
DETER 2.0: Understanding Ethereum Mempool DoS Security via Stateful Fuzzing

Yibo Wang, Wanning Ding, Yuzhe Tang, Kai Li, Jiaqi Chen

Abstract—This work tackles the systematic understanding and
hardening of Ethereum security against asymmetric denial of
mempool service (DETER+).

First, the paper presents an automatic exploit-generation
tool-chain that adaptively discovers attack traces to evade
protection in real Ethereum clients. It leads to the discov-
ery of seven new attack patterns. Our evaluation shows
that while the recent Ethereum clients (incl. Geth V 1.10.13

and OpenEthereum V 3.3.4) are patched against the previous
known DETER attack, they are found vulnerable to the
newly discovered DETER+ attacks with high success rates
(88%|96%) at low costs (as low as zero Ether/Gas). By evalu-
ation on testnets, DETER+ attacks can be propagated to the
entire network and deny the global mining service.

Second, the paper presents an online mitigation scheme
that prioritizes transaction validity upon admission and detects
malicious transactions that form dual attacks. With a prototype
implementation, we conduct experiments and show that the
mitigation schemes can effectively push the attack cost to be
as high as the baseline attack of sending high-price spam
transactions.

Index Terms—Blockchains, Ethereum, attack discovery, exploit
generation, online detection

1. Introduction

In a permissionless blockchain network supporting open
membership, denial of service (DoS) is a prominent threat.
In it, an attacker can use the blockchain’s limited resources
without being held accountable. While blockchain protocols
have been designed to defend against certain DoS (e.g.,
blockchain mining to discourage Sybil nodes [1]–[3] and
charging execution fees to dissuade consuming smart con-
tracts [4], [5]), the DoS security of a blockchain system
remains a wide open and ongoing problem, thanks to unde-
fined behaviors and the gap between protocol specification
and actual implementation.

An understudied blockchain system component is the
memory pool or mempool. On a blockchain node, the
mempool buffers unconfirmed transactions prior to mining,
transaction propagation and other blockchain services. Had
a mempool’s service in buffering unconfirmed transactions
been denied, the damage can be cascaded to these down-
stream services, even causing global network disruption. For
instance, as demonstrated in a recent study [6], denying a
top miner’s mempool can force the blockchain network to
produce empty blocks.

In this work, we formulate the notion of Asymmetrical
DeniAl of Mempool Service, coined DETER+, to abstract
a class of particularly practical mempool DoS attacks. In
DETER+, the attacker sending crafted transactions to a
target mempool aims at denying the mempool’s service of
buffering unconfirmed transactions and victimizing both the
downstream components (e.g., miner) and users sending
normal transactions. Unlike the high-cost transaction spam-
ming [7], an DETER+ attacker aims at keeping their cost
asymmetrically low while achieving the above damage goal.
That is, the attacker’s cost in paying the crafted transactions’
fees should be much lower than the fees of the victim normal
transactions, that is, the transactions evicted or declined
in the mempool under attacks. In the existing literature,
the only known attack achieving DETER+ is DETER [6],
which is discovered through manual code inspection.

Figure 1: System overview

This work aims to systematically understand and harden
Ethereum’s mempool security against DETER+ attacks. We
approach the goal from two angles: First, given a black-
box Ethereum client, we aim to develop offline tools to
discover feasible attacks automatically. Second, we aim to
design detection modules to harden the target Ethereum
client against all discovered attacks. The two angles are
complementary, as shown in Figure 1: On the one hand,
a comprehensive understanding of feasible attacks through
the discovery module is necessary for designing, testing,
and evaluating the detection module. On the other hand,
an Ethereum client, no matter whether it is hardened with
the attack detection, is necessary to provide feedback to the
attack discovery module so that its exploit generation can
be guided to adaptively evade client-specific protections.

1.1. Systematic Attack Discovery

Automatic exploit generation: We propose an automatic
exploit-generation framework for systematical attack discov-
ery that efficiently explores the attack design space. The
framework runs in two phases: model checking and con-
crete exploit generation. Specifically, in the first phase, we
abstract complex Ethereum mempool implementations into a
simple and checkable model and check the model against as-

sertions induced from DETER+ attacks. The model check-
ing produces feasible patterns to enable DETER+ attacks.
This phase is implemented using the explicit-state model-
checking tool, TLC [8].

Then, it generates, explores and validates actual attacks
against real Ethereum clients by extending, mutating and
combining the candidate patterns adaptively. The two phases
are complementary as the first phase allows for extensive
transaction exploration and the second phase allows for
actual exploit validation.
New attacks: Our automatic exploit generation framework
can rediscover the two known attacks (i.e., DETER-X and
DETER-Z [6]), explore a previously unexplored attack de-
sign space, and discover new attack patterns. Specifically,
the existing DETER attack works by having an attacker
node send invalid transactions and evict normal transac-
tions in a target mempool; we denote this attack pattern
by “evict by sending straight invalid transactions.” Our
framework discovers several new attack primitives beyond
the known “evict-by-invalid” pattern: 1) Instead of evicting
the normal transactions existing in a mempool, DETER+
can be achieved by “locking” a mempool against subsequent
normal transactions by occupying the mempool when it is
empty (e.g., the vacant mempool slots created by mining).
2) Instead of sending straight invalid transactions, DETER+
can be achieved by sending stealthier transactions that ap-
pear valid at admission and turned into invalid ones at the
time of mining. We call this primitive by valid-turned-invalid
transactions. 3) DETER+ can also be achieved by avoiding
invalid transactions at all and only by sending chargeable
but low-cost valid transactions. We call the primitive by low-
cost valid transactions. Note that low-cost valid transactions
differ from the existing spamming techniques that rely on
sending high-cost transactions [7].

We discovered seven new attack patterns by systemat-
ically exploring the new attack design space, as shown in
Figure 2. Notably, some of the discovered patterns can form
dual attacks in the sense that the defense to mitigate one
attack can be exploited to successfully mount another attack.
Specifically, evicting a mempool using valid-turned-invalid
transactions (i.e., upright triangle in Figure 2) can be mis-
used to lock the mempool using low-cost valid transactions
(i.e., rectangle in Figure 2).
Attack evaluation: We evaluate automatically generated
DETER+ attacks on the two dominant Ethereum clients,
that is, Geth and OpenEthereum of different versions. In
each experiment, we obtain the DETER+ attacks adaptively
generated against a given Ethereum client, and drive the
attacks against a local node running the client with mining
turned on and receiving normal transactions. Our experiment
shows that while the latest versions of both clients are
patched to defend against DETER attacks [6], they are
vulnerable under the new DETER+ attacks. Specifically,
on the latest OpenEthereum/Geth client, while DETER at-
tacks incur a low success rate (29.5%/12.5%), the new
DETER+ attacks can achieve a much higher success rate
of 96%/87.9 − −90.9% and lower costs of 21, 000/21, 000
Gas per block. Notably, our tool can generate multi-pattern

Figure 2: Attacks found by automatic exploit generation:
It can rediscover the known DETER attack (in the hollow
circle) and discover new DETER+ attacks (in the four
dark blue circles). Our work explores previously unexplored
attack design space (in light blue shades) by following
new attack patterns such as “mempool locking” and “valid-
turned-invalid transactions” (in blue text).

DETER+ attacks in an adaptive way to evade the defense
adopted in Geth. By sending attacks to the Rinkeby testnet
at a constrained load, we show that DETER+ attacks can
be propagated from the attacker node to the entire network.
We also demonstrate DETER+’s effectiveness in emptying
generated blocks at a low cost on the Rinkeby testnet.

We have disclosed the found bugs to the Ethereum
developer community through bounty programs, and our bug
reports have been confirmed.

1.2. Online Attack Mitigation

Method: Ideally, one may want to mitigate DETER+ at-
tacks precisely (completely and soundly) to achieve both
the security against DETER+ and the utility in preserving
miner revenue. Moreover, even for complete (and unsound)
attack mitigation, the naive design that tracks the formation
of all possible DETER+ attacks, while being a generic
solution, can be too expensive to be executed online.

We design a secure and lightweight mitigation scheme
in two iterations: First, we start from a simple and domain-
specific mitigation scheme F1 that enforces transaction pri-
ority at the mempool admission time. F1 prioritizes the
admission of valid transactions over invalid ones and is de-
signed to mitigate the DETER+ variants exploiting invalid
transactions (i.e., circles and triangles in Figure 2). Then, we
propose lightweight attack detection called F2 to run on top
of F1. F2 hardens the mempool against DETER+ variants
that exploit low-cost valid transactions (i.e., the rectangle
and diamond in Figure 2). Specifically, F2 monitors the
transaction trace, matches it to different attack patterns,
estimates the success rate and cost of candidate patterns,
and guide the mempool admission decision-making to avoid
patterns of positive damage. Thanks to the duality among
discovered attack patterns, the mempool may be trapped in a
state with no possibility of preventing all DETER+ attacks.
In this situation, we make our best efforts and suggest the
admission decision with minimal damage.

We implement the attack detection/mitigation in a
retrofittable subsystem over Geth with little instrumentation.

2

The attack detection scheme is a pre-check on Geth’s admis-
sion decision on any incoming transaction: If the decision is
rejected, the scheme further recommends executing a safer
admission decision.
Defense evaluation: Through analysis and experiment, we
evaluate the security of proposed online mitigation schemes.
The result shows that a mempool hardened by F1 and F2 can
mitigate the DETER+ patterns generated from our exploit-
generation framework, pushing each potential attack’s suc-
cess rate to be 0% or its attack cost to be as high as the
baseline transaction spamming [7].

Our evaluation also verifies the duality among attacks by
showing that partial mitigation (e.g., running F1 only) does
not secure the mempool against all DETER+ attacks. For
instance, on a Geth hardened with F1, the mempool locking
attack using the low-cost valid transactions (i.e., rectangle
in Figure 2) can succeed with a 100% rate at a cost lower
than the baseline spamming by order of magnitude.
Contributions: The paper makes contributions as follows:
• New attacks: Discovered new attack patterns in the previ-
ously unexplored design space to deny Ethereum’s mempool
service at a symmetric low cost. Built automatic exploit gen-
eration tools to adaptive generate and synthesize transaction
traces against real-world Ethereum clients. Evaluated the
effectiveness and low cost of the new attacks on the latest
Ethereum clients patched secure against the known attacks.
Also evaluated the effectiveness of the new attacks in deny-
ing mining services and propagating malicious transactions
in the testnet.
• Non-trivial defense: Designed a suite of online migration
schemes. Identified the duality among attack patterns and
proposed a lightweight online detection scheme. Imple-
mented the mitigation schemes on top of the Geth client.
Evaluated the security by showing it can mitigate all dis-
covered attacks.

2. Threat Model

In the threat model, an DETER+ attacker controls a
node and joins an Ethereum network. The attacker node is
connected to several normal nodes from which the attacker
selects her victim node and aims to disable the mempool
service there. In practice, the attacker can choose victim
nodes serving critical functions in the network to amplify the
damage; for instance, as shown in the previous work [6], it
is practical for an attacker node to be connected to and select
nodes serving RPC services or mining pools. To mount an
DETER+ attack, the attacker sends crafted transactions to
the victim node and disables its mempool in two ways: 1)
evicting the existing transactions in the target mempool, and
2) occupying the mempool with the crafted transactions, so
to decline subsequent normal transactions and prevent them
from entering the mempool. In other words, an DETER+
attacker sends crafted transactions and victimizes two types
of normal transactions, the ones preexisting in the mempool
and the ones arriving at the node subsequently.

Besides, an DETER+ attacker aims at lowering her
attack’s cost asymmetrically, that is, the cost of crafted

transactions in a successful DETER+ attack must be lower
than that of victim transactions.

3. Exploit Generation Framework

3.1. Design Rationale and Overview

Figure 3: Workflow overview of attack discovery

We formulate the research of exploit generation: Given
an Ethereum client, we aim at generating as many suc-
cessful DETER+ payloads as possible, that is, generating
the crafted transaction sequences that can cause successful
DETER+ attacks on the client’s mempool implementation.

Since the malicious transaction sequence should be at
least the same length with the target mempool (e.g., 5120
transactions in Geth’s mempool), the input space to search
for exploits (e.g., at least 25120) would be too large to
be exhausted. What compounds the problem is that real
Ethereum clients admit transactions packed in the unit of
“messages”, which further bloat the input space (e.g., from
a transaction set to a powerset of the transaction set).

We aim at efficiently exploring the large search space
without missing valid exploits. We formulate exploit search
at two levels: We first build a simple but generic mempool
model and extensively search exploits at this abstract level
(e.g., by model checking). We then use the patterns as the
“seed” exploits to constrain the search space against actual
mempool implementation. The idea is that the capability to
disable the simple mempool is a precondition for an actual
exploit: An actual exploit must be able to deny the sim-
ple mempool model and should additionally evade/exploit
implementation-specific features in the actual mempool.

The two-level exploit-generation framework is depicted
in Figure 3. 1) We first extract generic mempool designs
from different Ethereum clients, notably Ethereum trans-
action validity and price-based transaction admission. We
model the DETER+ threats in this simplistic mempool and
run model checking to discover the exploit patterns. 2) We
then use the patterns to guide the exploit generation against
actual mempool implementations in target Ethereum clients.
Specifically, the patterns define a much smaller input space
than the original unconstrained space (aforementioned). In
this smaller space, the proposed search algorithm validates
each trial trace iteratively against actual mempool imple-
mentation so that the generated exploit can evade various
implementation-specific countermeasures adopted.

Next, we first describe the transaction/mempool model
and notations used in the rest of the paper. We then describe
the model checking, attack patterns and actual exploit gen-
eration.

We implement the mempool model in the PlusCal/TLA+
language and use the model-checking tool TLC [8] to find

3

violations as exploit patterns. We set different settings when
checking the model: We use two initial states S0: a full
mempool (F) or an empty mempool (∅). We also turn on
and off PP3, because PP3 is on in OpenEthereum and off
in Geth.
TABLE 1: Found attack patterns: The trace is shown in
the initial state, be it full (F) or empty (∅), followed by
the sequence of transactions, each represented by its price.
With/without [] is the price of an invalid/valid transaction.
3/7/– means the feature is required/not required/irrelevant in
the success of found patterns. Note that B = 2 and the total
price of a mempool full of normal transactions is 3B = 6.

Found Violation Required features
patterns Trace Total price PP2 PP3
ED1 F,[4, 4] 0 < 6 – –
ED2 F,4, [4] 4 < 6 – –
ED3 F,[5, 5] 0 < 6 – 7
ED4 F,5, [4] 5 < 6 3 –
LD1 ∅, [4, 4] 0 < 6 – –
LD2 ∅, 1, [4] 1 < 6 – 3
LD3 ∅, [4, 4] 0 < 6 – 7
LD4 ∅, 2, [4] 2 < 6 3 3
LD5 ∅, 1, 4 5 < 6 – 3

3.2. Step 1: Seed Attack Patterns

We manually found nine unique patterns by checking
the mempool model. The model-checking settings that lead
to the discovery of each pattern are described in Table 1.
Before describing each attack pattern, we first introduce the
new attack design “dimensions” and choices discovered.
• Dimension DD1: Evict or lock mempool: We found

there are two general approaches that can disable a mem-
pool at low cost: By evicting the normal transactions
residing in an initially full mempool (i.e., mempool evic-
tion, denoted by) or by populating an initially empty
mempool to full so that subsequent normal transactions
are declined (i.e., mempool locking, denoted by).
Note that the DETER attacks fall under the category of
“evict-mempool” design.

• Dimension DD2: How to craft transactions: A suc-
cessful DETER+ attack entails occupying the mempool
with asymmetrically low-cost (or zero-cost) transactions;
there are different ways to craft these transactions: The
attacker directly crafts invalid transactions in her payload
(the “straight invalid” design, denoted by), or crafts
valid transactions that turn existing normal transactions
into invalid ones (the “valid-turned-invalid” design, de-
noted by), or crafts a sequence of low-price valid
transactions from the same sender (the “low-price valid”
design, denoted by).
Note that the DETER attacks fall under the category of
“straight invalid” design.

• Dimension DD3: What invalid transactions: An DE-
TER+ attacker can aim to generate or create invalid trans-
actions in the mempool. There are two types of invalid
transactions in Ethereum: future transactions (denoted by

) and latent overdraft transactions (denoted by). Both
are exploited in the DETER attacks [6].

The nine attack patterns and their design choices are
listed in Table 2. Note that patterns ED1 and ED2 corre-
spond to the known attacks of DETER-X and -Z variants [6].
The other seven patterns are new and previously unknown.
TABLE 2: Discovered attack patterns: the first two patterns
(ED1/ED2) are known (same with DETER [6]), while the
other seven patterns are new and previously unknown ones.

Patterns DD1 DD2 DD3 Description

ED1 Evict mempool by straight fu-
ture transactions

ED2 Evict mempool by straight la-
tent overdraft transactions

ED3 Evict mempool by valid-
turned-future transactions

ED4 Evict mempool by valid-
turned-latent overdraft txs

LD1 Lock mempool by straight fu-
ture transactions

LD2 Lock mempool by straight la-
tent overdraft transactions

LD3 Lock mempool by valid-turned-
future transactions

LD4 Lock mempool by valid-turned-
latent overdraft transactions

LD5 Lock mempool by low-cost
valid transactions

We describe the attack patterns as follows. Here, we
extend the patterns discovered under the 2-slot mempool
model to the more generic case with a B-slot mempool.
In particular, transactions can be crafted by as many as M
accounts.
• Pattern ED1 (a.k.a., DETER-X [6]): It evicts a full

mempool by directly crafting future transactions. In our
abstract model, the initial mempool is full of B normal
transactions. This pattern contains B future transactions,
each of which satisfies nonce n ≥ 2 (recall initially
the attacker’s account does not have any transaction in
the mempool or blockchain). The future transactions are
priced high, such as p = 4 in Table 1.

• Pattern ED2 (a.k.a., DETER-Z [6]): It evicts a full
mempool by directly crafting latent overdraft transactions.
Against an initially full mempool, the pattern contains
M sequences, each of B/M latent overdraft transac-
tions; in each sequence, the parent transaction satisfies
f = i ∈ [1,M], v = B (i.e., sent from an account
of index i and spending the full account balance, B
Ether (recall we set the initial account balance at a value
equal to the mempool length B). The B/M − 1 child
transactions satisfy f = i, v > 0. In other words, after the
parent transaction depletes the account balance, the child
transactions cause overdraft. All transactions including
parent and child ones are priced high, such as p = 4
in Table 1.

• Pattern ED3: It evicts a full mempool by crafting valid-
turned-future transactions. Against an initially full mem-
pool of normal transactions, the pattern contains a se-
quence of B + M valid-turned-future transactions, in

4

which the first B transactions are M sequences of valid
transactions; for the i-th sequence, it contains a parent
transaction satisfying f = i ∈ [1,M], n = 1, p = 4
and B/M − 1 child transactions satisfying f = i, n ∈
[2, B/M], p = 5. The last M transactions in the pattern
satisfy f 6∈ [1,M], p = 5. The attack is successful if the
last M transactions evict the M parent transactions (i.e.,
n = 1, p = 4) in the first B transactions.
An ED3 attacker sends valid transactions at the time
of admission, and after admission, turns them into
invalid ones. This is different from and stealthier
than the known ED1 attacker who directly sends in-
valid transactions at the time of admission. For in-
stance, in a 2-slot mempool, ED1 or DETER-X (the
straight-future” design) entails sending two transactions
〈f1, n2, p4〉, 〈f2, n2, p4〉, while ED3 entails sending three
transactions 〈f1, n1, p4〉, 〈f1, n2, p5〉, 〈f2, n1, p5〉. While
both can evict the mempool, ED3 does so by send-
ing valid-looking transactions and can bypass the latest
Ethereum’s mitigation scheme that restricts the eviction
by future transactions (see § 3.4).

• Pattern ED4: It evicts the mempool by crafting valid-
turned-latent-overdraft transactions. Against an initially
full of normal transactions, the pattern contains B + M
valid-turned-latent-overdraft transactions, which satisfy
the following pattern: The first B transactions satisfy
f ∈ [1, . . . ,M], n1, v = 1, p3 or f ∈ [1, . . . ,M], n ∈
[2, . . . , B/M], v = 1, p4, and the last M transactions sat-
isfy f ∈ [1, . . . ,M], n1, v = B, p5. The attack succeeds
if the last M transactions replace the first M transactions
of nonce 1.

• Pattern LD1: It locks the mempool by directly crafting
future transactions. On an initially empty mempool, it
sends the same transactions with Pattern ED1.

• Pattern LD2: It locks the mempool by directly crafting
latent overdraft transactions. On an initially empty mem-
pool, it sends transactions the same with ED2 except that
the transaction of nonce n = 1 is priced at p = 1 instead
of p = 4.
Unlike LD1 sending identical transactions with ED1, LD2
sends transactions with lower-price than those in ED2.
Specifically, an LD2 attacker exploits a certain admis-
sion policy (PP3) to lock the mempool at a cost lower
than ED2. For instance, in a 2-slot mempool, an ED2
trace is 〈f1, n1, p4〉, 〈f1, n2, p4〉, while an LD2 trace is
〈f1, n1, p1〉, 〈f1, n2, p4〉. With the mempool supporting
PP3, while both traces can disable the mempool, LD2
incurs only 1

4 of the Ether cost of ED2.
• Pattern LD3: It locks the mempool by crafting valid-

turned-future transactions. On an initially empty mem-
pool, it sends the same transactions with Pattern ED3.

• Pattern LD4: It locks the mempool by crafting valid-
turned-latent-overdraft transactions. On an initially empty
mempool, the pattern generates transactions similar to
ED4 except that the nonce-1 transactions are first priced
at p = 1 (instead of p = 4) and then the replacing/evicting
transactions of nonce n = 1 are priced at p = 2.

• Pattern LD5: Unlike the previous patterns that exploit

invalid transactions for extremely low costs (i.e., either
one or zero transaction’s fee per mempool), LD5 exploits
only valid transactions that are harder to defend against.
LD5 locks the mempool by crafting cheap valid trans-
actions. The attacker sends a sequence of transactions
from the same sender where the last transaction (i.e., the
transaction with the largest nonce) has a higher price than
normal transactions while all other transactions have the
minimal price (e.g., p = 1).
Note that exploiting valid transactions to lock may still
incur lower costs as will be seen. By contrast, exploiting
valid transactions to evict does not constitute a low-cost
attack where the attacker pays higher fees than those of
victim transactions.

3.3. Step 2: Concrete Exploit Generation

3.3.1. Search Algorithm. The model checking described
above abstract away implementation-level details. As a re-
sult, the discovered attack pattern is not immediately ap-
plicable to actual mempool implementation. For instance,
the checkable model is set at 2 transactions, while real
mempool implementation commonly stores thousands of
transactions (e.g., 5120 transactions in Geth). On the one
hand, exhausting the design space of 5120-transaction traces
poses computational hardness. On the other hand, naively
generating exploit traces under a given pattern may be
ineffective because there are too many implementation-level
ad-hoc defenses that cannot be modeled or checked as in the
previous step. For instance, transaction admission atomicity
(i.e., a transaction is admitted to the mempool in an all-or-
nothing manner) is a property that is not checked in our
abstract model but can be violated in real Ethereum clients
due to flawed implementation.

In this subsection, we tackle the challenge of bypassing
complex implementation-level defenses and, from the dis-
covered patterns, generate functional exploit traces on real
Ethereum clients (recall Figure 3). At the high level, we
propose a search algorithm that mutates implementation-
level API knobs, synthesizes multiple patterns in generating
exploits, and adaptively bypasses defenses.

Concretely, our exploit generation algorithm takes the
discovered attack patterns and a target Ethereum client as
input. It produces the output of initial states and trans-
action traces (i.e., the exploits) that can cause successful
DETER+ attacks on the client. The algorithm emits a
successful exploit if the target Ethereum client processing
the exploit reaches one of two following mempool states
(i.e., test oracles): 1) Transaction-evicted mempool in which
a mempool initially full of normal transactions ends up
storing only the transactions in the exploit that has a lower
cost than the initial state, 2) Locked mempool in which a
mempool declines any normal transactions and stores only
the transactions in the exploit that have a lower cost than B
normal transactions.

We use a depth-first search strategy in designing our
algorithm. That is, the algorithm continues the current de-
cision in exploring the next “bit”/transaction if it makes

5

progress in reaching successful DETER+ attacks (e.g., a
step to evict one more transaction or to lower the attacker
cost in the mempool). Otherwise, upon encountering failure,
it backtracks and switches to different API knobs (e.g., a
mempool receives incoming transactions in variable-length
messages) or different attack patterns. By this means, it
explores different knobs and synthesizes different patterns
in generating an exploit.

Specifically, the algorithm iteratively searches for the
exploit in a workflow depicted in Figure 4. This is a two-
level nested loop: The inner loop generates the next message
under a given setting (meaning fixed pattern, message size,
and transaction-generating accounts), appends the message
to the current trace, replays the trace against an initial state
on the target mempool, and monitors the mempool end state
as the feedback. If the latest message is a success (either in
evicting existing transactions or in being admitted) and the
end state does not meet test oracle, the inner loop continues
to the next iteration. Otherwise, if the latest message fails,
the algorithm discards it from the current trace and goes to
the outer loop to try the next setting. Alternatively, if the end
state meets the test oracle, the algorithm emits the current
trace as the output exploit and goes to the outer loop.

The outer loop is to iterate through different settings.
To find the next setting, it records all the tried settings on
the current trace and sets the next setting to be an untried
one. If all settings are tried, it removes the latest message
in the current trace and backtracks to a previous state until
all possibilities are covered. In other words, the outer loop
runs a depth-first search (DFS) on the “setting” space. The
pseudocode implementing this nested-loop search algorithm
is listed in Figure 5.

3.4. Attack Evaluation

This subsection evaluates the effectiveness of newly dis-
covered DETER+ attacks on multiple versions of Ethereum
clients. Due to the complex nature of the attacks and de-
fense, our evaluation is conducted from different angles
and focuses on answering three research questions, as will
be presented. Before that, we first introduce the evaluation
platform used.

3.4.1. Evaluation Platform. Our evaluation is set up in
the following framework: We run three nodes in a local
network, each of which runs the same tested Ethereum
client, be it Geth or OpenEthereum. The first node is an
attacker who is connected to the second node as a victim
and sends the victim crafted transactions. The victim node is
also connected to the third node, as the workload generator,
and receives from it the normal transactions at a certain
rate. There is no connection between the workload-generator
node and the attacker node. During the experiment, we let
both the workload generator and attacker node send their
transactions to the victim node, turn on the mining on the
victim node, and observe the blocks generated by the victim
node.

The framework is designed to measure the effectiveness
of an DETER+ attack. Intuitively, the more the normal
transactions are discarded from generated blocks, the more
successful an DETER+ attack is. Note that fewer normal
transactions included in blocks can be caused by the mem-
pool being occupied by malicious invalid transactions or
malicious valid transactions (the latter leads to malicious
transactions included in the blocks). Based on this intuition,
we propose the first metric: Attack success rate, that is, as
shown in Equation 1, the complement of the rate of the
number of normal transactions included in the blocks under
an attack divided by that without the attack.

Success rate = 1−
No. of normal txs included under attacks

No. of normal txs included without attacks
(1)

Attack success rates only measure an DETER+ at-
tack’s interference to the inclusion of normal transactions
in blocks. It does not capture the “cost-effectiveness” of the
attack. For instance, a baseline transaction spamming attack
can achieve high attack success rate but burden the attacker
to pay a large amount of Ether. We thus propose the second
metric, namely the attack cost, to measure the amount of
Gas/Ether paid by the attacker divided by the number of
blocks affected by the attack.

To measure the attack cost precisely and realistically,
we generate normal transactions using the real-world price
value. Specifically, we collect Ethereum transactions from
the mempool of a node we run in the mainnet. The col-
lected transactions’ price is used as the price of the normal
transactions to be generated. Statistically, we found that of
99.99% of the transactions on the Ethereum mainnet, the
prices are lower than 1000 Gwei, and we use 1000 Gwei to
set the price of evicting/replacing transitions in the attack
payload.

Note that to cause disruption in real Ethereum networks,
a real-world DETER+ attacker would need to discover crit-
ical service nodes in the network to the attack targets, such
as top mining pools or RPC nodes. Discovering these critical
nodes in real Ethereum networks has been demonstrated
feasible in the existing research [6].

3.4.2. Evading Protection in OpenEthereum.

RQ1. How effective are DETER+ attacks in evading
the defense of the latest OpenEthereum client?

We customize our evaluation platform with
OpenEthereum V 3.3.4 and run the experiments as
described. Here, we present the summarized results in
selected experiments. Figure 6 shows the results of
selected DETER+ attacks (i.e., ED1, ED3 and LD1) on
OpenEthereum V3.3.4. The three selected attack variants
all exploit future transactions but vary in different patterns.
Specifically, Figure 6a shows the number of included
transactions in the generated blocks, and Figure 6b shows
the Ether cost paid by the transactions in these blocks. It
can be seen that the number of included transactions under
attack ED1 is almost the same with that without attacks,
showing the ineffectiveness of ED1 on OpenEthereum. ED3

6

Figure 4: Exploit generator framework

1bool exploit_gen(){
2 //outer loop to iterate thru. different settings
3 while(1){
4 msgtrace.backtrack();
5 if(!nextSenderTried) {
6 seed.nextSender();
7 nextSenderTried=true;
8 } else {
9 nextSenderTried = false;

10 if(!seed.msgsize()<MAX_SIZE) {
11 seed.incMsgsize();
12 } else if(morePattern()) {
13 seed.nextPattern();
14 } else break;
15 } //inner loop to send txs under fixed settings
16 do{
17 msg = seed.nextMsg();
18 msgtrace.add(msg);
19 mempool.init();
20 for(Message msg : msgtrace)
21 feedback = mempool.sendTxs(msg);
22 } while(feedback.isPositive());}}

Figure 5: Simplied exploit-generation algorithm.

! "! #! $! %! &!!

'()*+,-./0-1

!

&!
!

&!
&

&!
"

&!
2

&!
#

3
4
5
6
.
7,
)
8,
/9
*
(4
:
.
:
,1
;
<

=>=?@AB>&

=>=?@AB>2

=>=?@AC>&

=>=?@AC>2

3),D11D*+

DETER+

DETER+

DETER+

DETER+

(a) Success rate

! "! #! $! %! &!!

'()*+,-./0-1

!

"

#

$

%

2
11
3
*
+
,*
)
4
1,
5
!
,!
"
#
,6
1-
.
78

292:;<69&

292:;<69=

292:;<>9&

292:;<>9=

DETER+

DETER+

DETER+

DETER+

(b) Attack costs

Figure 6: Attack timeline on OpenEthereum V 3.3.4

! "! #! $! %! &!!

'(()*+,-.**/--,0)(/,12,&!!34

!

&!!

&!&

&!"

&!5

&!#
'
((
)
*
+
,*
6
-
(,
12
,&
!
7
8"
,9
(:
/
0,
;
/
0,
<
=6
*
+
4

Baseline

ED3

Baseline (lower bound)

ED1

ED2

ED4

LD1

LD2

(a) On OpenEthereum V 3.3.4

! "! #! $! %! &!!

'(()*+,-.**/--,0)(/,12,&!!34

!

&!!

&!&

&!"

&!5

&!#

'
((
)
*
+
,*
6
-
(,
12
,&
!
7
8"
,9
(:
/
0,
;
/
0,
<
=6
*
+
4

LD2

ED1

ED3

ED4

ED2

Baseline (lower bound)

Baseline

(b) On Geth V 1.10.13

Figure 7: Attack profiles on Geth and OpenEthereum: Red
shade is the danger zone in which the presence of dots
represent successful DETER+ attacks.

successfully evicts transactions and reduces the number
of transactions included in the blocks, but incurs very
high costs; actually, OpenEthereum declines the “turning”
transaction in ED3’s attack payload. LD1 is highly effective
in reducing the number of included transactions and incurs
zero Ether cost.

We characterize each attack by two metrics: The success
rate (recall Equation 1) and the Ether cost per block. We
plot the observed results on OpenEthereum in Figure 7a.
The shaded area in the figure shows any instances that
are successful DETER+ attacks, i.e., with either higher
success rate or lower attack cost than the baseline transaction
spamming [7].

The result shows that OpenEthereum is secured against
ED3 and LD3 (as both attacks are outside the shaded
area). Because OpenEthereum V 3.3.4 declines the turning
transactions in ED3 and LD3. Most lock-based attacks (in-
cluding LD1, LD2, LD4 and LD5) are successful, because
the OpenEthereum’s policy to decline turning transactions
can be exploited to enable mempool locking. ED4 is also
successful on OpenEthereum and can evict 100% of the
mempool (at a relatively low cost, 100 ∗ 21000 Gas per
block). This is due to that OpenEthereum does not restrict
the replacement transaction if it causes latent overdraft. ED2

and ED1 are more successful than baseline attacks, but
they don’t achieve 100% of the success rates because of
OpenEthereum V 3.3.4’s policy to decline future and latent
overdraft transactions on a full mempool.

In particular, it may seem counter-intuitive that ED4
has higher cost than LD5 in Figure 7a, since ED4 exploits
invalid transactions while LD5 only exploits valid trans-
actions. This result can be explained as follows: Consider
attacking a block using ED4 on OpenEthereum. To do so,
the attacker sends 8192 high-price transactions from at least
102 accounts (to evade its constraint on the number of
transactions from the same sender). Therefore, the attacker’s
cost is from 102 high-price transactions per block. By
contrast, for LD5 on OpenEthereum, to attack a block, the
attacker can send 380 transactions to exhaust a block’s Gas
limit (which is set at 8 million Gas in the experiment).
This amounts to 5 high-price transactions and 375 low-price
transactions. Therefore, although LD5 entails sending more
transactions at more Gas to attack a block, its Ether cost is
much lower than that of ED4.

3.4.3. Evading Protection in Geth.

7

RQ2. How effective are DETER+ attacks, both ex-
ploiting a single pattern and combining multiple pat-
terns, in evading the defense of the latest Geth client?

We similarly conduct evaluation against the latest Geth
client (V 1.10.13). Unlike OpenEthereum, Geth’s policy
does allow the eviction of a low-price parent transaction,
which makes all lock-based attacks of the same cost as the
eviction-based attacks. We thus only label eviction based
attacks. The attacks are characterized in Figure 7b. Attacks
ED1 and ED3 have zero cost, but don’t have high success
rates (80% for ED3 and 30% for ED1). Attacks ED2 and
ED4 achieve higher but smaller-than-100% success rates,
and incur medium costs. By combining multiple patterns
together, DETER+ attacks can achieve 100% success rates
and zero cost, such as combining ED1 and ED3.

3.4.4. Tx Propagation on Testnet (ED4).

RQ3. How effective are DETER+ attacks (ED4) in
propagating malicious transactions to the entire net-
work and in victimizing normal transactions and miner
revenue in a testnet?

We run two Geth nodes in the Ethereum Rinkeby testnet,
respectively as a measurement node and an attacker node.
The attacker node sends crafted transactions to the testnet,
and the measurement node is configured to passively1 re-
ceive transactions from its neighbors. There is no direct
connection between the two nodes, and the attacker node
is configured to connect three neighbors. We remove the
limit of peers/neighbors on the measurement node. After
running the measurement node in the testnet for seven
straight days, we found the number of its neighbors became
stable and reached 290; we believe the measurement node
is a supernode connecting to all nodes in the testnet.

The measurement node runs an instrumented Geth client
to log the received messages from different neighbors; these
messages include those of transactions and of transaction
hashes. The measurement node could receive the same
transaction from different neighbors, and the log stores the
transaction-neighbor pairs.

To do an experiment, we make the attacker node send
ED4 transactions using 384 accounts. That is, each account
sends 16 valid pending transactions of increasing nonces,
followed by a replacement transaction. In total, the attacker
node sends 6144 valid transactions and 384 replacement
transactions. The Gas prices of the valid transactions and
the replacement transactions are set to be 40 Gwei and
50 Gwei, respectively. In one setting, we split the 6528
transactions into six messages (i.e., the first five being 1229
transactions each and the last one with 384 transactions).
We send these messages in order and wait for 2 seconds
between two consecutive messages. For comparison, in an-
other setting, we send the 6144 valid transactions in one
message and the 384 replacement transactions in another
message. Finally, we wrap up the experiment by waiting

1. We turn off the transaction-propagation capability on the measurement
node to avoid missing any received transactions.

after the attacker node sends all messages until all replace-
ment transactions are included in the blockchain. We then
turn off the measurement node’s logging and search for the
presence of all 6528 transactions across neighbor nodes in
the log. Given a transaction nonce, we report the percentage
of neighbor nodes in the testnet that have propagated it to
the measurement node.

We run experiments of six-message and two-message
propagation, repeat each experiment by 3 times, and report
the average result of node percentage in Figure 8a and
Figure 8b. Figure 8a shows the transaction propagation
with six messages. More than 90% of the testnet nodes
have received all of the 15 valid transactions in a sequence
and the replacement transactions. The only exception is the
relatively low percentage for the 16-th transaction of the
maximal nonce. By comparison, when sending the trans-
actions in two messages,the propagation fails as shown in
Figure 8b where almost all nodes did not propagate any
transaction with nonce larger than 5.

Additionally, Figure 8c shows the generated blocks in
the experiment propagating six messages. We took the
screenshot from etherscan.io and labeled it in red with
information regarding the attack. Before the attack begins,
the Rinkeby testnet normally utilizes 8− 12% of the Gas in
a block. For ethical consideration, we limit our attack to be
short, specifically, three blocks long. Right after the attack
is launched, the Gas utilization drops significantly to 0.34%
in the first block generated (i.e., block number 11186200).
In this block, 26.8% of the included transactions labeled in
red are the replacement transactions sent in ED4, which,
together with the 6144 − 384 = 5760 child transactions,
successfully occupy the mempool. Note that the 5760 child
transactions are latent overdraft and are not included in the
block. On the second block 11186201, 26.81% of included
transactions are replacement transactions in ED4, and the
rest 16.54% are normal transactions. On the last block
11186202 before the attack ends, the block utilization drops
to 1.83%. After the attack, there is a residual effect such
as block 11186204 of utilization 4.01%. Overall, of the
three blocks during the attack, the average Gas utilization
per block drops to 6.24%, while the pre-attack utilization
is consistently above 8.9%. Notice that in our experiments,
we didn’t target our attacks to the top miner nodes as the
existing DETER attacks entail.

4. Related Work
The existing literature has examined a blockchain sys-

tem’s DoS security at different layers, including P2P net-
works [9]–[12], mining-based consensus [13], [14], trans-
action processing [7], [15]–[17], and application-level ex-
tensions such as smart contracts [4], [18], [19] and DApp
(decentralized application) services [20].

On the blockchain mempool security, a baseline DoS
is by sending “spam” transactions [7], which incurs high
costs (e.g., more than 5, 000 USD just to empty a single
Ethereum block [6]) and may not be practical. Existing
work [16] analyzes the effect of spamming on transaction

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1
Transaction nonce

20

40

60

80

Pe
rc
en

ta
ge

 o
f n

od
es

 (%
)

(a) Transaction propagation in six messages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1
Transaction nonce

20

40

60

80

Pe
rc
en

ta
ge

 o
f n

od
es

 (%
)

(b) Transaction propagation in two messages (c) Etherscan screenshot of the blocks generated
during the attack on Rinkeby (txs in two messages)

Figure 8: Mounting ED4 attacks on Rinkeby: Emptying blocks and propagating malicious transactions to the entire network.

fees and presents countermeasures on Bitcoin mempool.
Recent work, DETER [6], has demonstrated the possibility
of disabling Ethereum mempool at zero or very low costs.
Such damaged nodes cause the global disruption of the real
Ethereum networks, including various testnets, which are
forced to produce empty blocks.

5. Responsible Disclosure
We have disclosed the discovered bugs to Ethereum

client developer communities. Specifically, we have sent bug
reports to bounty programs for Geth (Ethereum Foundation)
and OpenEthereum. The bugs have been confirmed, and bug
fixes are currently in progress.

6. Conclusion
This work tackles the comprehensive understanding and

systematic hardening of Ethereum mempool security against
DETER+ attacks, that is, asymmetric denial of mempool
service attacks. First, we presents an automatic exploit-
generation tool-chain and discover seven new attack pat-
terns. High success rates and low attack costs have been
shown on the recent Ethereum clients. Furthermore, the
discovered attacks can be propagated to the entire network as
evaluated on the testnet. Second, we design online mitigation
schemes and show with a prototype that all discovered
attacks can be mitigated.

9

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” May
2009. [Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[2] A. Narayanan, J. Bonneau, E. W. Felten, A. Miller, and S. Goldfeder,
Bitcoin and Cryptocurrency Technologies - A Comprehensive
Introduction. Princeton University Press, 2016. [Online]. Available:
http://press.princeton.edu/titles/10908.html

[3] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part I, ser. Lecture Notes in Computer Science, J. Katz
and H. Shacham, Eds., vol. 10401. Springer, 2017, pp. 357–388.
[Online]. Available: https://doi.org/10.1007/978-3-319-63688-7\ 12

[4] D. Pérez and B. Livshits, “Broken metre: Attacking resource
metering in EVM,” in 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020. The Internet Society, 2020.
[Online]. Available: https://www.ndss-symposium.org/ndss-paper/
broken-metre-attacking-resource-metering-in-evm/

[5] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au,
and X. Zhang, “An Adaptive Gas Cost Mechanism for Ethereum
to Defend Against Under-Priced DoS Attacks,” in ISPEC 2017,
2017, pp. 3–24. [Online]. Available: https://doi.org/10.1007/978-3-
319-72359-4 1

[6] K. Li, Y. Wang, and Y. Tang, “DETER: denial of ethereum
txpool services,” in CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic
of Korea, November 15 - 19, 2021, Y. Kim, J. Kim, G. Vigna,
and E. Shi, Eds. ACM, 2021, pp. 1645–1667. [Online]. Available:
https://doi.org/10.1145/3460120.3485369

[7] K. Baqer, D. Y. Huang, D. McCoy, and N. Weaver, “Stressing
out: Bitcoin ”stress testing”,” in Financial Cryptography and Data
Security - FC 2016 International Workshops, BITCOIN, VOTING,
and WAHC, Christ Church, Barbados, February 26, 2016, Revised
Selected Papers, ser. Lecture Notes in Computer Science, J. Clark,
S. Meiklejohn, P. Y. A. Ryan, D. S. Wallach, M. Brenner, and
K. Rohloff, Eds., vol. 9604. Springer, 2016, pp. 3–18. [Online].
Available: https://doi.org/10.1007/978-3-662-53357-4\ 1

[8] L. Lamport, Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002. [Online].
Available: http://research.microsoft.com/users/lamport/tla/book.html

[9] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse
attacks on bitcoin’s peer-to-peer network,” in USENIX Security
2015, Washington, D.C., USA, J. Jung and T. Holz, Eds.
USENIX Association, 2015, pp. 129–144. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity15

[10] Y. Marcus, E. Heilman, and S. Goldberg, “Low-resource eclipse
attacks on ethereum’s peer-to-peer network,” IACR Cryptology
ePrint Archive, vol. 2018, p. 236, 2018. [Online]. Available:
http://eprint.iacr.org/2018/236

[11] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin:
Routing attacks on cryptocurrencies,” in IEEE Symposium on
SP 2017, 2017, pp. 375–392. [Online]. Available: https://doi.org/
10.1109/SP.2017.29

[12] M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang, “A
Stealthier Partitioning Attack against Bitcoin Peer-to-Peer Network,”
in To appear in Proceedings of IEEE Symposium on Security and
Privacy (IEEE S&P), 2020.

[13] M. Mirkin, Y. Ji, J. Pang, A. Klages-Mundt, I. Eyal, and A. Juels,
“Bdos: Blockchain denial of service,” 2019.

[14] “Irreversible transactions: Finney attack,” https://en.bitcoin.it/wiki/
Irreversible Transactions\#Finney attack, Retrieved July, 1, 2022.

[15] “Memoria 700 million stuck in 115,000 unconfirmed bit-
coin transactions,” https://www.ccn.com/700-million-stuck-115000-
unconfirmed-bitcoin-transactions/, Retrieved July, 1, 2022.

[16] M. Saad, L. Njilla, C. A. Kamhoua, J. Kim, D. Nyang, and
A. Mohaisen, “Mempool optimization for defending against ddos
attacks in pow-based blockchain systems,” in IEEE International
Conference on Blockchain and Cryptocurrency, ICBC 2019, Seoul,
Korea (South), May 14-17, 2019. IEEE, 2019, pp. 285–292.
[Online]. Available: https://doi.org/10.1109/BLOC.2019.8751476

[17] “Report: Bitcoin (btc) mempool shows backlogged transactions, in-
creased fees if so?” https://goo.gl/LsU6Hq, Retrieved May, 5, 2021.

[18] V. Buterin, “Eip150: Gas cost changes for io-heavy operations.”
[Online]. Available: https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-150.md

[19] “Known attacks - ethereum smart contract best practices,”
https://consensys.github.io/smart-contract-best-practices/known
attacks/\#dos-with-block-gas-limit, Retrieved May, 5, 2021.

[20] K. Li, J. Chen, X. Liu, Y. R. Tang, X. Wang, and
X. Luo, “As strong as its weakest link: How to break
blockchain dapps at RPC service,” in 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually,
February 21-25, 2021. The Internet Society, 2021. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/as-strong-
as-its-weakest-link-how-to-break-blockchain-dapps-at-rpc-service/

10

