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Everyone is talking about Big Data
❖ Huge data is being amassed

    -Web-based data 

-OLTP

-Real time analytics

❖ Big Question: How do we store this data and generate 
value from it?

❖ Enterprises want to store and query this data
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Old SQL

❖ Relational DBMS Model

❖ Parallel, shared nothing architectures

❖ Underlying Idea: Partiton data and parallelize 
computation
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OldSQL Problems
❖ Closed architecture

❖ Pay to scale

❖ Still cant scale much

 - reasons like 2Phase Commit, structure of the data, etc

❖ Buffer pool 

❖ Row-level locking- reads/writes/deadlock detection

❖ Recovery - writing logs
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NOSQL
❖ GFS-  Big byte stream files and replication

❖ MapReduce 

❖ Give up SQL

❖ Give up ACID

❖ Concentrate on Scalability and Performance 

❖ Eventual consistency: In absence of updates, all replicas 
will converge towards identical copies 
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Give Up SQL? Problems

❖ SQL is not overhead

❖ High level languages are good

❖ Hard to beat the compiler

❖ Features : Data independence, less code, etc
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Give Up ACID? Problems

❖ ACID is not overhead

❖ Implementing ACID in user code is difficult

❖ Can you guarantee you won’t need ACID tomorrow?
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Who needs ACID

❖ Everybody with Integrity constraints

❖ Huge number of transactions

❖ Order sensitive transactions

❖ When eventual consistency gives incorrect results
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NewSQL
❖ Preserve SQL

❖ Preserve ACID

❖ Improve performance and scalability with innovative 
architecture

❖ Eliminate Locking: MVCC, etc

❖ Support Built in-replication: PAXOS, etc 

❖ Reduce logging overhead - failover
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What is NEWSQL

❖  SQL/high programming language as the primary mechanism for 
application interaction

❖  ACID support for transactions

❖  Non-locking concurrency control mechanism so real-time reads will not 
conflict with writes, and thereby cause them to stall.

❖ An architecture providing much higher per-node performance

❖ A scale-out, shared-nothing architecture, capable of running on a large 
number of nodes without bottlenecking
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Implementations

❖ Spanner: Google's Globally-Distributed Database, 
Google Inc.

❖ Storage Management in AsterixDB, UCI et al.
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Spanner

❖ Globally distributed database

❖ Synchronous Replication

❖ Externally consistent

❖ Non- blocking reads 

❖ Lock-free read-only transactions

❖ Application-controlled replication configurations
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Logical Data Layout
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Physical Data Layout
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❖ Interleaved tables



Sharding
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Replication
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Serving Structure
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Strict Two Phase Locking
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Snapshot Reads
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Picking Commit Timestamps
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External Consistency
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True Time
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Timestamp Assignment: True Time
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True Time Architecture
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Storage Management in AsterixDB

❖ Unstructured web application data

❖ Write intensive data

❖ Problem to ingest, store, analyze and index data

❖ Solution: AsterixDB
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Storage Management

❖ Log structured Merge Design

❖ ACID 
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LSM-ification

❖ Data writes are buffered in memory 

❖ Flushed to disk in batched append only manner

❖ Writes are sequential disk access(fast)

❖ Reads are multiple random access(slow)

❖ Merge disk components

❖ Efficient reconciliation
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Summary

❖ One size does not fit all!

❖ Don’t compromise semantics

❖ Use the right tool for the job.

29



Thank You! 
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