Distributed Systems in the Cloud

N GWS Q L Sejal Lohiya

* Why NEWSQL(Motivation)

* What is NEWSQL ?

* Implementation

“ Summary

Everyone 1s talking about Big Data

* Huge data is being amassed

-Web-based data
-OLTP
-Real time analytics

* Big Question: How do we store this data and generate
value from it?

« Enterprises want to store and query this data

3

Old SQL

+ Relational DBMS Model

+ Parallel, shared nothing architectures

* Underlying Idea: Partiton data and parallelize
computation

OldSQL Problems

+ Closed architecture

* Pay to scale

+ Still cant scale much

- reasons like 2Phase Commit, structure of the data, etc
“ Bufter pool

+ Row-level locking- reads/writes/deadlock detection

“ Recovery - writing logs

NOSOL

“ GFS- Big byte stream files and replication

* MapReduce

* Give up SQL

* Give up ACID

Concentrate on Scalability and Performance

“ Eventual consistency: In absence of updates, all replicas
will converge towards identical copies

Give Up SQL? Problems

+ SQL is not overhead

+ High level languages are good

+ Hard to beat the compiler

“ Features : Data independence, less code, etc

Give Up ACID? Problems

+ ACID is not overhead
“ Implementing ACID in user code is difficult

Can you guarantee you won't need ACID tomorrow?

Who needs ACID

« Everybody with Integrity constraints

* Huge number of transactions

+ Order sensitive transactions

* When eventual consistency gives incorrect results

NewSQL.

+ Preserve SQL

+ Preserve ACID

« Improve performance and scalability with innovative
architecture

“ Eliminate Locking: MVCC, etc

“ Support Built in-replication: PAXOS, etc

* Reduce logging overhead - failover

10

What is NEWSOL

» SQL/high programming language as the primary mechanism for
application interaction

+ ACID support for transactions

* Non-locking concurrency control mechanism so real-time reads will not
conflict with writes, and thereby cause them to stall.

* An architecture providing much higher per-node performance

* A scale-out, shared-nothing architecture, capable of running on a large
number of nodes without bottlenecking

11

Implementations

* Spanner: Google's Globally-Distributed Database,
Google Inc.

* Storage Management in AsterixDB, UCI et al.

12

Spanner

“ Globally distributed database

* Synchronous Replication

“ Externally consistent

* Non- blocking reads

“ Lock-free read-only transactions

“ Application-controlled replication configurations

13

Albums

Logical Data Layout

Photos
user_id album _id name user _id album _id photo id | title
1 1 Maui
1 1 2 Beach
1 1 5 Snorkeling
1 2 St. Louis
1 2 3 Gateway Arch

14

Physical Data Layout

+ Interleaved tables

album < > photo

15

Sharding

But still support:

Shard #1 _
e T[ransactions across shards
e Consistent snapshot reads
(range scans) across shards
Shard #2

Shard #3

16

Replication

Shard #2

Tablet 2.1 Tablet 2.2 Tablet 2.3

US East US South US West

17

spanservers

derving Structure

Tablet 2.1

Client

Tablet 3.1

Tablet 5.1

Tablet 7.1

Tablet 4.1

Tablet 8.1

W

zonemaster

US East

18

US South

N

US West

Strict Two Phase Locking

Life of a transaction:

1.

~ W

~N OO

Acquire locks

Execute reads

Pick commit timestamp
Replicate writes (through
paxos)

Ack commit

Apply writes

Release locks

19

T3 / ______________________________
T1
T2
T3
® ® ®
T3 T1 T2

Snapshot Reads

Choose a prefix of commit history Properties of snapshots:
o Immutable

*—o ® .S >

T1 T2 T3 T4 e consistent

Can be used for:
e long-running batch operations (e.g. map reduce)
o stale reads (e.g. 10s old)
o strong (current) reads: lock-free, don’t block writers

20

Picking Commit Timestamps

Attempt #1: Assign from local (monotonic) clock

Acquire locks

Execute reads

Pick commit timestamp = now()
Replicate writes (through paxos)
Ack commit

Apply writes

Release locks

Nk d=

21

External Consistency

Definition:
If T1 commits before T2 starts, T1 should be serialized before T2.
In other words, T2's commit timestamp should be greater than T1's
commit timestamp.

Note: Applies even if T1 and T2 don't conflict.
T1 T2

[) L) >
100 110

22

True Time

ldea: There is a global “true” time t
TT.now() = [earliest, |atest] > t.

e TT.now().earliest definitely in the past
e TT.now().latest definitely in the future

—— >

23

Timestamp Assignment: True Time

Transaction protocol becomes:

Acquire locks

Execute reads

Pick commit timestamp T = TT.now().latest
Replicate writes (through paxos)

Wait until TT.now().earliest> T

Ack transaction commit

Apply write

Release locks

ONOGAROWON =

Strong reads: T = TT.now().latest

24

True Time Architecture

Atomic Clock

GPS Master [(€<—»
Master

periodic poll: [earliest, latest]

In-between polls, uncertainty
radius grows based on
worst-case clock drift (200
usec / sec)

spanservers

25

Storage Management in AsterixDB

“ Unstructured web application data
+ Write intensive data
“ Problem to ingest, store, analyze and index data

+ Solution: AsterixDB

26

Storage Management

* Log structured Merge Design
+ ACID

27

[.SM-itication

“ Data writes are buffered in memory
* Flushed to disk in batched append only manner
« Writes are sequential disk access(fast)

* Reads are multiple random access(slow)

* Merge disk components

+ Efficient reconciliation

28

Summary

+ One size does not fit all!
* Don’t compromise semantics

« Use the right tool for the job.

29

Thank You!

30

