseline is to set a fixed Gas price for every batch
transaction, which does not reflect the price distribution in the
current batch/block and can lead to excessive cost. We propose
“dynamic” Gas pricing policieswhere the price of a batch transaction
is dynamically set to ensure low Ether cost yet without delaying
the block it will be included. We propose two policies:

• Policy Batch-X%: The Gas price of a batch transaction is
set to be above X% of the invocations in the batch.
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Figure 5: An example process of running bpool and its evic-

tion on Batcher.

• Policy Block-X%: The Gas price of a batch transaction is
set to be above X% of the transactions in the block (also
including the invocations in the batch).

For instance, suppose there are 7 regular transactions included
in a block and a batch transaction which consists of 3 invocations.
The three invocations are associated with prices 8, 9 and 10, and the
7 regular transactions’ Gas prices are 1, 2 . . . 7. With policy batch-
50%, the batch transaction’s price is 9. With policy block-10%, the
batch transaction’s price is 1.

5 INTEGRATING IBATCH WITH LEGACY

SMART CONTRACTS

1 // original functions

2 contract Token {

3 ...

4 modifier noBlacklisted {

5 assert (! isBlackListed[msg.sender ]);_;}

6 function transfer(address to, unit256 value) noBlacklisted {

7 super.transfer(to,value);

8 balances[msg.sender] = SafeMath.safeSub(balances[msg.sender],

value);

9 balances[to] = SafeMath.safeAdd(balances[_to], value);}

10 // rewritten functions by iBatch

11 modifier noBlacklistedByD(address from) {

12 assert (! isBlackListed[from]);}

13 function transferByD(address from , address to,unit256 value)

14 noBlacklistedByD ( from ) {

15 as se r t (msg . sender != dispatcher ) ;

16 super.transferByD(from ,to,value);

17 balances[from]= SafeMath.safeSub(balances[from],value);

18 balances[to]= SafeMath.safeAdd(balances[to],value);

19 }}

Listing 1: Rewriting application smart contract: The

example of rewriting an ERC20 token.

Running iBatch with unmodified smart contracts on today’s
Ethereum clients (as of this writing in May 2021) would fail because
the unmodified smart contracts do not authorize the unmarshalled
invocations sent from Dispatcher account.

Thus, iBatch’s integration with a legacy Ethereum platform
entails either rewriting DApps’ smart contracts (e.g., to whitelist
Dispatcher) or patching the Ethereum Virtual Machine (EVM) in-
side an Ethereum client. For the latter, we notice a recent Ethereum

development EIP-3074 [8], which would allow Dispatcher to send
an invocation with msg.sender remaining the original caller’s ac-
count. This EIP, currently in progress, if made into the future EVM,
would make it possible to directly integrate iBatch with an oper-
ation Ethereum network without rewriting smart contracts. We
discuss details in Technical Report [40].

In this section, we focus on the current EVM platform and pro-
pose smart-contract rewriters. We describe a source-code rewriter
in the next paragraph, while leaving the proposed bytecode rewriter
to Technical Report [40].
Source-code rewriter: We rewrite the solidity code of a smart
contract to whitelist the Dispatcher account, as follows. Given
an application smart contract bar, we create a new contract say
barByD to inherent contract bar. We rewrite each function that con-
tains references to msg.sender: Given such a function foo(type
original_args) in contract bar, we add in contract barByD a
new function fooByD(address from, type original_args).
1) In this new function, a new argument from is added in function
fooByD. The function body in fooByD() is the same with foo(),
except for three modifications: 2) References msg.sender in foo()
are replaced by argument from in fooByD(). 3) The first code line
in fooByD() asserts if the function caller is Dispatcher. 4) For any
functions of bar that are called inside foo, the function invocation
is rewritten to add a new argument from. In particular, this includes
the case of modifier functions in solidity. Listing 1 illustrates the
example of rewriting transfer() in an ERC20 token contract.
6 EVALUATION

This section presents the evaluation of iBatch. We report iBatch’s
performance (cost and delay) in comparison with the unbatched
baseline under real workloads.We formulate two research questions
(RQ1 and RQ2) that are respectively answered by our experiments in
§ 6.1 and § 6.2. We defer to Technical Report [40] other experiments
that answer research questions comparing iBatch with batched
baselines.

6.1 Evaluating Gas Cost

RQ1: How much Gas per invocation does iBatch result in, under

different policies and in comparison with the unbatched baseline (B0),

under real workloads?

Motivation: Gas per invocation is the metric directly affected
by iBatch. This metric shows certain aspects of iBatch’s cost-
effectiveness. iBatch’s Gas per invocation is sensitive to different
policies (described in § 4). It is also dependent on the actual work-
load (e.g., how frequent invocations are sent in a fixed period).
We set up this RQ to explore the sensitivity to policies and real
workloads.

Experiment methodology: First, we choose three representa-
tive and popular DApps, that is, IDEX (representing decentralized
exchange), BNB token (representing ERC20 tokens), and Chainlink
(representing data feeds). We collect the DApps’ invocations by
running an instrumented Geth node to join the Ethereum mainnet.
During the (basic) node synchronization, the node is instrumented
to intercept all the transactions (i.e., external calls) and internal
calls and dump them onto a local log file.

Then, we prepare the collected trace to be replayable with ac-
curate Gas cost. To do so, we replace the Ethereum addresses (i.e.,
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Figure 6: IDEX trace (5 months): 3 functions batch result

Traces Policies Gas per call (10k)

IDEX
iBatch-120sec-min5 7.78 (−23.68%)
iBatch-120sec-top1 8.71 (−14.59%)
Unbatched BL (B0) 10.20

BNB
iBatch-120sec-min5 2.14 (−59.13%)
iBatch-120sec-top1 3.79 (−27.77%)
Unbatched BL (B0) 5.25

Chainlink iBatch-120sec-min5 9.53 (−17.62%)
Unbatched BL (B0) 11.57

Figure 7: Average Gas cost per invocation

public keys of account holders) by new public keys that we gener-
ated. This allows us to know the secret keys of the addresses used
in the trace and use them to unlock the accounts (and sign trans-
actions) during the replay. In addition, for cost-accurate replaying,
we collect the pre- and post-states of relevant smart contracts of
the DApps (e.g., BNB token balances) on Ethereum by crawling the
website https://oko.palkeo.com.

In the experiments, we first unlock all senders’ accounts, then
replay the invocations with mining turned off, and at last turn
on the miner to obtain the transaction receipt and Gas cost. This
procedure does not require us to wait for transaction receipts indi-
vidually, and can greatly speed up the whole transaction-replaying
process, especially in large-scale experiments. In this experiment,
transactions/invocations in the original trace are replayed based
on the block time, namely the block in which the transactions are
originally included in real life. In the trace, only external calls are
replayed and internal calls are used to cross-check the correctness
of the replaying.

Experiment settings: We choose an IDEX trace that con-
tains 664, 863 transactions calling three IDEX’s functions: deposit,
trade and withdraw. The trace represents Ethereum transactions
submitted from Sep. 2017 to Feb. 2018 (5-month long). In the exper-
iment, we replay the trace on our experiment platform, with and
without iBatch. When running iBatch, we adopt two batching
policies: 1) Batch all invocations in each 120-second window if there
are more than nmin = 5 invocations in that window. The policy
is denoted by 120sec-min5. 2) Batch all trade invocations in each
120-second window. The policy is denoted by 120sec-top1. Recall
that given a time window, the top1 policy means batching only the
invocations from the most popular caller in that window, which in
this case is the IDEX2 or the caller of trade. Additionally, we set a
maximal batch size to be 60 invocations, so that the Gas of batched
transaction does not exceed the block Gas limit. In each experiment,
we collect the resultant batch sizes and Gas cost of batched and
unbatched transactions, from which we further calculate the Gas
cost per call.

Results: Figure 6a shows the batch-size distribution over time.
Each tick on the X axis is a time period of 200 windows (i.e., 200 ·120
seconds=400 minutes), and the Y value is the average size of the
batches generated during that 200-window period. In the beginning,
the generated batches are small, largely due to the fact that the
distribution of calls is sparse. After the X index grows over 90, calls

are more densely distributed and it generates larger batches. Com-
paring the two batching policies, the min5 policy generates batches
that are 125% larger than those generated by the top1 policy. This
can be explained by that min5 policy considers all three functions
in a batch and top1 considers only trade function, thus the former
generates larger batches.

Figure 6b illustrates the average Gas per call over time. In the
beginning, the two iBatch and the unbatched baseline B0 result
in similar per-call costs, because of sparse call distribution over
time and no chance of generating batches. After the X index grows
over 90, it becomes clear that the iBatch under min5 results in the
lowest Gas per call, which is 23.68% smaller than that of unbatched
baseline (B0). The iBatch under top1 results in a Gas per call that
is 14.59% lower than that of B0.

From these two figures, we summarize the average Gas per call
in the first three rows of the table in Figure 7. We conducted similar
experiments under the other DApps’ trace and show the iBatch’s
performance in the rest of the table. Specifically, the BNB trace
is from July 7, 2017 for 8 months, and the Chainlink trace is from
Oct. 1, 2020 to Dec. 27, 2020. It can be seen that at the batch time
window of 120 seconds, iBatch can generally save 14.59 ∼ 59.13%
Gas cost per call compared with the unbatched baseline (B0).

6.2 Evaluating Ether Cost & Delay
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RQ2: How to characterize the Ether-delay tradeoff attained by

different batching policies? And how much Ether cost per invocation

can iBatch save while with minimal block delay (compared with

unbatched baseline B0)?

https://oko.palkeo.com
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Motivation: On Ethereum, the cost metric that an end user
(Ether owner) cares the most is the amount of Ether she needs to
pay out of pocket for invocations. The Ether cost per invocation
is the product of the Gas of an invocation and the Gas price of the
(batch) transaction. RQ2 focuses on measuring the Ether cost per
invocation.

Many DeFi applications are very sensitive to the timing of invo-
cations, that is, when an invocation is included in the blockchain.
Additional delay to the invocation may invite loss of financial op-
portunity (e.g., in an auction), increase exploitability under fron-
trunning attacks, et al. We mainly use the 1block online mechanism
(in § 4.2) that causes minimal block delay to batched invocations.

Experiment methodology: We follow the same transaction-
replaying method described before, with the only exception: To
measure delays under 1block, we have to know each transaction’s
submission time. This is obtained by crawling the transaction’s
“pending” time from website etherscan.io (an example link is [14]).
Then, a transaction’s submission time is its block time minus the
pending time.

Experiment settings: We collect a trace of 100, 000 Ethereum
transactions, each invoking Tether’s transfer() function [22]. In
real life, these transactions were submitted in one day on Oct. 4,
2020. We did not collect more transactions as replaying 100, 000
transactions takes around 570 minutes, which is long enough for
conducting our experiments.

We replay the transaction trace in the following manner: We
apply a pre-configured batching policy to generate a batch transac-
tion, say at time t . How a block is produced and which transactions
will be included in a block are simulated in the following manner
(an approach also used in [41]): Given a specified Gas price p, the
batch transaction submitted at time t will be included in the first
block produced after t which includes at least one transaction with
Gas price lower than p.

Following the above method, we replay the trace with iBatch
with 1block mechanism and under different batching policies.

Results: When replaying the trace, we use three pricing policies,
namely batch-50%, block-30% and block-10%, as described in § 4.2.
We measure each transaction’s Gas and multiply it with its Gas
price to obtain the transaction’s Ether cost. By summing the Ether
costs of the transactions in a unit time period and dividing it with
the number of calls, we report the average Ether cost per call in
Figure 8awhere the unit period is 5windows (or 5×15 = 75 seconds).
The results show that iBatch of policy block-10% achieves the

lowest Ether cost, which is 31.52% lower than that of the unbatched
baseline (B0). By comparison, iBatch under the batch-50% policy
saves 19.06% Ether per invocation than the baseline B0.

We also plot the block delays of iBatch under these three con-
figurations in Figure 8b. The figure shows the distribution of batch
transactions in their block delays. As can be seen, under the batch-
50% policy, the majority of the batch transactions have a minimal
delay under three blocks. In average, the delay of iBatch under
the pricing of batch − 50% is 0.26 blocks, the delay under the price
of 30 Gwei per Gas is 1.18 blocks, and the delay under the price of
10 Gwei per Gas is 1.66 blocks.

We then report the tradeoff between block delay and Ether cost
per call under varying Gas prices of batch transaction and batch
windows. The result is in Figure 9. It can be seen with the batch
transaction of the same Gas price (i.e., block-30% in the figure), the
block delay increases and Ether per call decreases as the batch win-
dow grows from 15 seconds through 240 seconds. The unbatched
baseline B0 incurs 0 block delay and 2.5× 106 Gwei per call. In com-
parison to the baseline, with the batch-50% policy and 15-second
batch window, iBatch saves 19.06% cost at the expense of delay-
ing invocations by 0.26 blocks. With the policy of block-10% and
15-second batch window, iBatch saves 31.52% cost at an average
1.66 block delay.

7 RELATEDWORKS

Public blockchains are known to cause high costs and to have lim-
ited transaction throughput [27]. Reducing the cost of blockchain
applications is crucial for real-world adoption and has been studied
in the existing literature. Layer-two protocols: Another approach,
dubbed layer-two designs [19, 26, 28, 38], focuses on designing add-
on to a deployed blockchain system by designing extensions includ-
ing smart contracts on-chain and services off-chain. The notable
example is payment networks [19, 26, 38] that place most applica-
tion logic of making a series of micro-payments off the blockchain
while resorting to blockchain for control operations (e.g., opening
and closing a channel) and error handling. In a sense, a payment
channel “batches” multiple repeated micro-payments into mini-
mally two transactions. State channels [28] generalize the idea to
support the game-based execution of smart contracts. The batching
in this line of work is orthogonal to that in iBatch: 1) iBatch is
generally applicable to any smart contracts, while payment chan-
nel/network is specific to repeated micro-payments between a fixed
pair of buyer and seller. 2) iBatch can further reduce the Gas of
a payment channel. Specifically, the invocations to the smart con-
tracts in a payment channel (namely HTLC) can be batched to
amortize the transaction fee over multiple operations to open/close
a channel [19]. EthereumGas optimization: GRuB [35] supports
gas-efficient data feeds onto blockchains, for decentralized financial
applications (DeFi). For Gas efficiency, it employs a novel technique
that replicates data feeds adaptively to the workload. iBatch can
complement GRuB’s adaptive data-feed to achieve a higher level
of Gas efficiency. Gasper [25] detects and fixes the “anti-patterns”
in smart contracts that excessively cost Gas. While Gasper aims
at reducing the on-chain computation in smart contracts, iBatch
reduces the transaction fee in smart-contract invocations.

etherscan.io
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8 CONCLUSION

This paper presents iBatch, a security protocol andmiddleware sys-
tem to batch smart-contract invocations over Ethereum. The design
of iBatch addresses the tradeoff between security, cost effective-
ness and delay. The result shows that compared with the baseline
without batching, iBatch effectively saves cost per invocation with
small block delay.
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A APPENDIX: SECURITY ANALYSIS

Security against invocation-forging Batcher: Invocation forg-
ing refers to that given a callerAwho did not send an invocation X ,
the Batcher forges the invocation X and falsely claims it is sent by
caller A. In iBatch, the hardness of Batcher making Dispatcher
accept a forged invocation can be reduced to the hardness of forging
a digital signature (as in Protocol Step 3) in § 3.2), which is known
to be with negligible probability.

Security against invocation-omitting Batcher: Invocation
omission refers to that the Batcher omits an invocation in a batch
while falsely acknowledging the victim client the inclusion of her
invocation. In iBatch, an omitted invocation in a batch transaction
included in the blockchain cannot be concealed from the victim
client. To prove it, omitting an invocation and concealing it from
the client requires producing a sufficient number of fake blocks (e.g.,
6 blocks in Bitcoin) where one of the blocks includes a fake transac-
tion that includes the omitted invocation. Thus, this is equivalent
to mounting a successful double-spending attack on the underlying
blockchain, which is assumed to be hard.

Beyond attack detectability, iBatch can be extended to prevent
invocation omission, via an external incentive scheme (similar to
IKP [36]) which punishes a misbehaving Batcher and disincen-
tivizes her future omission of invocations. Recent work [34] exam-
ines the security of real-world transaction relay services (similar to
Batcher) under denial of service attacks, fromwhich the mitigation
schemes can be applied to harden the DoS security of the Batcher.

Security against invocation-replaying Batcher: Invocation
replaying refers to that the Batcher replays an invocation in a
successful batch transaction without informing the victim client.
There are different forms of replaying attacks, including R1) the
Batcher replaying invocations twice (or multiple times) in the same
batch transaction, R2) the Batcher replaying a batch transaction
with the same nonce nonceB, R3) the Batcher replaying a batch
transaction’s data twice with two different nonceB, and R4) the
Batcher intentionally generating smaller batches. Here, we don’t
consider the case of the Batcher replaying an invocation in two
different batch transactions, in which one replayed copy must be a
forged invocation to the caller and which can thus be prevented.

Overall, iBatch prevents invocation replaying in forms of R1,
R2, R3 and R4. The following is the security analysis.

Consider R1 that a replayed invocation cannot appear in the
first round message (bmsg), as the victim client can easily detect
it and refuse to sign the joint message in the second round. If an
invocation is replayed in the batch transaction, the Batcher has to
modify the jointly signed message (bmsg_sign) and forge all the
second-round signatures, known to be hard.

Consider Case R2 that the Batcher replays an entire batch
transaction, that is, sending the batch transaction with the same
nonce twice. Such a transaction-level replay will be prevented by
Ethereum’s native replay protection based on nonceB.

Consider Case R3 that the Batcher replays a batch transaction
with different nonceB. The Dispatcher’s verification will fail be-
cause the original nonceB is signed by callers (recall Equation 3).

Consider Case R4 that the Batcher may intentionally generate
small batches; for instance, instead of one batch of 10 invocations,
it generates two smaller batches, each 5 invocations. This is not
necessarily an attack as the batch transaction size is bounded by
Ethereum’s native block Gas limit. But it could be a protocol devi-
ation and can be detected: It will result in two batch transactions
included in Ethereum at a similar time (w.r.t., the batch time win-
dow). An auditing caller can detect the anomaly by inspecting the
public Ethereum transaction and open disputes for further resolu-
tion.

Security against denial-of-service callers: iBatch can be ex-
tended to guarantee that a denial-of-service caller cannot delay the
overall processing of a batch. In the extension, the Batcher enforces
a timeout on waiting for callers’ batch signatures. After the time-
out, the Batcher generates the batch transactions, and Dispatcher
does not forward to the callee smart contract an invocation whose
batch signature is missing. With this extension, a denial-of-service
caller who delays her batch signature after the timeout will be
ignored and does not invoke the callee smart-contract function,
while other invocations are not affected. The DoS caller can only
cause the fee of batch transaction to increase, which can be further
detected and blacklisted by the Batcher.

This work does assume that the Batcher is always available.
In practice, we consider this is a reasonable assumption as such a
service can be run on highly-available cloud platforms, and real-
world transaction relay services such as infura.io that require clients
to trust its availability are already operational and widely adopted.
The Batcher service has incentives to protect its business and
defend against external denial-of-service attacks.

Security against caller impersonator in collusion w.

Batcher: Recall Figure 3 that normally, the Batcher sends to Caller
2 the batch message bmsg that includes Caller 1’s public key PK1
and her invocation call1. Caller 2 simply verifies call1 against
the provided PK1 and, if it passes, signs bmsg before returning it to
Batcher. The malicious Batcher may include in bmsg’ an imper-
sonator’s invocation, that is, call′1 and her public key PK ′

1. In this
case, Caller 2 still verifies call′1 in the bmsg against PK ′

1, which
passes and leads to Call 2’s signature on bmsg’. Message bmsg’ is
returned to and signed by Batcher, is further verified successfully
by Dispatcher, and gets call′1 forwarded to the callee smart con-
tract. The callee will handle the internal call sent from PK ′

1 and
leave the actual sender (i.e., PK1) unharmed.
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