
Understanding the Security Risks of Decentralized Exchanges by Uncovering
Unfair Trades in the Wild

Jiaqi Chen
Syracuse University

jchen217@syr.edu

Yibo Wang
Syracuse University
ywang349@syr.edu

Yuxuan Zhou
Syracuse University
yzhou168@syr.edu

Wanning Ding
Syracuse University

wding04@syr.edu

Yuzhe Tang
Syracuse University

ytang100@syr.edu

XiaoFeng Wang
Indiana University Bloomington

xw7@indiana.edu

Kai Li§
San Diego State University

kli5@sdsu.edu

Abstract—DEX, or decentralized exchange, is a promi-
nent class of decentralized finance (DeFi) applications on
blockchains, attracting a total locked value worth tens of
billions of USD today.

This paper presents the first large-scale empirical study
that uncovers unfair trades on popular DEX services on
Ethereum and Binance Smart Chain (BSC). By joining and
analyzing 60 million transactions, we find 671, 400 unfair
trades on all six measured DEXes, including Uniswap, Bal-
ancer, and Curve. Out of these unfair trades, we attribute
55, 000 instances, with high confidence, to token thefts that
cause a value loss of more than 3.88 million USD. Further-
more, the measurement study uncovers previously unknown
causes of extractable value and real-world adaptive strategies
to these causes. Finally, we propose countermeasures to
redesign secure DEX protocols and to harden deployed
services against the discovered security risks.

1. Introduction

Recent years have witnessed the rise of Decentral-
ized Finance (DeFi) on blockchains. A prominent class
of DeFi applications is Decentralized Exchange (DEX)
which allows traders to swap their assets from one type
of token to another. On Ethereum, the most popular DEX
services that account for more than 95% of the market
(incl. Uniswap [17], [18], Sushiswap [11], [12], Pan-
cakeswap [8], Curve [4], and Balancer [2]) all run AMM
protocols or Automated Market Maker [1]. In an AMM,
a trader account deposits one token to a smart-contract
instance, called a pool, and withdraws a certain amount of
other tokens from the pool. Besides token swaps, an AMM
pool supports the operation of adding/removing “liquid-
ity” where liquidity-provider accounts deposit/withdraw
tokens to/from the pool to increase/decrease token reserves
in the pool and to support future trades1.

AMM can be exploited to extract value illicitly. Well
known AMM attacks include sandwich attacks and ar-
bitrage [25], [49], [53], [55], [62]. In both attacks, an
adversarial trader sends crafted transactions and executes
multiple trades against a victim pool. Illicit value can be

§. This work is done when Kai Li was a Ph.D. student at Syracuse
University.

1. This paper uses terms “token swap” and “trade”, interchangeably.

extracted as the multiple trades can exploit the differ-
ence in token exchange rates at different times (i.e., in
sandwich attacks [49]) or across different pools (i.e., in
arbitrage [55]).

Figure 1: Transaction-analysis workflow to discover unfair
trades (described in § 4) and to attribute them into thefts
(§ 5) and lost tokens (§ 6).

Uncovering unfair trades. This work aims at studying
a different class of AMM exploits: Instead of abusing
price differences across multiple trades, the attacker aims
to incur and exploit the unfairness of a single trade.2
Specifically, an AMM trade occurs when trader Alice
wants to deposit token X to the AMM’s pool and withdraw
token Y from the pool. A trade is fair if the amount of
token X Alice deposits and the amount of token Y she
withdraws conforms to a trusted exchange rate. An unfair
trade may occur in different forms, and unfairness could
imply financial risks or even attacks. For instance, un-
fairness may manifest by a token swap being executed in
non-atomic fashion, that is, a standalone withdrawal (i.e.,
without a matching deposit) or a standalone deposit (with-
out a matching withdrawal). A standalone withdrawal
could indicate token theft in which thief Alice is able to
withdraw value from the victim pool without depositing.
A standalone deposit could mean an adversarial AMM
pool denying the legitimate withdrawal request from trader
Alice who has made a deposit. Besides non-atomicity,
an unfair trade could manifest by other forms such as
the deposit value and withdrawn value do not confirm to
the exchange rate (value mismatch), and the pool receives
deposit from trader Alice but allows another trader Bob

2. This paper uses “trade” to represent all other operations an AMM
may support, such as adding/removing liquidity.

to withdraw (account mismatch).3
By connecting together and analyzing over 60 mil-

lion transactions on Ethereum and Binance Smart Chain
(BSC), to our surprise, we find unfair trades widely exist
among deployed AMM services: Committing unfairness
are the most popular services, including Uniswap V2 [17],
[18], Sushiswap [11], [12], Pancakeswap [8], Curve [4],
and Balancer [2]. In total, they have performed more
than 671 thousand AMM trades and liquidity operations
violating fairness, exhibiting patterns including standalone
token deposit, standalone withdrawal, account mismatch,
and value mismatch.
Understanding unfair trades. We aim to understand the
nature of the unfair trades, whether they are accidents or
intentional crimes. While unfair trades can be attributed
to different causes (e.g., denial of service as mentioned
above), we mainly focus on the prominent cases of token
theft.

Detecting theft from unfair trades is challenging. This
is because the ground truth often includes off-chain ac-
tivities unaccounted for. For instance, when attributing
a standalone withdrawal to theft, one has to know that
the party making the deposit to accounts and the party
withdrawing from the accounts are controlled by two dis-
tinct physical entities, which is known to be an intractable
problem with only on-chain data; known heuristics such
as address clustering [32], [43], [46], [50], [54] do not
apply here (see § 5.1 for detail).

To address the challenge, we propose three detection
methods and cross-check them on each violation instance.
First, we propose heuristics to match accounts’ on-chain
behavior against rational attack strategies. For instance,
a rational thief, in fear of value extracted by competing
thieves, would send crafted transactions with aggressively
high fees and with short deposit-to-withdrawal delay,
which can be used as a signature for detecting thefts.
Second, to eliminate the possibilities of benign value
extraction, we propose detecting the frontrunning among
multiple withdrawer accounts of the same pool, which
shows the conflict of interest among withdrawals. Un-
like existing works scanning the entire blockchain history
and mempools [25], [53], we optimize the frontrunning
detection by focusing on fairness-violating withdrawals
and failed token withdrawals. Third, we also search the
Internet for user complaints about our violation cases’
accounts. The latter two methods jointly show ill-intention
of the value extraction.

Overall, our method is an end-to-end transaction-
analysis pipeline, depicted in Figure 1, which first dis-
covers unfair trades and then detects attack instances in
thefts and lost tokens.
Findings. On the Ethereum mainnet and BSC fork, we
discover 55 thousand theft attacks mounted by 258 distinct
attacker accounts with high confidence, inflicting a loss
of more than 3.88 million USD stolen from 978 victim
accounts. Each attack instance we found matches at least
one indicator. As the measurement results show, real-
world users exploit the undefined behavior in the AMM

3. The fairness definition in this paper applies to a single trade,
similar to existing works [31]. It should be differentiated from the multi-
trade fairness as in MEV (§ 2) and transaction-wise atomicity [49]. For
instance, existing MEV attacks, such as sandwich attacks and arbitrage,
do not violate the trade-wise fairness as in this work.

protocols, such as rebasing token supply, token interest
and other non-standard token features, to successfully
withdraw value. Interestingly, the attackers adapt their be-
havior to different exploits: When the attacker is to extract
value from interest-bearing tokens, she waits long enough,
typically hundreds of Ethereum blocks, for the interest to
accumulate and to become profitable. Given other kinds of
deposits, such as token rebase, the same attacker instead
wastes no time extracting the illicit value, typically within
one or two blocks, to prevent frontrunning.

From the violations that cannot be attributed to theft,
we further detect the instances of denial of service. Partic-
ularly, we formulate the problem of detecting lost tokens
where the deposits are made by mistake, and the AMM
refuses to return the tokens. We propose threat indicators
by assuming the victim accounts’ rational behavior after
lost tokens. Our measurement result on Ethereum confirms
the existence of lost tokens on Uniswap V3, Curve and
Balancer (inflicting a total value of 57, 000 USD lost
unfairly by these AMMs). We note that unfairness could
imply other threats than theft and lost tokens, and a
comprehensive study is left for future research.

By design, all six AMM services measured are vul-
nerable to either token theft or lost tokens. The root
cause is two-fold: First, the ERC20 standard has design
flaws. Specifically, the transfer function does not al-
low tracking the history of token senders, rendering it
hard or costly to enforce access control. Second, token
implementations may exhibit the behavior undefined in
the ERC20 standard, such as token rebase. This undefined
behavior causes token theft (see § 7.2 in detail). Besides,
the discovered design flaws of ERC20 standard apply to
any DeFi smart contracts built on ERC20 tokens, beyond
just DEX/AMM (discussed in § 7.1).
Mitigation. We propose a secure design of AMM pool,
in which the pool verifies the deposit transaction using
ETHRelay protocols [3], [5], [26], [28] and can enforce
access control on withdrawal against the original depos-
itor account. While avoiding thefts and lost tokens, the
ETHRelay procedure in smart contracts incurs a high
cost, optimizing which is left for future works toward
practicality. In addition to redesigning AMM pools, we
propose building an off-chain infrastructure (a benign bot)
to automatically discover withdrawal opportunities, claim
the value ahead of actual attackers, and refund the victims.

Our secure redesigns of AMM pool for Uniswap
V2/V3 are open-sourced at GitHub [9]/ [10].

Note that existing “fair” or fair exchange proto-
cols [21], [21], [27], [31], [41], [42], [44] do not help
solve the security risks uncovered in this work. The latter
stems from the ERC20 token standard and is applicable
to any DeFi smart contracts built on ERC20 tokens. As
validated in our study (see § 2), implementing protocol-
level fair exchanges on real-world ERC20 tokens faces the
same implementation-level risk discovered in this work.
Contributions. Our contributions are outlined below:
• New findings. We discover a total of 3.88 million USD
worth of stolen value by measuring and analyzing unfair
trades on six popular AMM services on Ethereum and
BSC. The discovered token theft attacks uncover the
previously unknown patterns of extractable value (e.g.,
token rebase, interest, airdrop, buggy application smart

2

contracts) and expose the adaptive attack strategies that
occur offline and otherwise would have been hidden.
After disclosure to both AMM and token developers, the
discovered bugs have been confirmed by the Uniswap
team.
• New techniques. We develop an end-to-end analytical
pipeline to detect unfairness and relevant attacks from
Ethereum transaction traces, including an efficient join
algorithm and various heuristics to automatically discover
and cross-check token theft and lost tokens.
Roadmap: We survey the related work in Section § 2.
Section § 3 introduces the background of AMM and its
specification. The discovery of unfair trades is in § 4.
Detection of theft attacks is presented in § 5. Detection
of lost tokens is in § 6. Countermeasures are presented in
§ 7. Bug disclosure is in § 8 with the conclusion in § 9.

2. Related Work

We survey the most relevant works and compare them
against this one. Due to the space limit, we defer the
extended related work to Appendix H.
MEV: In DeFi, a prominent class of attacks exploit
transaction reordering to gain blockchain (or maximal)
extractable value or MEV (also denoted by BEV in the
literature). At an abstract level, a MEV can be extracted by
two essential steps: An adversarial account first looks for
profitable opportunity and then, to claim the profit, sends
frontrunning/backrunning transactions against competing
accounts in a so-called Priority Gas Auction (PGA) game.
There could be unlimited causes of profitability opportuni-
ties in smart contracts, and the notable ones are arbitrage,
sandwich attacks, liquidation, etc.

Existing research detects MEV attack instances from
Ethereum transactions. As shown in Table 1, the research
works can be classified by the profitable opportunities
exploited and the attack vectors (i.e., frontrunning, back-
running, or others). Specifically, Damian, et al. [25] are
among the first to study extractable value on Ethereum and
detect the arbitrage-by-frontrunning incidents on early-
day DEX’es (e.g., TokenStores). The detection method is
by collecting blockchain data for confirmed transactions
and monitoring mempools for unconfirmed transactions.
Torres, et al. [53] present a large-scale measurement
study on Ethereum that detect generic frontrunning attacks
by finding pairs of transactions (that win and lose the
frontrunning game). Qin, et al. [49] measure MEV at-
tacks on Ethereum of various causes including liquidation,
sandwich attacks, arbitrage, and others captured by their
transaction-replay techniques. Wang, et al. [55] detect the
instances of arbitrage on Uniswap-V2, by finding prof-
itable cycles on the token-transfer graph. Zhou, et al. [62]
discover arbitrage opportunities by finding profitable cy-
cles among token-token exchange rates in real time. Xia,
et al. [59] detect scam tokens listed on Uniswap V2 that
impersonate other tokens to trick their traders; the scam-
token signature is the pool of a shorter-lived life span of
transactions than normal pools.

This work’s distinction to known MEV: Arbitrage and
sandwich attacks are two known patterns to extract MEV
from AMM. In arbitrage, the profitable opportunities come
from the difference in token exchange rates between

AMM pools. In sandwich attacks, the profitable oppor-
tunities come from the imminent price changes caused by
pending trades. 1) Both MEV attacks exploit or manip-
ulate token prices. In both attacks, the attacker monitors
certain conditions on the token prices to determine the
timing of value extraction. In this work, the “extractable
value” stolen from the theft comes from the AMM design
flaw that allows permissionless withdrawal. To extract the
value, the attacker does not monitor token prices; instead,
she monitors the presence of exploitable deposit (non-
standard token deposit such as rebase) to determine when
to extract the value. 2) In addition, in existing arbitrage
and sandwich attacks, the attack success does not require
breaking the fairness of individual AMM operations. That
is, a successful sandwich attack (or arbitrage attack) can
be composed of a sequence of token swaps that are fair.
By contrast, the theft attacks studied in this work require
breaking the fairness of AMM operations. Therefore, the
theft attacks studied in this work are fundamentally dif-
ferent from the MEV-based attacks [49], [53], [55], [62],
due to different causes and execution conditions.

TABLE 1: Related works on discovering and measuring
MEV.

Research works MEV causes
Damian, et al. [25] Arbitrage (multi-trade)
Torres, et al. [53] Generic (multi-trade)
Qin, et al. [49] Arbitrage, sandwich, liquidation, re-

playable txs (multi-trade)
Wang, et al. [55] Arbitrage (multi-trade)
Zhou, et al. [62] New arbitrage (multi-trade)
This work Permissionless pool withdrawal (single-

trade)

Provable secure swap protocols: Protocol designs for
fair swaps have been studied extensively in the literature.
Different swap models have been considered including
contingent payments [21] in which swaps occur between
an off-chain digital good and an on-chain token, payment
channels/networks [27], [41], [42], [44] in which multiple
swaps occur off-chain and are batched into fewer trans-
actions on-chain, fair cross-chain swaps [31] in which
pegged tokens on one blockchain are swapped with tokens
on another blockchain, etc. Most existing protocols con-
sider the model of swapping assets between two mutually
untrusted blockchain accounts (e.g., EOA in Ethereum)
mediated through smart contracts or scripts on blockchain.
Internally, they are constructed using primitives such as
zero-knowledge proofs (e.g., in ZKCP [21]), time-lock
smart contracts (e.g., in payment channels and fair cross-
chain swaps).

This work focuses on the case of deployed AMMes
on Ethereum, and they should be differentiated from the
provable secure swaps in the following senses: First,
AMM swaps assets between an EOA and a smart-contract
account (i.e., a pool), while the provable secure protocols
consider swapping between two EOAs with counterparty
risk. Second, AMM swaps two on-chain tokens, which are
different from the swap models described above.
Smart contract vulnerabilities and attacks: Existing
research has covered the automatic discovery of new
smart-contract vulnerabilities [35], [40] and the detection
of attack instances of known vulnerabilities [48], [52],

3

[61], [64]. These two lines of researches tackle generic
program-level attacks such as reentrancy attacks [22], [51]
and transaction ordering dependencies, which are not DeFi
specific as in this work.
Blockchain denial of service: The system service of a
public blockchain can be denied by manipulating mining
incentives [45], flooding the network with spam transac-
tions [20], [37], [39], creating Sybil nodes to partition
the network and eclipse victim nodes [29], and exhaust-
ing nodes’ computing resource by running computation-
intensive smart contracts [36], [47]. Recently proposed
DETER attacks show that one can send invalid transac-
tions at zero Ether cost to deny the mempool service [37],
[39]. Gas based protection can be evaded by crafting smart
contracts with under-priced instructions [47].

The DoS in this work refers specifically to lost tokens,
in which a user having deposited tokens is unable to with-
draw value. Lost tokens need not run large computations
or send a flood of many transactions. Gas and transaction
fees do not protect Ethereum from lost tokens.

3. Background

Ethereum blockchain supports two types of addresses:
An externally owned account (EOA), which is an Ether
owner’s public key, and a contract account (CA), which is
the memory address the smart contract runs on miners. An
Ethereum transaction includes a sender address, a receiver
address, the Ether value transferred, and the optional input
data that specifies smart-contract calls.

ERC20 is a popular standard on token interfaces
on Ethereum. The ERC20 functions include transfer
which allows a token owner to transfer her tokens to
another account, approve which allows an owner to
delegate the spending of her tokens to another delegatee
account, transferFrom that allows a delegatee account
to spend tokens on behalf of the original owner under the
approved token limit, balanceOf that allows anyone to
get an account’s token balance, etc.

In an AMM or automated market maker, there are four
parties: an AMM pool (a deployed smart contract), two
tokens, say T0 and T1 (deployed smart contracts), traders
or liquidity providers (each of which owns an externally-
owned account/EOA or a deployed smart contract ac-
count). An AMM minimally supports two operations:
1) token swap between a trader account and the pool
smart contract, and 2) liquidity addition/removal between
a provider account and the pool smart contract. A trader
(liquidity provider) can be either a normal user or a
malicious attacker.

In a swapToken operation, the trader deposits dx
units of token T0 to the pool’s account and receives
from the pool dy units of token T1. The AMM internally
determines the token exchange rate (or value of dy) by
enforcing the invariant on some function. For instance,
Uniswap is a constant-product market maker where the
invariant function is the product of the two token balance.

In an addLiquidity operation, the liquidity provider
deposits dx units of token T0, deposits dy units of token
T1, and withdraws a certain amount of “base” tokens
TLP. A remove-liquidity workflow is the reverse of add-
liquidity, in that the liquidity provider deposits tokens TLP
and withdraws tokens T0 and T1 at a certain ratio.

AMM protocols instantiate the above specification. To-
ken deposit can be realized by either directly transfer
the tokens to the pool or doing so indirectly via calling
approve and transferFrom functions. Different pro-
tocols’ functions are listed in Table 2.

TABLE 2: AMM protocols’ API in swapToken and
addLiquidity operations. T0/p/∗ represent deposited to-
ken/pool/arbitrary smart contract.

Layer swapToken addLiquidity
Uniswap V2 T0.transfer() T0.transfer()

p.swap() T1.transfer()
p.mint()

∗.transferFrom() ∗.transferFrom()
p.swap() ∗.transferFrom()

p.mint()
Uniswap V3 p.swap() p.mint()
Balancer p.swapExactAmountIn() p.joinpool()
Curve p.exchange() p.add_liquidity()

Fairness specification: An AMM operation executes a se-
quence of token deposits and withdrawals; the correctness
means fair operation execution. Without loss of generality,
we use token swap as an example in the description, while
the extension to liquidity operations is straightforward.
Given a token swap, we call the account calling the deposit
function by the depositor and the account receiving the
token withdrawal by the withdrawer.

Figure 2: Fair trades and violation cases.

• A fair token swap consists of a token deposit of one
token worth value v and a withdrawal of another token
worth the same value. The depositor and withdrawer
accounts are either the same or match a function
call if both deposit and withdrawal are in the same
transaction.

• Fairness violation I is a standalone withdrawal that
does not match any token deposit.

• Fairness violation II is a standalone deposit that does
not match any token withdrawal.

• Fairness violation III is an account mismatch in
which the depositor and withdrawer accounts in a se-
quence of otherwise matched deposits and withdrawals
do not match. For instance, as shown in Figure 2,
the deposit is issued from Account Alice, and the
withdrawal is from Bob.

• Fairness violation IV is a lower-value deposit in
which the deposited value is lower than the value
withdrawn.

4

• Fairness violation V is a higher-value deposit in
which the deposited value is higher than the value
withdrawn. Both Violations IV and V are cases of
value mismatch.
Figure 2 shows a fair trade and five patterns violating

trade fairness. In particular, we stress that Violations IV/V
are different from the existing extractable-value (MEV)
attacks. In our violation cases, each instance deals with a
single AMM operation, say a swap, and a single exchange-
rate value. That is, it is a pair of token deposit and
withdrawal where the exchange rate takes effect upon the
withdrawal. Suppose in a swap, Alice deposits x units
of token T0 and then withdraws y′ units of token T1. If
it is a violation IV, y′ > y where x/y is the exchange
rate upon withdrawal. This is unlike the existing MEV
attacks, where each attack instance deals with multiple
AMM operations and exploits the change of exchange
rates at different operation times, such as arbitrage and
sandwich attacks.

At last, we formulate two AMM risks: token theft
attacks and lost tokens as a risk of losing usability.
Threat: Theft attack: An attacker trader monitors a target
AMM pool’s state, both on and off the blockchain. The
attacker estimates the profitability of the AMM pool and,
upon the right timing, sends crafted transactions to call
AMM operations. The attack/theft is successful if the
attacker’s account is able to withdraw a value higher
than the value she deposited. Specifically, the attacker’s
capabilities include monitoring confirmed transactions in
the blocks and unconfirmed transactions in mempools.

The victim can be the AMM pool itself or another
account from which the attacker extracts deposited value.
In the latter case, the victim account can be another trader
(e.g., in Violation III) or another non-standard “depositor”
(e.g., in Violation I). For instance, a non-standard depos-
itor can be a token issuer rebasing the token supply (i.e.,
P1 as described in § 4.1).

In addition, we formulate the notion of “lost tokens”,
which indicates the lack of desirable features, or in other
words, poor usability.
Poor usability: Lost tokens: Suppose a trader deposits a
token to an AMM pool using an unsupported interface.
The trader who wants a refund of the token can not
succeed. This results in an unwanted situation where the
token or Ether deposited by mistake is permanently lost.

4. Uncovering Unfair Trades

Input data: Our input data is raw blockchain
transactions, including function calls and log events
by smart contracts. We obtain the transaction data
by crawling Ethereum exploration services including
Etherscan.io [16], BSCscan.io [15] and relevant BigQuery
datasets [13]. We only use the event log emitted from the
AMM pool smart contract (which we assume is trusted),
such as Uniswap V2’s pool. From the raw input data, we
attribute the transfer/transferFrom calls to token
deposits and withdrawals as described. Besides, we collect
the invocations to relevant functions, such as swap in
Uniswap V3 in Table 2; from there, we can filter out
the deposits and withdrawals that are mapped to fair
operations. We also use the pool’s events to reconstruct

the mapping between deposit value and withdrawal value
in the withdrawal record.
Design challenge: A naive way of finding unfair trades
is to filter out fair operations by extensively joining token
deposits with withdrawals. Because a fair AMM operation
can contain an arbitrary number of deposits and with-
drawals, the naive join needs to be built on the powerset
of token deposits and withdrawals, which is extremely
expensive and unscalable (Note that the powerset of n
deposits/withdrawals is of 2n elements). To avoid ineffi-
ciency, our observation is that due to Ethereum’s single-
threaded execution model, a token deposit can be matched
only to a subsequent withdrawal before the next deposit
occurs. This property allows to join token deposits and
withdrawals based on their timings and makes it possible
for linear-time search.
The algorithm takes as input a list of function calls
representing token deposits and withdrawals. In the first
round, the algorithm equi-joins the function-call records
by their transaction IDs. If the deposits and withdrawals
in the same transaction also match in value, it emits them
as a fair operation before removing them from the list.
If the value does not match, the algorithm merges the
intra-transaction deposits and withdrawals into one virtual
record (e.g., a deposit of value equal to the originally
deposited value deducted by the withdrawn value).

In the second round, the algorithm joins deposits and
withdrawals across transactions. It linearly scans the list
of deposits and withdrawals sorted by time: For two con-
secutive deposits, say d1 and d2, it finds any subset of all
withdrawals between d1 and d2 that matches d1 in value.
For each match, the algorithm removes the deposit and
withdrawals from the list before emitting a fair operation.
The algorithm then reverses the process; that is, for two
consecutive withdrawals, it finds a set of deposits between
the two withdrawals that match the earlier withdrawal in
value.

In the third round, the algorithm linearly scans the re-
maining list and emits the token deposits and withdrawals
as either value mismatch or standalone operations. The
pseudocode is in Appendix C.

Figure 3: Matchmaking deposits and withdrawals:
Matched cases are in green boxes, and mismatches
are rendered in red, including standalone withdrawal
(I), standalone deposits (II), and deposits of lower
value (IV). In the figure, tf/tff refer to functions
transfer/transferFrom.

5

Etherscan.io
BSCscan.io

Example: We show an example of running the un-
fairness discovery algorithm in Uniswap V2. Uniswap
V2 supports token deposits by both transfer and
transferFrom. It also supports token withdrawals by
swap (in swapToken) and by mint (in addLiquidity).
We collect the corresponding function-call records for
token deposits and withdrawals. Figure 3 shows the col-
lected deposits and withdrawals, ordered by time. In the
first round, the algorithm identifies and filters out fair
operations by linking deposits and withdrawals through
transaction ID, which is tff1-swap1. In the second
round, it then matches token deposits and withdrawals by
timing. For instance, tf2 and tf3 are matched to mint1
by value, which leads to a fair addLiquidity operation.
In the last round, the algorithm emits the mismatches in
the remaining list. Specifically, tf4 is mapped to swap3,
but their value does not match, thus producing a case of
Violation IV. This leaves two standalone operations in the
list, namely, tf1 (Violation II) and swap2 (I).

TABLE 3: Discovered unfair trades on top DEXes: value
is presented in the unit of million USD, and the number
of transactions violating fairness (i.e., #tx) is presented in
the unit of a thousand.

Fair
(106)

I II III IV V #tx
(103)

Uniswap-V2 618 1.26 .36 .49 .09 3.64 212

Sushiswap .17 ≈ 0 .03 .06 ≈ 0 10−3 .33
Pancakeswap 73 .53 .12 .05 .99 0.15 452
Uniswap-V3 .053 0 .17 0 0 0.04 .17
Balancer .013 0 .74 0 0 0 6.9
Curve .13 0 ≈ 0 0 0 0 ≈ 0

Results: We conduct the measurement and transaction
analysis on all six DEX services. In particular, we set
the minimal Z% value difference to determine match/mis-
match. If a deposit (withdrawal) has Z% higher value than
the paired withdrawal (deposit), it is considered a mis-
matched case (IV/V). A rule of thumb is to set Z% = 10%
on our dataset, which helps remove the negative cases,
such as fees charged by tokens and router smart contracts.
For each DEX, we report the number of swaps and their
total value under each category. To estimate the value in a
violating operation tx, we use the exchange rate between
the token T and one of the three USD-pegged stablecoins
(i.e., USDT , USDC, and DAI). Specifically, we find
from the three Uniswap-V2 pools (i.e., T -USDC, T -
USDT , and T -DAI) the swap transaction say tx′ that
occurs at the nearest time to tx. We use the exchange rate
in tx′ to estimate the value of token T in transaction tx.

The results are in Table 3, in which the majority
of swaps, about 97.9%, are fair. Among the rest that
violates fairness, there are two significant sources (in red):
Violation I and V in Uniswap V2. For instance, cases
violating I in Uniswap V2 are worth 1.2 million USD.
Cases violating V in Uniswap V2 are worth 3.64 million
USD.

To explain these violations, we manually inspect the
transactions. Cases violating V are caused by the high fees
charged by token smart contracts (note that the pool smart
contracts are provided by the AMM and their fees are
normally standard). Existing research [23] characterizes
ERC20 tokens’ fees and adversarial behavior in hiding
the high fees from customers.

Cases violating I, that is, standalone withdrawals, are
caused by non-standard token deposits. Specifically, when
we collect transactions, we only consider the “standard”
token deposits explicitly supported by the Uniswap V2
protocol. However, in practice, various non-standard token
operations that update balance (e.g., supply rebase and
token interest, as will be discussed in § 4.1) are mistreated
by the Uniswap V2 as a token deposit. Token with-
drawals that occur after non-standard deposits can execute
successfully. These withdrawals manifest as standalone
withdrawals (i.e., Violation I).

4.1. Patterns of Violations

We describe some profitable deposits found in our
measurement result. We use Uniswap V2 as an example to
show why such deposits are profitable and can be stolen
in theft.

Figure 4: Patterns of profitable deposits: R is the router
smart contract (part of the pool), T0/T1 are the two
tokens in the target liquidity pool. Both P1 and P2

are non-standard mechanisms that update token balance.
W /D refer to withdrawal/deposit (directly via calling
transfer).

4.1.1. Token Supply Rebase (Pattern P1). In many
real-world tokens, the account balance can be changed
by non-standard operations beyond token transfer. We
describe an example of token rebase. Token balance can
be elastically adjusted by token issuers for purposes such
as stabilizing the token’s exchange rates against other
tokens. In practice, token rebase is such a non-standard
balance-changing function, supported in some widely used
tokens, such as AMPL [14]. When a token, say T0, is
rebased, a Uniswap’s relevant pool, say for tokens T0 and
T1, could have its T0 balance increased. Uniswap falsely
assumes that this balance increase is due to some accounts
that swap token T0 for token T1. Uniswap’s pool would
mistakenly admit anyone who requests to withdraw token
T1 after the rebase of T0.

In general, these non-standard token operations allow
for updating pool balance but do not withdraw the same
value from the pool. We name the pattern by P1.

4.1.2. Interest-bearing Tokens (P2). Beyond P1, there
are implicit approaches to updating the balance. Many
tokens are bearing interest. That is, the balance in the
token smart contract increases at a certain rate as time goes
by. Suppose a Uniswap pool is of token T0 and T1 where
T0 is interest bearing. Similar to P1, the Uniswap pool

6

observing the increase of token T0 would admit the with-
drawal of token T1 by anyone who requests it, including a
value-extracting attacker. We call this attacker’s pattern by
P2, which is different from P1. In P2, the attacker simply
waits long enough to harvest the extractable value from
token interest.

4.1.3. External Transfer for Deposit (P3). In Uniswap,
a trader can externally call token T0’s transfer function to
make a deposit so that she can withdraw token T1 in a
separate transaction. We call the pattern of a victim trader
sending a transaction to externally transfer token T0 by
P3. When P3 occurs, a malicious account can send the
withdrawal transaction ahead of the victim’s one to claim
the value in the pool. This attack is possible because a
Uniswap pool receiving a deposit of T0 will approve the
next withdrawal of token T1, no matter who sends it.

4.1.4. Buggy Router Contracts (P4). In the above three
patterns, the victim may externally call token T0’s func-
tions. In the fourth pattern P4, the trader delegates the
handling of the swap to a router smart contract that is
buggy and violates fairness. After the trader EOA’s trans-
action, the router smart contract successfully completes
the deposit of Token T0 but fails at withdrawing Token
T1. Thus, anyone who requests the token withdrawal in
the next transaction, including an attacker EOA, would
succeed in extracting illicit value.

5. Detecting Token Thefts

5.1. The Detection Problem

Theft detection: Our risk analysis (will be presented in
§ 7.1) shows the pool design flaws (i.e., vulnerability)
that enable extractable value, that is, the value can be
extracted by anyone on the Internet. However, whether
the value is actually extracted by real-world attackers, or
equivalently, whether the violation operations are actual
attack instances, is a different problem. The detected
fairness violations, especially I, III, and IV, could present
the candidate cases for extracted value, but not (yet) the
confirmed cases.

Consider as an example that a token issuer sends a
vulnerable rebase transaction to a pool’s token, followed
by a withdrawal transaction sent by account A (i.e., P1). A
may or may not be the token issuer. The former case is not
an attack, as the token issuer, aware of the risky rebase,
sends the withdrawal to remedy the risk. The latter case
may be an attack. In other situations, including P3 and
P4, an unfair trade can also be attributed differently.

Distinguishing attacks from benign cases entails
checking two essential conditions: 1) Whether two ac-
counts are controlled by two distinct physical users:
It cannot be an attack if the trader account who makes
the profitable deposit in token T0 is controlled by the
same physical user with the account who succeed in
withdrawing the value in token T1. Thus, attack detection
becomes the problem of linking two blockchain accounts
of the same physical user, which is known to be an
intractable problem if the only information known is on-
chain data. 2) What’s a transaction sender’s intention:
That is, whether a withdrawal transaction is intended as an

attack. Even when the withdrawer and depositor accounts
are not the same physical user, they can be friends in real
life, which makes the swap non-attack. Thus, it entails
detecting the depositor account’s intention in sending the
withdrawal request, which, however, can be hidden opaque
and pose challenges to detection.
Feasibility of existing approaches: On checking Con-
dition 1), there are existing works that tackle the recov-
ery of account linkage by heuristics specific to Bitcoin’s
UTXO model [43], [50]. The only work for Ethereum [54]
presents a linkage heuristic exploiting some DEXes de-
posit addresses. Specifically, on order book-based DEXes
(i.e., IDEX and EtherDelta), trader Alice swapping token
T0 for T1 can specify the so-called deposit address who
receives T1. Assuming a swap is normal, the sharing of
deposit addresses by two traders implies that the two
traders are controlled by the same physical user. This work
is different from our attack detection problem, where the
deposit address heuristic is to detect the case that two
accounts are linked, while our problem is to detect if
two accounts are unlinked. More importantly, the deposit
address heuristic works only under the assumption of nor-
mal swaps, while our work deals with fairness violations.
Given a fairness-violating swap, the deposit address of a
swap refers to the attacker. Thus, when an attacker targets
two victim traders, it could appear that two traders share
the same deposit address. In this attack, the two victim
traders do not have to be linked to the same off-chain
user.

On checking Condition 2), there are existing works
on threat intelligence on blockchains by characterizing at-
tackers’ behavior [52]. However, their targets are program-
level attacks such as reentrancy attacks, and their attack
strategies don’t apply to the DEX context of this work.

Figure 5: Rational attack strategies (A1/A2/A3).

5.2. The Detection Method

Detection design rationale: We approach the theft detec-
tion problem and tackle the challenges above from three
angles: 1) We propose various heuristics to model what
a rational attacker account would do (i.e., I1, I2, . . . , I5
as will be described). We then match the observable
account behavior on-chain to the heuristics. For instance,
a heuristic models aggressive accounts who eagerly send
withdrawal upon observing an extractable deposit.

However, given an extractable deposited value, an
eager deposit could indicate, besides a malicious thief,
a benign user (e.g., a pool safeguard) using an automated
process to protect the depositor user’s value. To distin-
guish the two possible cases, 2) we propose to study if

7

there are frontrunning behavior, that is, multiple users
sending transactions to withdraw the same value created
by an extractable deposit. The idea is that the frontrunning
or the competition among multiple users indicates a con-
flict of interest among the users and that at least one user
is ill-intended. Otherwise, a single safeguard does not have
the incentive to send multiple withdrawal transactions to
frontrun itself.

Furthermore, given the identified accounts, 3) we col-
lect their tagged labels by searching forums and social
networks on the Internet. The idea is that if an account
is reported malicious, the withdrawal transaction from the
account is more likely an attack.

Our overall detection method is to cross-check the
three independent detection metrics on a candidate in-
stance. We report positive instances if two detection met-
rics agree with each other.
Method 1: Heuristics-based indicators: Observing an
extractable value created by a deposit, a rational thief
would eagerly send the withdrawal transaction that is
included in a block as close to the deposit transaction
as possible. Based on the heuristic, we propose three
indicators I1, I2, I3 listed below. We defer the descrip-
tion of proposed theft-detection algorithm and additional
indicators to Appendix E.

Indicator I1: An account whose withdrawal trans-
actions occur consistently within X1 blocks after
profitable deposits (i.e., block gap smaller than X1)
and whose victim deposits are not caused by token
interests (i.e., not P2) is likely to be an attacker.
Formally,

I1 ≤ X1

Indicator I2: An account whose withdrawal transac-
tions occur consistently more than X2 blocks after
profitable deposits (i.e., block gap larger than X2)
and whose victim deposits are based on token inter-
ests is likely to be an attacker. Formally,

I2 ≥ X2

Indicator I3: An account whose ratio between indi-
cator I2 and I1 is larger than X3 is likely an at-
tacker. Intuitively, it shows the attacker’s intentional
adaptive strategies in exploiting deposits of different
patterns. Formally,

I2
I1
≥ X3

An account who always checks the difference between
token reserve in the pool smart contract and token balance
in the token smart contract before token withdrawal from
a pool is likely a general-purpose attacker. The idea is
that if there is a difference between the return value
from a pool’s getReserves() function and that from
token’s balanceOf() function, it indicates the pool has
extractable value. And an account’s behavior to check the
difference shows its intention to extract the value. We thus
propose the following attack indicator.

Indicator I4: The attack signature is a sequence of
two function calls
Suppose I4% of all the token withdrawals from
an account are preceded by checking the dif-
ference between token reserve and balance, that
is, calling functions pool.getReserves() and
erc20token.balanceOf(). The account is an
attacker, if the following condition is met.

I4 ≥ X4

Note that this indicator does not require the smart
contract to actually withdraw the token T1.

Indicator I5: An account whose withdrawal transac-
tions exclude any token deposit is likely to be an
attacker.

Indicator I6: Standalone withdrawal that extract
value from deposit patterns P1 and P2 indicate an
attacker, because the value in P1 and P2 is intended
for AMM pools, not for external accounts. This
intuition is materialized into the formula below:

|P1|+ |P2|∑
i |Pi|

≥ X6

Method 2. Finding frontrunning: Given each withdrawal
involved in a violation, say w, we also detect if there
are frontrunning withdrawals. We do so by scanning all
blocks after the victim deposit and before the 10th block
after the withdrawal. Among these transactions and their
internal calls, we find the ones that call the same pool
account with w. We consider both successful and failed
withdrawals. We report if a withdrawal violating fairness
frontruns or is frontrun by at least one other withdrawal
as indicator I7.

Indicator I7: An account who has one or more
competitors is likely to be an attacker.

Method 3: External incident reports: We search the
Internet sites, including Google, Twitter, and Reddit. Our
searches include the candidate attacker accounts in Table 5
and keywords such as “attack, vulnerable, scam, fron-
trunning, bot, arbitrager, MEV, bots.” Besides, we check
the candidate account’s tags on Etherscan and if they
are security sensitive. Out of the 142 suspected accounts
from our results (described next in § 5.3.1), we found
9 accounts are complained about on the Internet, and
2 accounts are tagged as MEV bots on Etherscan. The
ground-truth accounts are presented in Table 5, and the
full detail of ground truth data collection is in Appendix F.

I1 ≤ 2(= X1)

∨ I2 ≥ 617(= X2)

∨ I2/I1 ≥ 19.28(= X3)

∨ I4 ≥ 97.5%(= X4)

∨ ‖P1‖+ ‖P2‖∑
i ‖Pi‖

≥ 69.2%(= X6) (1)

Cross-validation: We cross-validate the results detected
under different methods. Specifically, in Method 3, we

8

found 15 accounts in online user complaints. We use the
15 accounts as the ground truth to train the parameters in
Method 1, namely X1, X2 . . . , X6. We obtain the trained
Method 1 as in Equation 1.

TABLE 4: Cross-validate results via different methods

Method 1 Method 2 Method 3 # attackers
* * * 142
3 * * 139
* 3 * 22
* * 3 15
3 3 * 22

We then apply the three methods separately on the 142
candidate accounts detected earlier. Out of 142 candidate
accounts, 139 accounts are detected positive under Method
1 with trained parameters. 22 accounts are detected pos-
itive under Method 2. And 15 accounts are found using
Method 3, as shown in Table 4. In summary, suppose we
use the dataset of Method 3 as a ground truth and the
dataset detected by matching Method 1 or Method 2. The
false negative rate is 0%, and false positive rate unknown.

5.3. Results

5.3.1. Case Studies. We present one case study on two
frontrunning withdrawals and two other cases on attacker
accounts aggregating multiple withdrawals. The top ac-
counts involved in unfair trades are characterized in Ta-
ble 5. The metrics include value stolen, causes, attacker
indicators, the number of pools attacked, the number of
victim accounts, and whether the account is an attacker.
Case 0. Frontrunning for claiming rebase: This case
is Violation I involving three transactions depicted in
Figure 6. First, BASE token issuer Alice (EOA 0x471a)
sends transaction tx1 to rebase the token supply among
all BASE token holders, including a Uniswap V2 pool
account (CA 0xde5b). tx1 is included in Ethereum Block
#11375707. Then, two accounts, say Bob (EOA 0x24af)
and Charlie (EOA 0x052e), respectively send transactions
tx2 and tx3, to withdraw the extractable value created
by the rebase. Both withdrawal transactions externally
call some third-party smart contracts before calling the
victim pool’s (0xde5b’s) swap() function. For instance,
Bob’s withdrawal tx2 externally calls the smart contract
of account 0x9799, which internally calls another smart
contract of account 0xa084, which further internally calls
the pool’s swap function. Likewise, Charlie’s withdrawal
tx3 externally calls a smart contract 0xea4d, which inter-
nally calls smart contract 01da before internally calling
the pool’s swap function. While both transactions are
included in the same Block #11375709, tx2 is ordered
before tx3, and Bob successfully claims the extractable
value, leaving Charlie’s withdrawal transaction reverted.
This whole process is depicted in Figure 6.
Case 1: Aggressive attacker: Account 0x2a2e is involved
in 32 unfair trades and gains more than 2.39 ∗ 105 USD
worth of illicit tokens. All 32 swaps from this account
are sent via a smart contract which checks the pool’s
profitability before withdrawal (I4). In terms of timing,
the malicious withdrawals are always sent in the same
block with the risky, profitable deposit. We believe ac-
count 0x2a2e aggressively monitors the mempool for the

target tokens’ rebase transactions and if found, sends
withdrawals immediately to “backrun” the deposits and
claim the value.
Case 2: Attacker stealing interest: Both Accounts
0xdb40 and 0x5617 have extracted value from interest-
bearing tokens. Their block gaps are large (665 and 1574,
respectively). Given that there are enough samples, this
consistent behavior shows both accounts’ attack strategy
to wait long enough for the token interest to accumulate
and for the extractable value to be large enough before
acting on it.

In general, for all accounts with indicators I1 and I2
in Table 5, it is clear that the block gaps for different
causes (I1 and I2) differ: The block gaps for non-interest
causes are consistently much shorter than those for token
interests. It implies that the attackers are aware of the
situation (which causes them to exploit) and tailor their
strategies to it.

5.3.2. Block Gaps. Recall that each theft attack runs
in two transactions: The first transaction that creates ex-
tractable value, and the second transaction that withdraws
the value and steals it. Given each detected attack (de-
scribed in the previous subsection), we measure the gap
of the two blocks that include the attack’s two transactions,
namely block gap. We further report two metrics: the
number of competing attackers and the value stolen. For
each profitable deposit transaction, say tx, we find trans-
actions sent by competing attackers. Here, a competing
attacker either directly sends a transaction to withdraw
the extractable value created by tx but fails or sends a
transaction to read the token balance and pool reserve
(which shows the intention to withdraw the value).

We report the block gaps with the varying number of
competitors in Figure 7a. A larger dot in a X/Y coordinate
in the figure represents more attacks found with the same
X/Y value. The result shows that when there are many
competing attackers, the block gap tends to be small.
This could be explained: Because the first attacker wins,
the more attackers there are, the earlier the withdrawal
transaction is sent, namely a smaller block gap. The result
also shows that with few competing attackers comes a
large range of block gaps.

We then report the block gaps with varying value
stolen in Figure 7b. The result shows that when the
stolen value is large, the block gap tends to be small.
A possible explanation is that the higher extractable value
gives the attacker more incentives to send the withdrawal
transaction with higher fees and frontrun other thieves.

5.3.3. Attacker/Victim Behavior over Time. We plot
the timeline of the top-8 attackers’ activities in Figure 8.
The attackers are ranked by the total value stolen, with
attacker 0x9799 being the top-1. Each dot represents a
detected attack sent by the attacker’s account. The size
of the dot represents stolen value. Color represents the
exploit pattern. The most successful attacker (0x9799)
steals value through different causes (including rebase,
airdrop, etc.) The attacker’s activities last about 1.1 ∗ 106
blocks, which amount to six months. The second attacker
(0x2a2e) concentrates all her attacks on a one-month
span. She exploits exclusively the value created by rebase
operations. The third attacker (0xdb40) mounts attacks

9

TABLE 5: Detected theft instances by accounts: Ground truth and test data. Bold are strong cases suggesting the account
is an attacker. Victims include normal accounts and token issuers.

Accounts Value Deposit Attack indicators
(Potential attacker) 103 $ patterns I1 I2 I3 I4 I5 I6 I7
Ground truth data
0x9799b475dec92bd99bbdd943013325c36157f383 556 33P1,4P2,6P4 422 371 0.88 0 7 86% 3
0x0c08545df4939ef46c1364b5930e840739667467 101 3P1,1P4 1.5 0 0 7 75% 7
0x56178a0d5f301baf6cf3e1cd53d9863437345bf9 101 53P1,4P2,2P3,2P4 13 1574 121 0 7 93% 3
0x0000000000007f150bd6f54c40a34d7c3d5e9f56 11 15P2 96 ∞ 15 (100%) 7 100% 7
0x7c651d7084b4ba899391d2d4d5d3d47fff823351 1.8 2P1 68 0 0 7 100% 7
0x00000000e84f2bbdfb129ed6e495c7f879f3e634 0.5 9P1,4P3 1.1 0 0 3 69% 7
0xca850b6833ef86ef0484c6be74b06d61b39df031 0.5 40P3 1.4 0 39 (98%) 7 0% 3
0x17e8ca1b4798b97602895f63206afcd1fc90ca5f 0 1P1 3061 0 0 3 100% 7
0xf90e98f3d8dce44632e5020abf2e122e0f99dfab 0 1P1 1402 0 0 7 100% 7
0x42d0ba0223700dea8bca7983cc4bf0e000dee772 0.5 1P3 0 0 1 (100%) 3 0% 7
0xEA674fdDe714fd979de3EdF0F56AA9716B898ec8 0.2 2P1,5P2 0.5 686 1372 6 (86%) 3 100% 7
0x000000000025d4386f7fb58984cbe110aee3a4c4 0.2 1P1 38 0 1 (100%) 7 100% 7
0xD224cA0c819e8E97ba0136B3b95ceFf503B79f53 0.1 3P2,1P3 32 617 19 4 (100%) 7 75% 7
0xb8aaed2e3117fa589eb05b0d7d0c8469d9e41ec5 0.1 1097P1 351 0 0 7 100% 7
0x829BD824B016326A401d083B33D092293333A830 0.1 5P2 696 ∞ 5 (100%) 7 100% 7
Test data
0x2a2e25ad00faac024f6a8d8cdc0fc698fbda71b7 239 32P1 0.03 0 32 (100%) 3 100% 7
0xdb40ea5b6d0ef9e45c00c194345b44765a53dd19 113 12P1, 2P2, 3P3 2.5 665 266 17 (100%) 3 82% 3
0xb6bf45f59b94d31af2b51a5547ef17ff81672743 20 1091P1, 131P2, 9P4224 600 2.7 1231 (100%) 3 99% 3
0xc762e15cfbf392f4346ee7e8466ca595e571382b 16 64P1, 6P2, 13P4 3.0 5.3 1.8 83 (100%) 3 84% 3
0xa32d3f8a970ab3222ffa1c89cb910abf7b7201d0 6 208P2 942 ∞ 208 (100%) 3 100% 7

Figure 6: Case study: A found trade violating fairness (I) shows frontrunning transactions (tx2 and tx3) to withdraw
value from a Uniswap V2 pool created by token-rebase transaction tx1. Transaction tx2 with red cross mark is reverted.

1 2 3 4 5 6 7 8 9
The number of competing attackers

100

101

102

103

Bl
oc

k
ga

p

(a) Block gaps and the number of
competing attackers

100 101 102 103 104 105 106

Value stolen (USD)
100

101

102

103

Bl
oc

k
ga

p

(b) Block gaps and value stolen

Figure 7: Block gaps and affecting factors.

sporadically and target value created through two causes:
Token interest and rebase operations. The ninth attacker
exploits buggy smart contracts to gain illicit profit. The

tenth attacker exclusively grabs the value from the token
interest in a three-month period. As a result, most top at-
tackers mount multiple attacks consistently, which shows
the attacks are intended and not by accident.

We additionally study top victims’ behavior. The vic-
tims are ranked by the value stolen. In Figure 9, we plot
in dots the transactions sent by victims whose deposits
are stolen in identified attacks. Different color represents
different causes. Additionally, in hollow green circles,
we plot the normal transactions sent by the victims and
related to Uniswap. The result shows that most victims
change behavior after an attack/theft. For instance, victim
accounts, including 0x0cd4 and 0x80cc, all stop using the
vulnerable interface (e.g., partly error) to send a deposit
after an attack. However, other victims can repeatedly

10

0 2 4 6 8 10 12 14 16 18 20 22 24
Relative block height (*10^5)

0xa32d
0xc762
0xb6bf
0x5617
0x0c08
0xdb40
0x2a2e
0x9799

At
ta
ck

er
s (

by
 v
al
ue

)

rebase
interest
partly error
airdrop
external transfer
unknown

Figure 8: Attack timeline of top-8 attackers. In the Y axis, attacker accounts are ordered by the total value stolen. Data
from 07/09/2020 (block 10422671) - 06/29/2021 (block 12727620).

5 10 15 20 25 30 35
Relative block height (*10^5)

0x0cd4
0x66ac
0x896d
0xb78c
0xc400
0x1b30
0x80cc
0xd4b3
0x3492
0x471a

Vi
ct

im
s (

by
 v

al
ue

)

normal
rebase
partly error
airdrop
ext transfer

Figure 9: Attack timeline of top-10 victims. In the Y axis, victim accounts are ordered by the total value stolen. Data
from 07/29/2020 (block 10553883) - 01/10/2022 (block 13979019).

create extractable value that gets stolen. For instance,
account 0x66ac repeatedly airdrops tokens to the Uniswap
pool, which gets stolen.

TABLE 6: Extractable value and its destinations.

Value extracted by Rebase (P1) External transfer
(P3)

External attackers $0.81M $0.50M
Pools (intended) $58.1M $1.22M
Pools (accidental) $0.65M $1.29M

AMPL DIGG BASE USD xDEF2 YMPL SLINK LBD
Token symbol

0

1

2

3

4

5

St
ol

en
 v

al
ue

 (1
0^

7
US

D)

External attacker
Pool (accidental)
Pool (intended)

(a) Value created by rebase (P1)

UNI SUSHI USDC AIR ICAP UWL YIN YFIII
Pool

0

50

100

150

200

250

300

350

400

St
ol
en

 v
al
ue

 (1
00

0
US

D)

External attacker
Pool (accidental)
Pool (intended)

(b) Value created by external transfers
(P3): all pools are between token XX
and WETH , where XX is the tick
on the x axis.

Figure 10: Extractable value received by the pool versus
that by attacker accounts.
5.3.4. Value Received by Pools. Extractable value can
be claimed by any account, including an external attacker
and the pool itself. Our measurement result so far cap-
tures the former case. In this experiment, we measure the
extractable value that goes to the pool.

A pool can claim extractable value by calling the
sync function, which synchronizes the pool reserve and
token balance. In Uniswap, there are three circumstances
sync is called: a standalone call to sync in a trans-
action, sync called after a swap in the same trans-
action, sync called after an addLiquidity call in

the same transaction. In the first case, tokens are sent
to the pool intentionally (denoted by “pool (intended)”
in the table and figures), and in the second and third
cases, the pool receives deposit by accident (denoted by
“pool (accidental)”), because it is an irrelevant transaction
to sync the reserve and token balance. Informally, we
calculate the extractable value that goes to the pool in
the following method: We obtain the value of the pool
reserve before and after the transaction. We also parse the
function call arguments from the transaction data field.
We can cross-check the pre-state, post-state, and function
arguments to detect the mismatch, which can be attributed
to the extractable value. For instance, a normal swap in
Uniswap does not change the product in AMM, and a
spurious swap that the pool receives extractable value
can be detected by the violation of product equality.

Using the above method, we measure the total ex-
tractable value claimed by the pool under different pat-
terns, including P1 and P3. The result is presented in
Table 6: The total value claimed by the pools is consis-
tently more than 5× of that by external attackers. This
suggests “room” for the current Uniswap thief to increase
their revenue. We further show the total extractable value
by different pools/tokens. In Figure 10a, we plot the ex-
tractable value created by different rebase-enabled tokens
(Pattern P1). Token AMPL has the highest extractable
value, most of which goes back to the pool by the to-
ken issuer intentionally calling sync function after each
rebase call (the “intended” case). Token BASE is the
third highest in total extractable value and has the highest
value stolen by external attackers. In Figure 10b, we plot
the extractable value created by external transfers (Pattern
P3) against different pools. Here, all the top-value pools
we found are between token WETH and another token.
The most vulnerable pool is between Token UNI and
WETH , whose extractable value is 400 thousand USD

11

in total, among which the 10% value is extracted by
external attackers and the rest is mostly sent to the pool
intentionally. Token Y Fill’s value is exclusively extracted
by external attackers. Token SUSHI’s deposit is mostly
claimed by the pool accidentally.

6. Detecting Lost Tokens

Problem: We detect lost tokens out of standalone deposits
(i.e., fairness violation II). On the one hand, the incidents
of lost tokens appear as standalone deposits. On the other
hand, not every standalone deposit should be attributed
to lost tokens. There are other causes, such as token
giveaways, and administrative accounts calling privileged
AMM operations.
Methods: We propose two heuristics for detecting lost
tokens. The first detection heuristic is based on the fol-
lowing intuition: a trader account may use an unsupported
mechanism to deposit tokens. She may then realize the
mistake and retry the token deposit of the exact same
amount using the right mechanism. For instance, Uniswap
V3 does not support deposit by transfer. Unaware of
the right function, a user may initially call transfer
to deposit a token to a Uniswap V3 pool. The user then
switches to calling approve of the same amount for the
second time. The approve call is accepted by the V3
pool. Based on the heuristic, we propose the following
indicator I9:

Indicator I9: Suppose an account Alice sends a
standalone deposit (Violation II) of x units of Token
T0 to a pool. Alice then sends a fair swap of the
same x units of T0 but using a different mechanism
from the standalone deposit. The sequence indicates
that the first standalone deposit results in lost x units
of Token T0.

In the second heuristic, the idea is that lost tokens must
be deposited by an unprivileged AMM account. And a
privileged account, such as an AMM-pool administrator,
is entitled to deposit value to an AMM pool, which is
unlikely a mistaken deposit. We propose the indicator for
lost token below:

Indicator I10: An account that calls privileged AMM
functions (e.g., setSwapFee() in Balancer) is an
privileged account, and a standalone deposit sent by
a privileged account is not attributed to lost tokens.

TABLE 7: Aggregated results on lost tokens.

AMM # txs Total value (USD) Block diff (avg)
Uniswap-V3 20 47928 9013
Balancer 192 7875 6578
Curve 3 905 14533

Results: Using the method above, we detect 215 instances
of lost tokens on Uniswap V3, Balancer, and Curve,
inflicting a total of lost tokens worth 56708 USD, as
shown in Table 7. Given a standalone deposit, we calculate
its value using the token price at the time of the deposit (by
using the nearest price with token WETH in Uniswap V2).
We record the block difference between the standalone
deposit and the follow-up deposit retry sent from the same
account. It can be seen block difference on Uniswap V3

is about 9013 blocks which amounts to about 33 hours.
Detailed case analysis is in Appendix G.

7. Root Causes & Countermeasures

We first present a security analysis of different AMM
protocols under the risks of token thefts and lost tokens.
We then present our two mitigation designs, a secure
redesign of AMM pool and a retrofittable scheme to
harden deployed pools’ security.

7.1. Risk Analysis

Uniswap V3 that only accepts indirect deposit by
approve and transferFrom, and our secure pool
design that supports both direct and indirect deposits with
security against theft.

We character AMM protocol by how token deposits
are supported. One design adopted in the Uniswap V2
family is to accept direct token deposit by transfer.
This is depicted in Figure 11, where a trader deposits
token T0 by calling T0 smart contract’s transfer
function. Another design, adopted by Uniswap V3, Bal-
ancer and Curve, is to accept indirect token deposit by
approve/transferFrom. In this design, a trader first
calls approve to delegate the spending of her token T0

to the pool which then does the swap fairly by calling
T0’s transferFrom and T1’s transfer in the same
transaction. This is depicted in Figure 11.

In the following, we analyze the security of Uniswap
V2 as a representative pool supporting direct deposits
and the security of Uniswap V3 as a representative pool
supporting indirect deposits.
Risk of Uniswap V2: Uniswap V2 is insecure against
token thefts from direct deposit. Once its pool contract
account receives a token deposit via transfer, the
deposited value can be withdrawn by any subsequent
transaction (i.e., calling swap function). We call this
vulnerability by permissionless withdrawal. As analyzed
later, this vulnerability applies to any direct-deposit based
AMM pool design.

Uniswap V2 supports token refund for standalone
(direct) deposit via skim function. For indirect deposit,
Uniswap V2 does not allow withdrawal and is thus se-
cured against possible token thefts. Since indirect deposit
is through approve, a standalone approve does not
decrease the depositor trader’s balance. Thus, Uniswap
V2 can “refund” mis-issued deposit. Note that we scan
the Uniswap V2 smart contract code to verify that it does
not issue any transferFrom call.
Risk of Uniswap V3: Uniswap V3 is secure against token
thefts. When the deposit is directly made via transfer,
V3 does not support it and thus does not allow any with-
drawal from it. When the deposit is indirectly made via
calling approve function, V3 does allow withdrawal and
is secured against theft. This is because with indirect de-
posit the actual token deposit (done in transferFrom;
recall Figure 11) is executed in the same transaction
with token withdrawal, enforcing both fairness (against
a thief trader’s attempt to insert a malicious withdrawal
in between) and the match between the deposit sender and
withdrawal receiver.

12

Figure 11: AMM pool designs:
tf/off/appr refer to ERC20 functions
transfer/transferFrom/approve.

Direct deposit by Indirect deposit by
transfer transferFrom

Uniswap V2
Swap tokens 3 7
Secure swap against theft 7 3(N/A)
Refund against lost tokens 3 3

Uniswap V3
Swap tokens 7 3
Secure swap against theft 3(N/A) 3
Refund against lost tokens 7 7

Secure AMM pool redesign (§ 7.3)
Swap tokens 3 3
Secure swap against theft 3 3
Refund against lost tokens 3 3

TABLE 8: Risk analysis (red cross marks are risks that pose
challenge to fix).

Uniswap V3 does not refund mistaken deposit, regard-
less whether made directly or indirectly. Because Uniswap
V3’s pool does not support traders canceling an approve
call, as confirmed by the Uniswap team [19].

Overall, the risk analysis of Uniswap V2/V3 is pre-
sented in Table 8. Cross marks refer to risky operations
in the AMM pool. The black ones are easy to fix; for
instance, canceling the allowance by a previous approve
call is straightforward. More challenging are the two red
cross marks associated with direct deposit, that is, to se-
cure a pool supporting direct deposit and token refunding
against token theft (as in Uniswap V2).

We additionally characterize other AMM protocols
by their support of direct deposits (by transfer) in
Table 9. All other AMM instances that don’t support direct
deposit are subject to the risk of lost tokens.

TABLE 9: High-level characterization of AMM protocols.
“Lost” refers to lost tokens.

Design Uniswap V2 Uniswap V3 Balancer Curve
Direct deposit
by transfer

3 7 7 7

Risks Theft Lost Lost Lost

Risk generalizability: The security risks we discovered
in this work stem from the design flaws of ERC20 smart
contracts, including both information non-traceability of
transfer in the ERC20 standard (see example below) and
exhibiting behavior undefined in the standard. Thus, the
risks are generic and are applicable to any DeFi smart con-
tracts built on ERC20 tokens. For instance, implementing
the protocol-level fair exchanges [21], [21], [27], [31],
[41], [42], [44], as surveyed in § 2, on widely deployed
ERC20 tokens on Ethereum could face the same security
risks uncovered from this work.

We manually validate this claim by running an HTLC
smart contract4 atop ERC20 tokens with the follow-
ing tests: An account that deposits value (mis)using
ERC20’s transfer function (instead of approve-
transferFrom) is unable to call either the withdraw
function or refund function with success. This implies
the mis-deposited tokens are lost.

In general, given a direct deposit made by calling
an ERC20 token’s transfer function, the DeFi smart
contract can decline it (as in Uniswap V3, which leads

4. https://github.com/chatch/hashed-timelock-contract-ethereum

to lost tokens) or accept it to authorize the withdrawal of
the other token. For the latter design, because the call of
the token’s transfer function does not notify context
information (e.g., the transfer sender) to any third-
party contract, the DeFi contract cannot determine who the
original token depositor is and has to allow permissionless
withdrawal, as in Uniswap V2.

7.2. Countermeasure Design Space

Existing MEV mitigations: In the existing literature, pro-
tection against MEV is tackled by two design paradigms:
1) designing secure DeFi protocols to eliminate the prof-
itable opportunities and prevent transaction reordering at-
tacks (by making them unprofitable), and 2) detecting and
mitigating the transaction reordering attacks (by enforcing
fair transaction ordering).

The approaches in the first paradigm are application
specific (e.g., protecting AMM pools, such as rerout-
ing against arbitrage [63], may not be transferable to
protecting lending services). In particular, flashbots and
MEV redistribution [24] are based on the assumption of
a trusted off-chain infrastructure that aggressively collects
the MEV ahead of adversaries. The second paradigm is
generic to DeFi applications, but the current approaches
are limited to mitigating frontrunning attacks. Specifically,
frontrunning attacks are mitigated by enforcing fair trans-
action ordering [30] where the order in which transactions
are included into blocks is the same as that transactions
are submitted [7]. However, backrunning attacks are not
mitigated (i.e., not following the second paradigm) but are
prevented in an application-specific fashion (i.e., following
the first paradigm).
Applicability of existing mitigations: To mitigate unfair
trades, one can start by applying the existing mitigation
paradigms. Specifically, one can apply fair transaction or-
dering techniques to mitigate the theft attacks that exercise
frontrunning (e.g., Case 0 studied in § 5.3.1). However,
this approach cannot mitigate the aggressive attacker (i.e.,
Case 1 in § 5.3.1) who exercises backrunning strategies.

Alternatively, one can customize the MEV-
redistribution infrastructure to capture the extractable
value caused by permissionless withdrawal. In this
defense, one has to assume trust in the off-chain
infrastructure. We describe the detail of the custom
MEV-redistribution infrastructure in Appendix A.

13

https://github.com/chatch/hashed-timelock-contract-ethereum

In the rest of this section, we focus on redesigning
secure AMM pools to eliminate MEV, namely following
the second paradigm. Existing approaches in the second
paradigm are application specific and inapplicable to the
specific case of permissionless withdrawal.

7.3. Secure AMM Pool Redesign

Design goals: We propose building a secure AMM pool
that can swap or refund tokens without losing the se-
curity against token theft. This design goal is shown
in Table 8. The difficulty comes from the following: If
the ERC20 tokens are directly deposited by calling to-
ken function transfer(address from, address
to, int amount), the pool smart contract cannot
know the trader who made the deposit (recall Figure 11
). Without knowing the depositor account, the pool smart
contract is left unable to enforce access control on where
the withdrawn/refunded tokens should go. Therefore, the
key of the secure pool design is to make the pool smart-
contract able to verify the depositor account.
Design rationale: Proposed design: Our AMM pool
redesign follows the paradigm in Uniswap V3, that
is, supporting swaps by indirect token deposit via
approve/transferFrom calls. When an account de-
posits tokens directly through transfer calls, the AMM
pool runs ETHRelay [3], [5], [6], [28] to validate the
transaction of direct transfer call. If the validation
is successful, the pool extracts the original depositor’s
account. It enforces access controls on the token with-
drawal or refund, depending on application needs, so
that the original depositor receives the token refund. To
save the gas fee, one can use existing cost-optimization
schemes [38], [56]–[58].

Specifically, ETHRelay is a smart-contract procedure
that takes as input an Ethereum transaction, say tx, and
the associated proof (incl. Merkle proof within a block and
a sufficient number, say X , of block headers). It validates
the inclusion of tx in the Ethereum blockchain history.
The validation is secure against forged inputs based on
the hardness assumption of forging X Ethereum block
headers that can pass validation. The pseudocode of pool
redesign and more details are described in Appendix B.

The secure AMM redesign can be easily extended to
support the case that the depositor designates a third-party
token receiver instead of herself. The secure AMM pool
can authorize token withdrawal if a receiver account is
explicitly designated and signed by the depositor.
Security analysis: Suppose benign trader Alice sends a
transaction tx1 to directly deposit tokens (i.e., calling
transfer). Normally, Alice would send the second
transaction tx2 to either request refund or finish the swap.
Now, Adversary Bob sends a transaction tx′2 to frontrun
Alice’s transaction tx2. If Bob wants to receive the value,
he needs to forge another (non-existing) transaction tx′1,
where Bob is the depositor account. Bob then prepares a
proof of tx′1’s inclusion to pass the ETHRelay validation,
which cannot succeed due to the hardness assumption.

In the case of network congestion, the underlying con-
sensus may cause the delayed inclusion of transactions or
even dropping the transactions. Delayed or dropped trans-
actions do not lead to unfair trades in our countermeasure,
assuming that the account having deposited tokens would

retry to withdraw the value. Because of the ETHRelay
that prevents any other account from withdrawing the
value, the retrying of withdrawals by the original depositor
account can (eventually) succeed.
Implementation & evaluation: We implemented the se-
cure pool redesign by patching Uniswap V3 [10] and
V2 [9]. In the implementation, we remove two functions
in Uniswap’s original pool contract to make room for our
code (Uniswap’s original pool contract uses up the maxi-
mal 24576 bytes allowed by an Ethereum transaction).

We build two testing smart contracts to evaluate the
security of our patched contracts. Given a pool contract,
our smart contract testing lost-tokens first makes a direct
token deposit via ERC20 transfer and then issues a
token withdrawal. The success of the token withdrawal
means the tested pool does not have the risk of lost tokens.

Given a pool contact, our smart contract testing per-
missionless withdrawals first makes a deposit from one ac-
count and then issues a withdrawal from another account.
The withdrawal failure implies the tested pool’s security
against permissionless withdrawals. The testing contracts
are also included in the open-sourced pool patches.

We have run the two testing smart contracts against our
patched pools on Uniswap V2 and V3. The results show
both patched contracts are secured against lost tokens and
permissionless withdrawal.

8. Responsible Disclosure

We disclose the bugs to both affected AMM pools and
token developers after the bug discovery. The Uniswap
team (https://uniswap.org/bug-bounty) has confirmed the
lost-token bug on V3 but blames users’ API misusing for
the theft risk on V2. We did not receive feedback from
the other teams we sent our report to. Bug reports we sent
are documented in the anonymized Google document [19].
The likely cause of low response rates is that the bugs we
found are distinctly caused by the interaction between the
pool and token smart contracts, and neither side is willing
to take full responsibility for bug fixing.

9. Conclusion

This paper presents the first large-scale measurement
study that uncovers the prevalence of unfair trades on pop-
ular DEX services on Ethereum and Binance Smart Chain
(BSC). The study unearthed 671, 400 unfair trades on all
six measured DEXes, including Uniswap, Balancer, and
Curve, and attribute 55, 000 instances to token thefts that
inflict more than 3.88 million USD lost. Furthermore, the
measurement study uncovers previously unknown causes
of extractable value and real-world adaptive strategies
to these causes. Finally, we propose countermeasures to
redesign secure DEX protocols and to harden deployed
services against the discovered security risks.

10. Acknowledgment

All authors but the sixth are partially supported
by NSF awards CNS-2139801, CNS-1815814, DGE-
2104532, and an Ethereum Foundation academic grant.

14

https://uniswap.org/bug-bounty

References

[1] “All-time dex activity on etherscan,” https://etherscan.io/stat/
dextracker?range=1.

[2] “Balancer amm defi protocol,” https://balancer.fi/.

[3] “A bridge between the bitcoin blockchain & ethereum smart con-
tracts,” http://btcrelay.org/.

[4] “Curve.fi,” https://curve.fi/.

[5] “Eth relay,” https://github.com/pantos-io/ethrelay.

[6] “Ethereum contract for bitcoin spv,” https://github.com/ethereum/
btcrelay.

[7] “Fair sequencing services: Enabling a provably fair defi
ecosystem,” https://blog.chain.link/chainlink-fair-sequencing-
services-enabling-a-provably-fair-defi-ecosystem/.

[8] “Pancakeswap exchange,” https://pancakeswap.finance/swap.

[9] “Secure redesign of uniswap v2 pool that prevents permissionless
withdraw and token theft,” https://github.com/fs3l/v2-core-patch-
no-theft.

[10] “Secure redesign of uniswap v3 pool that prevents token lost,”
https://github.com/fs3l/v3-core-patch-no-lost-token.

[11] “Sushiswap,” https://app.sushi.com/en/swap.

[12] “Sushiswap on defipulse,” https://www.defipulse.com/projects/
sushiswap.

[13] “Transaction data and more from the ethereum blockchain (on
google bigquery),” https://console.cloud.google.com/marketplace/
product/ethereum/crypto-ethereum-blockchain?pli=1.

[14] “The AMPL token is the primary building block of the Ampleforth
elastic finance ecosystem,” https://www.ampleforth.org/, Retrieved
July 20, 2022.

[15] “Bscscan: Binance (bnb) blockchain explorer,” https:
//bscscan.com/, Retrieved July, 25, 2022.

[16] “Etherscan: Ethereum (eth) blockchain explorer,”
https://etherscan.io/, Retrieved May, 5, 2021.

[17] “The Uniswap protocol,” https://uniswap.org/, Retrieved Nov. 20,
2021.

[18] H. Adams, N. Zinsmeister, and D. Robinson, “Uniswap v2 core,”
2020.

[19] A. authors, “Bug reports to the uniswap bounty
program,” https://docs.google.com/document/d/1XRcYu
Gk3SQAo6aNbfT2AZ2mJqmNqrClREKyoa4dgFA/edit?usp=
sharing.

[20] K. Baqer, D. Y. Huang, D. McCoy, and N. Weaver, “Stressing
out: Bitcoin ”stress testing”,” in Financial Cryptography and Data
Security - FC 2016 International Workshops, BITCOIN, VOTING,
and WAHC, Christ Church, Barbados, February 26, 2016, Revised
Selected Papers, ser. Lecture Notes in Computer Science, J. Clark,
S. Meiklejohn, P. Y. A. Ryan, D. S. Wallach, M. Brenner, and
K. Rohloff, Eds., vol. 9604. Springer, 2016, pp. 3–18. [Online].
Available: https://doi.org/10.1007/978-3-662-53357-4 1

[21] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo,
“Zero-knowledge contingent payments revisited: Attacks and
payments for services,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, B. Thuraisingham, D. Evans, T. Malkin, and
D. Xu, Eds. ACM, 2017, pp. 229–243. [Online]. Available:
https://doi.org/10.1145/3133956.3134060

[22] E. Cecchetti, S. Yao, H. Ni, and A. C. Myers, “Compositional
security for reentrant applications,” in 42nd IEEE Symposium on
Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27
May 2021. IEEE, 2021, pp. 1249–1267. [Online]. Available:
https://doi.org/10.1109/SP40001.2021.00084

[23] T. Chen, Y. Zhang, Z. Li, X. Luo, T. Wang, R. Cao,
X. Xiao, and X. Zhang, “Tokenscope: Automatically detecting
inconsistent behaviors of cryptocurrency tokens in ethereum,”
in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, L. Cavallaro, J. Kinder, X. Wang, and
J. Katz, Eds. ACM, 2019, pp. 1503–1520. [Online]. Available:
https://doi.org/10.1145/3319535.3345664

[24] T. Chitra and K. Kulkarni, “Improving proof of stake economic
security via MEV redistribution,” in Proceedings of the 2022
ACM CCS Workshop on Decentralized Finance and Security,
DeFi 2022, Los Angeles, CA, USA, 11 November 2022, F. Zhang
and P. McCorry, Eds. ACM, 2022, pp. 1–7. [Online]. Available:
https://doi.org/10.1145/3560832.3564259

[25] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov,
L. Breidenbach, and A. Juels, “Flash boys 2.0: Frontrunning in
decentralized exchanges, miner extractable value, and consensus
instability,” in 2020 IEEE Symposium on Security and Privacy,
SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE,
2020, pp. 910–927. [Online]. Available: https://doi.org/10.1109/
SP40000.2020.00040

[26] S. Daveas, K. Karantias, A. Kiayias, and D. Zindros, “A
gas-efficient superlight bitcoin client in solidity,” in AFT ’20: 2nd
ACM Conference on Advances in Financial Technologies, New
York, NY, USA, October 21-23, 2020. ACM, 2020, pp. 132–144.
[Online]. Available: https://doi.org/10.1145/3419614.3423255

[27] C. Egger, P. Moreno-Sanchez, and M. Maffei, “Atomic multi-
channel updates with constant collateral in bitcoin-compatible
payment-channel networks,” in ACM SIGSAC Conference on
CCS 2019, 2019, pp. 801–815. [Online]. Available: https:
//doi.org/10.1145/3319535.3345666

[28] P. Frauenthaler, M. Sigwart, C. Spanring, M. Sober, and
S. Schulte, “ETH relay: A cost-efficient relay for ethereum-
based blockchains,” in IEEE International Conference on
Blockchain, Blockchain 2020, Rhodes, Greece, November 2-6,
2020. IEEE, 2020, pp. 204–213. [Online]. Available: https:
//doi.org/10.1109/Blockchain50366.2020.00032

[29] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse
attacks on bitcoin’s peer-to-peer network,” in USENIX Security
2015, Washington, D.C., USA, J. Jung and T. Holz, Eds.
USENIX Association, 2015, pp. 129–144. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity15

[30] L. Heimbach and R. Wattenhofer, “Sok: Preventing
transaction reordering manipulations in decentralized finance,”
CoRR, vol. abs/2203.11520, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2203.11520

[31] M. Herlihy, “Atomic cross-chain swaps,” in ACM Symposium
on PODC 2018, 2018, pp. 245–254. [Online]. Available:
https://dl.acm.org/citation.cfm?id=3212736

[32] D. Y. Huang, M. M. Aliapoulios, V. G. Li, L. Invernizzi,
E. Bursztein, K. McRoberts, J. Levin, K. Levchenko, A. C.
Snoeren, and D. McCoy, “Tracking ransomware end-to-end,”
in 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA.
IEEE Computer Society, 2018, pp. 618–631. [Online]. Available:
https://doi.org/10.1109/SP.2018.00047

[33] H. A. Kalodner, M. Möser, K. Lee, S. Goldfeder, M. Plattner,
A. Chator, and A. Narayanan, “Blocksci: Design and applications
of a blockchain analysis platform,” in 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020,
S. Capkun and F. Roesner, Eds. USENIX Association, 2020,
pp. 2721–2738. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/kalodner

[34] P. Koshy, D. Koshy, and P. D. McDaniel, “An analysis of anonymity
in bitcoin using P2P network traffic,” in Financial Cryptography
and Data Security - 18th International Conference, FC 2014, Christ
Church, Barbados, March 3-7, 2014, Revised Selected Papers, ser.
Lecture Notes in Computer Science, N. Christin and R. Safavi-
Naini, Eds., vol. 8437. Springer, 2014, pp. 469–485. [Online].
Available: https://doi.org/10.1007/978-3-662-45472-5 30

[35] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to
automatically exploit smart contracts,” in 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018, W. Enck and A. P. Felt, Eds. USENIX
Association, 2018, pp. 1317–1333. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/krupp

[36] K. Li, J. Chen, X. Liu, Y. Tang, X. Wang, and X. Luo, “As strong
as its weakest link: How to break blockchain dapps at rpc service,”
NDSS 2021.

15

https://etherscan.io/stat/dextracker?range=1
https://etherscan.io/stat/dextracker?range=1
https://balancer.fi/
http://btcrelay.org/
https://curve.fi/
https://github.com/pantos-io/ethrelay
https://github.com/ethereum/btcrelay
https://github.com/ethereum/btcrelay
https://blog.chain.link/chainlink-fair-sequencing-services-enabling-a-provably-fair-defi-ecosystem/
https://blog.chain.link/chainlink-fair-sequencing-services-enabling-a-provably-fair-defi-ecosystem/
https://pancakeswap.finance/swap
https://github.com/fs3l/v2-core-patch-no-theft
https://github.com/fs3l/v2-core-patch-no-theft
https://github.com/fs3l/v3-core-patch-no-lost-token
https://app.sushi.com/en/swap
https://www.defipulse.com/projects/sushiswap
https://www.defipulse.com/projects/sushiswap
https://console.cloud.google.com/marketplace/product/ethereum/crypto-ethereum-blockchain?pli=1
https://console.cloud.google.com/marketplace/product/ethereum/crypto-ethereum-blockchain?pli=1
https://www.ampleforth.org/
 https://bscscan.com/
 https://bscscan.com/
 https://etherscan.io/
https://uniswap.org/
https://docs.google.com/document/d/1XRcYu_Gk3SQAo6aNbfT2AZ2mJqmNqrClREKyoa4dgFA/edit?usp=sharing
https://docs.google.com/document/d/1XRcYu_Gk3SQAo6aNbfT2AZ2mJqmNqrClREKyoa4dgFA/edit?usp=sharing
https://docs.google.com/document/d/1XRcYu_Gk3SQAo6aNbfT2AZ2mJqmNqrClREKyoa4dgFA/edit?usp=sharing
https://doi.org/10.1007/978-3-662-53357-4_1
https://doi.org/10.1145/3133956.3134060
https://doi.org/10.1109/SP40001.2021.00084
https://doi.org/10.1145/3319535.3345664
https://doi.org/10.1145/3560832.3564259
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1145/3419614.3423255
https://doi.org/10.1145/3319535.3345666
https://doi.org/10.1145/3319535.3345666
https://doi.org/10.1109/Blockchain50366.2020.00032
https://doi.org/10.1109/Blockchain50366.2020.00032
https://www.usenix.org/conference/usenixsecurity15
https://doi.org/10.48550/arXiv.2203.11520
https://dl.acm.org/citation.cfm?id=3212736
https://doi.org/10.1109/SP.2018.00047
https://www.usenix.org/conference/usenixsecurity20/presentation/kalodner
https://www.usenix.org/conference/usenixsecurity20/presentation/kalodner
https://doi.org/10.1007/978-3-662-45472-5_30
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp

[37] K. Li, Y. Tang, J. Chen, Y. Wang, and X. Liu, “Toposhot:
uncovering ethereum’s network topology leveraging replacement
transactions,” in IMC ’21: ACM Internet Measurement Conference,
Virtual Event, USA, November 2-4, 2021, D. Levin, A. Mislove,
J. Amann, and M. Luckie, Eds. ACM, 2021, pp. 302–319.
[Online]. Available: https://doi.org/10.1145/3487552.3487814

[38] K. Li, Y. R. Tang, J. Chen, Z. Yuan, C. Xu, and J. Xu, “Cost-
effective data feeds to blockchains via workload-adaptive data
replication,” in Middleware ’20: 21st International Middleware
Conference, Delft, The Netherlands, December 7-11, 2020, D. D.
Silva and R. Kapitza, Eds. ACM, 2020, pp. 371–385. [Online].
Available: https://doi.org/10.1145/3423211.3425696

[39] K. Li, Y. Wang, and Y. Tang, “DETER: denial of ethereum
txpool services,” in CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic
of Korea, November 15 - 19, 2021, Y. Kim, J. Kim, G. Vigna, and
E. Shi, Eds. ACM, 2021, pp. 1645–1667. [Online]. Available:
https://doi.org/10.1145/3460120.3485369

[40] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart contracts smarter,” in Proceedings of ACM
CCS, 2016, 2016, pp. 254–269. [Online]. Available: https:
//doi.org/10.1145/2976749.2978309

[41] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and
S. Ravi, “Concurrency and privacy with payment-channel
networks,” CoRR, vol. abs/1911.09148, 2019. [Online]. Available:
http://arxiv.org/abs/1911.09148

[42] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maffei, “Anonymous multi-hop locks for blockchain scalability
and interoperability,” in 26th NDSS 2019, 2019.

[43] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. M. Voelker, and S. Savage, “A fistful of bitcoins: characterizing
payments among men with no names,” in Proceedings of the 2013
Internet Measurement Conference, IMC 2013, Barcelona, Spain,
October 23-25, 2013, K. Papagiannaki, P. K. Gummadi, and
C. Partridge, Eds. ACM, 2013, pp. 127–140. [Online]. Available:
https://doi.org/10.1145/2504730.2504747

[44] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry, “Sprites:
Payment channels that go faster than lightning,” CoRR, vol.
abs/1702.05812, 2017. [Online]. Available: http://arxiv.org/abs/
1702.05812

[45] M. Mirkin, Y. Ji, J. Pang, A. Klages-Mundt, I. Eyal, and A. Juels,
“Bdos: Blockchain denial of service,” 2019.

[46] A. Narayanan, J. Bonneau, E. W. Felten, A. Miller, and
S. Goldfeder, Bitcoin and Cryptocurrency Technologies - A
Comprehensive Introduction. Princeton University Press, 2016.
[Online]. Available: http://press.princeton.edu/titles/10908.html

[47] D. Pérez and B. Livshits, “Broken metre: Attacking resource
metering in EVM,” in 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020. The Internet Society, 2020.
[Online]. Available: https://www.ndss-symposium.org/ndss-paper/
broken-metre-attacking-resource-metering-in-evm/

[48] D. Perez and B. Livshits, “Smart contract vulnerabilities:
Vulnerable does not imply exploited,” in 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021,
M. Bailey and R. Greenstadt, Eds. USENIX Association, 2021,
pp. 1325–1341. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/perez

[49] K. Qin, L. Zhou, and A. Gervais, “Quantifying blockchain
extractable value: How dark is the forest?” CoRR, vol.
abs/2101.05511, 2021. [Online]. Available: https://arxiv.org/abs/
2101.05511

[50] F. Reid and M. Harrigan, “An analysis of anonymity in the
bitcoin system,” in PASSAT/SocialCom 2011, Privacy, Security,
Risk and Trust (PASSAT), 2011 IEEE Third International
Conference on and 2011 IEEE Third International Conference on
Social Computing (SocialCom), Boston, MA, USA, 9-11 Oct.,
2011. IEEE Computer Society, 2011, pp. 1318–1326. [Online].
Available: https://doi.org/10.1109/PASSAT/SocialCom.2011.79

[51] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum:
Protecting existing smart contracts against re-entrancy attacks,”
in 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/sereum-
protecting-existing-smart-contracts-against-re-entrancy-attacks/

[52] L. Su, X. Shen, X. Du, X. Liao, X. Wang, L. Xing, and
B. Liu, “Evil under the sun: Understanding and discovering
attacks on ethereum decentralized applications,” in 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13,
2021, M. Bailey and R. Greenstadt, Eds. USENIX Association,
2021, pp. 1307–1324. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/su

[53] C. F. Torres, R. Camino, and R. State, “Frontrunner jones
and the raiders of the dark forest: An empirical study of
frontrunning on the ethereum blockchain,” in 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13,
2021, M. Bailey and R. Greenstadt, Eds. USENIX Association,
2021, pp. 1343–1359. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/torres

[54] F. Victor, “Address clustering heuristics for ethereum,” in
Financial Cryptography and Data Security - 24th International
Conference, FC 2020, Kota Kinabalu, Malaysia, February
10-14, 2020 Revised Selected Papers, ser. Lecture Notes in
Computer Science, J. Bonneau and N. Heninger, Eds., vol.
12059. Springer, 2020, pp. 617–633. [Online]. Available:
https://doi.org/10.1007/978-3-030-51280-4 33

[55] Y. Wang, Y. Chen, S. Deng, and R. Wattenhofer, “Cyclic arbitrage
in decentralized exchange markets,” CoRR, vol. abs/2105.02784,
2021. [Online]. Available: https://arxiv.org/abs/2105.02784

[56] Y. Wang, K. Li, Y. Tang, J. Chen, Q. Zhang, X. Luo, and T. Chen,
“Towards saving blockchain fees via secure and cost-effective
batching of smart-contract invocations,” IEEE Transactions on
Software Engineering, pp. 1–20, 2023.

[57] Y. Wang and Y. Tang, “Poster: Enabling cost-effective blockchain
applications via workload-adaptive transaction execution,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los Angeles, CA,
USA, November 7-11, 2022, H. Yin, A. Stavrou, C. Cremers, and
E. Shi, Eds. ACM, 2022, pp. 3483–3485. [Online]. Available:
https://doi.org/10.1145/3548606.3563505

[58] Y. Wang, Q. Zhang, K. Li, Y. Tang, J. Chen, X. Luo, and
T. Chen, “ibatch: saving ethereum fees via secure and cost-
effective batching of smart-contract invocations,” in ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021, D. Spinellis, G. Gousios,
M. Chechik, and M. D. Penta, Eds. ACM, 2021, pp. 566–577.
[Online]. Available: https://doi.org/10.1145/3468264.3468568

[59] P. Xia, H. Wang, B. Gao, W. Su, Z. Yu, X. Luo, C. Zhang,
X. Xiao, and G. Xu, “Trade or trick?: Detecting and characterizing
scam tokens on uniswap decentralized exchange,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 5, no. 3, pp. 39:1–39:26, 2021.
[Online]. Available: https://doi.org/10.1145/3491051

[60] H. Yousaf, G. Kappos, and S. Meiklejohn, “Tracing transactions
across cryptocurrency ledgers,” in 28th USENIX Security
Symposium, USENIX Security 2019, Santa Clara, CA, USA,
August 14-16, 2019, N. Heninger and P. Traynor, Eds. USENIX
Association, 2019, pp. 837–850. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity19/presentation/yousaf

[61] M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, “TXSPECTOR: un-
covering attacks in ethereum from transactions,” in 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14,
2020, S. Capkun and F. Roesner, Eds. USENIX Association,
2020, pp. 2775–2792. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/zhang-mengya

[62] L. Zhou, K. Qin, A. Cully, B. Livshits, and A. Gervais,
“On the just-in-time discovery of profit-generating transactions
in defi protocols,” in 42nd IEEE Symposium on Security
and Privacy, SP 2021, San Francisco, CA, USA, 24-27
May 2021. IEEE, 2021, pp. 919–936. [Online]. Available:
https://doi.org/10.1109/SP40001.2021.00113

16

https://doi.org/10.1145/3487552.3487814
https://doi.org/10.1145/3423211.3425696
https://doi.org/10.1145/3460120.3485369
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
http://arxiv.org/abs/1911.09148
https://doi.org/10.1145/2504730.2504747
http://arxiv.org/abs/1702.05812
http://arxiv.org/abs/1702.05812
http://press.princeton.edu/titles/10908.html
https://www.ndss-symposium.org/ndss-paper/broken-metre-attacking-resource-metering-in-evm/
https://www.ndss-symposium.org/ndss-paper/broken-metre-attacking-resource-metering-in-evm/
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://arxiv.org/abs/2101.05511
https://arxiv.org/abs/2101.05511
https://doi.org/10.1109/PASSAT/SocialCom.2011.79
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.ndss-symposium.org/ndss-paper/sereum-protecting-existing-smart-contracts-against-re-entrancy-attacks/
https://www.usenix.org/conference/usenixsecurity21/presentation/su
https://www.usenix.org/conference/usenixsecurity21/presentation/su
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://doi.org/10.1007/978-3-030-51280-4_33
https://arxiv.org/abs/2105.02784
https://doi.org/10.1145/3548606.3563505
https://doi.org/10.1145/3468264.3468568
https://doi.org/10.1145/3491051
https://www.usenix.org/conference/usenixsecurity19/presentation/yousaf
https://www.usenix.org/conference/usenixsecurity19/presentation/yousaf
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya
https://doi.org/10.1109/SP40001.2021.00113

1 contract pool{
2 ...
3 function refundMisDeposited(bytes32 tx1,

bytes32[] block_headers, bytes32[]
merkle_proof) {

4 address sender,token;
5 uint256 amount,value;
6 if(length(block_headers) < 12) revert();
7 if(!verifyHeaders(block_headers)) revert();
8 if(!verify(tx1,block_headers.end(),

merkle_proof)) revert();
9 if(tx1.receiver != this & tx1.calldata.to()!=

this) revert();
10 // take action to refund
11 user = tx1.sender;
12 token = tx1.receiver;
13 amount = tx1.calldata.amount();
14 value = tx1.value;
15 //refund ETH
16 if(tx1.value != 0)
17 tx1.sender.transfer(tx1.value);
18 //refund Token
19 if(tx1.calldata.amount()!=0)
20 tx1.receiver.transfer(user,amount);
21 }}

Listing 1: Psuedocode of secure AMM protocol

[63] L. Zhou, K. Qin, and A. Gervais, “A2MM: mitigating
frontrunning, transaction reordering and consensus instability
in decentralized exchanges,” CoRR, vol. abs/2106.07371, 2021.
[Online]. Available: https://arxiv.org/abs/2106.07371

[64] S. Zhou, Z. Yang, J. Xiang, Y. Cao, M. Yang, and Y. Zhang,
“An ever-evolving game: Evaluation of real-world attacks and
defenses in ethereum ecosystem,” in 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020,
S. Capkun and F. Roesner, Eds. USENIX Association, 2020,
pp. 2793–2810. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/zhou-shunfan

A. Countermeasure by Hardening Deployed
AMM

We propose running a lost-and-found off-chain web
service. This off-chain service monitors the on-chain state
for profitability and collects extractable value ahead of
actual attacks. To do so, the service takes an aggressive
strategy by directly monitoring the vulnerable deposits
(i.e., P1, P3, P4) and withdrawing immediately upon
discovery. For token interest P2, the service monitors
mempool for stealing transactions sent to the pools sup-
porting token interests. Upon the discovery, the service
sends transactions to frontrun the stealing transactions.

In essence, this service performs the same functional-
ity as thief attackers in discovering profitability opportuni-
ties on-chain, but it is benign in the sense that it stores the
extracted value and allows victims to claim their tokens.
Technically, given the value deposited by Account V , the
service stores the value and allows V or any other account
with V ’s signature to claim the value.

B. Detail of Secure Pool Redesign

We propose an ETHRelay-style [3], [6] protocol
to refund mis-deposited value to the pool. As shown
in Figure 11, suppose account Alice sends a trans-
action tx1 that misuses unsupported API to make
deposits (e.g., token.transfer() or transferring

Ether in a transaction). After realizing her mistake,
Alice sends the second transaction tx2 to call a
refund function in the pool. The refund’s signature
is the following: refund(tx1, block_headers,
merkle_proof). Inside, the refund function verifies
the given block headers, the amount of which should
be sufficient for finality of transaction inclusion (e.g.,
12 blocks or more). The function also checks if tx1

is included in the latest block header given using the
merkle_proof. The function further checks whether
the transaction deposits value to the pool smart contract.
If so, the function extracts the sender of tx1, the type and
amount of value deposited. If it is a token, the function
then calls transfer function in the token smart contract
to refund the tokens. If it is an Ether, the function calls
the builtin transfer to refund Ether. In both cases, the
refund is received by the sender extracted from tx1, but the
sender of tx2. After that, the function records the refund
to prevent duplicated refunds in the future.

In the above protocol, after Alice’s tx1, suppose an-
other account Bob sends tx′2 that frontruns Alice’s tx2.
Bob can only ask to send the refund back to Alice, because
it is hard to forge enough blocks that include a forged mis-
deposit transaction tx′1 with him as the sender.

C. Algorithm for Discovering Fairness Viola-
tions

The algorithm: The proposed algorithm in Listing 2 takes
as input the traces of deposit and withdrawal records and
produces as output the risky swaps it finds. The algorithm
internally runs in two rounds. In the first round, it equi-
joins the deposit records with withdrawal records based
on their transaction IDs. In each joined tuple, which is
a set of deposit records and withdrawal records in the
same transaction, it matches the deposit and withdrawal
records. In the removeMatch function, it finds a group of
deposit records that match a group of withdrawal records
in value. Specifically, if the deposit record has the same
value with a withdrawal record in the same transaction, it
constitutes a normal swap or addLiquidity operation, and
the two records are removed from the two traces. If the
value mismatches. it merges the two records into one, that
is, the one with larger value. For instance, if a transfer of
value 5 and a swap of value 8 are in the same transaction,
it replaces the two records in the dataset with a merged
swap record of value 8-5=3.

The second round runs a similar join-then-
matchmaking process with the first round. The only
difference is the join condition is temporal similarity,
that is, a record withdrawal[i] joins deposit records that
occur before withdrawal[i] and after withdrawal[i-1]
(assuming deposit and withdrawal records are ordered in
time). After the joined pair is produced, it runs the same
match-making function and removes the matched cases.

After these rounds, what’s left in the table are the
mismatches.

D. Detail of Discovered Fairness Violations

Table 10 presents the number of transactions that map
to fair operations and operaions violating fairness.

17

https://arxiv.org/abs/2106.07371
https://www.usenix.org/conference/usenixsecurity20/presentation/zhou-shunfan
https://www.usenix.org/conference/usenixsecurity20/presentation/zhou-shunfan

1 //deposits and swapOrAddL are both ordered by
time

2 void findMismatch(Record[] deposits, Record[]
withdrawals){

3 for(joinedpair in joinByTxId(deposits,
withdrawals)){

4 removeMatch(deposits, withdrawals,
joinedpair.i1,joinedpair.i2, joinedpair.j1,
joinedpair.j2);

5 for(joinedpair in joinByTemporalSimilarity(
deposits,withdrawals))

6 removeMatch(deposits, withdrawals,
joinedpair.i1, joinedpair.i2, joinedpair.j1
, joinedpair.j2);

7 }}
8
9 void removeMatch(Record[] deposits, Record[]

withdrawals,int i1, int i2, int j1, int j2)
{

10 for (s in powerset(deposits[i1 ... i2])){
11 for (t in powerset(withdrawals[j1 ... j2])){
12 if (sumValue(s) == sumValue(t)){
13 deposits.markRemoval(s);
14 withdrawals.markRemoval(t);
15 return;}}}}

Listing 2: Pseudocode to find mismatch

TABLE 10: Measured fairness violations on top DEXes
and their transaction numbers.

Fair I II III IV V
Uniswap-V2 53 ∗ 106 4767 1375 762 3879 2∗

105

Sushiswap 3.7 ∗ 106 193 61 16 57 10

Pancakeswap 3.0 ∗ 106 2.8 ∗ 105 2507 364 1.7 ∗ 105 157

Uniswap-V3 1.5 ∗ 106 0 167 0 0 0

Balancer 2.29 ∗ 106 0 6858 0 0 0

Curve 6.35 ∗ 105 0 8 0 0 0

E. Theft Detection Algorithm and Additional
Indicators

E.1. Detection Algorithm

We design theft detection algorithm that encodes the
indicators. The algorithm takes as input the detected fair-
ness violations from the previous phase (§ 4) and produces
the strategies an attack account takes.

Specifically, recall that each fairness-violating swap
consists of a profitable deposit and a (successful) with-
drawal. We expand it by adding all the withdrawal at-
tempts, no matter success or failure, on the same pool by
calling its getReserves or swap functions between
time t1 and t2 where t1/t2 is the time when the curren-
t/next deposit occurs. We ignore the fair swaps between t1
and t2. Hence for each violating swap, we obtain a list of
accounts that send the withdrawal or expanded withdrawal
attempt. For each account and each associated swap, the
algorithm checks the indicators and reports the number of
attacker labels the account is tagged with. In particular,
indicator I1/I2 produces the average block gap over the
account’s swaps when the deposit is non-interest/interest.

E.2. Additional Theft-Detection Indicators

We list two additional indicators used for theft detec-
tion.

void AttackDiscovery(FairnessViolation[] swaps,
int th1, int th2){

for(FairnessViolation s in swaps){
Mapping blockGaps;

for(Account w in s.getWithdrawers())
if(isCA(w)) //I4

if(findCall(w, s.getPool(), "getReserve")
.getTx().checkCall(w, s.pool().tokens(), "
balanceOf()"))

emit(w, "Attacker");
//I1
Block depositTime=s.getDeposit().getBlock()
;
Block withdrawTime=w.getBlock();
blockGaps.getValue(w).add(withdrawTime-
depositTime));
//I2
numberSwaps.getValue(w).increment();

}

for(Account w in blockGaps.keySet()){
blockGap.getValue(w).divideBy(numberSwaps.
getValue(w));
if(blockGap.getValue(w) > th1) emit (w, "
Attacker");
if(numberSwaps.getValue(w) > th2) emit (w,
"Attacker");

}}

Listing 3: Pseudocode to discover attacks

Indicator I8: An account whose withdrawal trans-
actions appear an arbitrary number of blocks after
the profitable deposits are likely to be a scavenger
trader. In other words, an account whose block gaps
have a large deviation is likely to be a scavenger
trader.

We propose a heuristic that intentional attackers would
victimize a diverse set of accounts while a lucky trader
may victimize a fixed type of accounts (e.g., in the same
pool).

Indicator I9: If an account sends withdrawals in
a large number of risky swaps, the account is an
attacker.

F. Establishing Ground Truth

In order to establish the ground truth whether an ac-
count X is actually an attacker, we search on the Internet
the webpages that link the account X to a number of
keywords including “attack, vulnerable, scam, frontrun-
ning, bot, arbitrager, MEV, bots”. Besides, we check the
account X’s tags on Etherscan. Out of the 142 suspected
accounts from our detected thefts, we found 9 accounts are
complained about on the Internet webpages, 11 accounts
are tagged as miners on Etherscan, and 2 accounts are
tagged as MEV bots on Etherscan. The ground truth
results are presented in Table 11.

G. Detailed Cases of Lost Tokens

In Table 12, we list top cases in value. For instance, in
transaction 0x1374 transfers, the sender account transfers
152 YAMv2 tokens or 1609 USD to a Balancer’s pool.
In this transaction, the deposit is made by directly calling

18

TABLE 11: Ground truth dataset on thief accounts

Account Internet search Etherscan
tags

0x9799b475dec92bd99bbdd943013325c36157f383 frontrunner@google MEV
bot

0x0c08545df4939ef46c1364b5930e840739667467 bot@google
0x56178a0d5f301baf6cf3e1cd53d9863437345bf9 frontrunner@google,

attack@twitter,
bot@reddit

0x00000000e84f2bbdfb129ed6e495c7f879f3e634 bot@google
0xca850b6833ef86ef0484c6be74b06d61b39df031 scam@google
0x17e8ca1b4798b97602895f63206afcd1fc90ca5f attack@google
0x7c651d7084b4ba899391d2d4d5d3d47fff823351 arbitrager@google
0xf90e98f3d8dce44632e5020abf2e122e0f99dfab mev@google
0x42d0ba0223700dea8bca7983cc4bf0e000dee772 bots@google,

bot@reddit
0x0000000000007f150bd6f54c40a34d7c3d5e9f56 MEV

bot
0xEA674fdDe714fd979de3EdF0F56AA9716B898ec8 miner
0x000000000025d4386f7fb58984cbe110aee3a4c4 MEV

bot
0xD224cA0c819e8E97ba0136B3b95ceFf503B79f53 miner
0xb8aaed2e3117fa589eb05b0d7d0c8469d9e41ec5 miner
0x829BD824B016326A401d083B33D092293333A830 miner
0x5A0b54D5dc17e0AadC383d2db43B0a0D3E029c4c miner
0x99C85bb64564D9eF9A99621301f22C9993Cb89E3 miner
0x1aD91ee08f21bE3dE0BA2ba6918E714dA6B45836 miner
0x1aD91ee08f21bE3dE0BA2ba6918E714dA6B45836 miner
0x3EcEf08D0e2DaD803847E052249bb4F8bFf2D5bB miner
0x8595Dd9e0438640b5E1254f9DF579aC12a86865F miner
0xB3b7874F13387D44a3398D298B075B7A3505D8d4 miner

TABLE 12: Top cases of lost tokens in value.
Tx pair Val. equality Value (USD) Block diff AMM Token
0x13743e0974d0a716bb7481841ad5f84c7304d4b1bcbfcaaec71fa9219e3652e3,
0x15642eede8d390ff8931f761c35ab5d0ca6171a177ebfbbda965e8dc91f89eb4

True 1609 20994 Balancer YAMv2

0xc7c21765cc5f9ea252593d838df225d0d7954047a4f38f57e8635b54e3991760,
0xc7c21765cc5f9ea252593d838df225d0d7954047a4f38f57e8635b54e3991760

True 189 0 Balancer COMP

0x90bf8271a62582cc545496b60492293e0341dbcf4f34f4b375a18998f308515e,
0x90bf8271a62582cc545496b60492293e0341dbcf4f34f4b375a18998f308515e

True 158 0 Balancer COMP

0xe3b38ab3a132e198136babe2de859a13f655029e81393e240593424ffedfd465,
0x85eb4c8e793e12b86475f9e7fe5d468c7521d2fa3d5e45ca63c532705a180b1b

False 157 35 Uniswap V3 SHIBA INU

0x2a79698eb4946e44b0d91ca09146045dcee2450459e98b2b780f8357a18885c8,
0x2a79698eb4946e44b0d91ca09146045dcee2450459e98b2b780f8357a18885c8

True 139 0 Balancer COMP

the token’s transfer function which Balancer does not
take for deposit. Then, after 20994 Ethereum blocks, the
sender, probably after realizing the mistake, sends another
transaction 0x1564 to call the Balancer pool’s joinpool
function to retry the deposit. The retried deposit is of the
exact same amount of the same token with the original
deposit.

For another instance, in transaction 0xe3b3, the
sender transfers 4.7M SHIB tokens by directly calling
transfer function to a Uniswap V3 pool which only
takes deposit by transferFrom. After 35 blocks, the
sender switches the correct mechanism for deposit by
calling Uniswap V3’s swap function. The value in the
retried deposit is twice the value in the original deposit.

H. Extended Related Work

This work is related to blockchain data analysis. We
survey blockchain-data analysis for attack detection and
user de-anonymization.

Detecting Smart-Contract Program-level Attacks:
Attack detection on blockchain generally works as dis-

tilling the attack signatures from known vulnerabili-
ties and attack patterns and matching certain represen-
tation of smart-contract execution (e.g., in transactions,
function-call graph or instruction traces) against the at-
tack signatures. There are known patterns of smart-
contract program-level attacks, such as reentrancy attacks,
transaction order dependency, etc. Existing works tackle
the detection of program-level attacks on Ethereum-like
blockchains.

TxSpector [61] records and replays Ethereum transac-
tions into fine-grained EVM instruction traces, which are
stored in datalog databases and queries to compare against
the signatures of known attacks. Similarly, Zhou et al [64]
model the coarse-grained traces of smart contract function
calls and match them against known attack signatures. At
its core, two function calls are modeled, that is, smart
contract creation/destruction and token transfers (money
flow). Su et al [52] uses reported attack instances to extract
attack signatures, and it discovers new attacks as well as
uncovers the attacker/victim behavior by systematically
analyzing the Ethereum blockchain traces. Other similar

19

work [48] detects the attack instances of known vulnera-
bilities.

Detecting DeFi Protocol-level Attacks: In addition to
detecting program-level attacks, there are related works on
detecting protocol-level attacks on deployed DeFi applica-
tions. Notable DeFi attack patterns include frontrunning,
arbitrage, etc.

Torres, et al. [53] detects front-running attacks by
matching Ethereum transactions against a signature of
success-failure transaction pair. Qin et al [49] systematizes
different types of front-running attacks and measures the
attacks and mitigation in the wild.

Front-running attacks are a class of attacks in which
the attacker inserts a malicious transaction before the
victim transaction to extract illicit profit (e.g., to win
an auction bid unfairly). More generally, front-running
is a class of MEV or miner extractable value, in which
transaction order can be manipulated by a profit-driven
miner to receive additional profit.

Arbitrage attacks work by an aggressive trader gain
profit by exploiting difference of exchange rates across
different DEXes/price oracles. Wang, et al [55] detects
cyclic arbitrage on Uniswap-V2, by finding profitable
cycles on token-transfer graph (nodes are tokens and edges
are transfers). Similarly, Zhou, et al [62] discovers profit-
generating transitions in real-time by finding cycles and
leveraging solvers.

User de-anonymization: While blockchain accounts
and their activities are visible, the linkage of accounts
(which are public keys) with real-world identities is not
directly observable. There are existing works to infer
blockchain account linkage in efforts to deanonymize
users. Specifically, there are three types of linkage infor-
mation: 1) Whether a specific account is linked to a spe-
cific real-world user identity. Existing works [34] monitor
a blockchain network’s traffic of transactions propagated
from an IP and link the transaction sender’s account with
the IP. 2) Whether two blockchain accounts are linked, as
the sender and receiver, in a privacy-enhanced transaction.
Mixing services are intended to break the sender-receiver
linkage. There are existing works aimed at reconstruct-
ing the sender-receiver relation on transactions relayed
through mixing services. In particular, address reuse is a
heuristic to link transaction senders/receivers on Bitcoin-
like blockchains [33], [60].

3) Whether two blockchain accounts are shared by
the same real-world user. On Bitcoin, transaction graph
analysis [43], [46], [50] is proposed to recover the ac-
count linkage. Particularly, address clustering heuristics
are proposed. For instance, two accounts that are co-spent
by a Bitcoin transaction or that involve a change are
likely to be controlled by the same off-chain user. These
address clustering heuristics are useful only in the context
of Bitcoin’s UTXO model. Address clustering is useful to
uncover the money flow in online criminal activities such
as ransomware payments on Bitcoin [32].

Of most relevance to this work is the address cluster-
ing techniques proposed to link Ethereum accounts [54].
Specifically, the observation is that some DEXes support
the deposit address, that is, trader Alice swapping token
T0 for token T1 can specify a “deposit” address to receive
T1. Multiple accounts using the same deposit address are
likely to be the same off-chain user.

This work is different from Ethereum account linkage.
In this work, the attack detection problem is to verify
whether two Ethereum accounts are from two off-chain
users, which is different from detecting if two accounts are
linked by the same off-chain user. Moreover, the Ethereum
address clustering work [54] has to assume that the swap is
fair, normal one, so that they can attribute address sharing
to the cause of the same off-chain user. By contrast, in
this work, we do observe two sender accounts share the
same deposit address, but they are caused by two victim
accounts whose swaps are grabbed by the same attack
account, as verified by our analysis of attacker/victim
behavior.

20

	Introduction
	Related Work
	Background
	Uncovering Unfair Trades
	Patterns of Violations
	Token Supply Rebase (Pattern P1)
	Interest-bearing Tokens (P2)
	External Transfer for Deposit (P3)
	Buggy Router Contracts (P4)

	Detecting Token Thefts
	The Detection Problem
	The Detection Method
	Results
	Case Studies
	Block Gaps
	Attacker/Victim Behavior over Time
	Value Received by Pools

	Detecting Lost Tokens
	Root Causes & Countermeasures
	Risk Analysis
	Countermeasure Design Space
	Secure AMM Pool Redesign

	Responsible Disclosure
	Conclusion
	Acknowledgment
	References
	 A: Countermeasure by Hardening Deployed AMM
	 B: Detail of Secure Pool Redesign
	 C: Algorithm for Discovering Fairness Violations
	 D: Detail of Discovered Fairness Violations
	 E: Theft Detection Algorithm and Additional Indicators
	Detection Algorithm
	Additional Theft-Detection Indicators

	 F: Establishing Ground Truth
	 G: Detailed Cases of Lost Tokens
	 H: Extended Related Work

