
Distributed Systems in the Cloud

NewSQL Sejal Lohiya

1



❖ Why NEWSQL(Motivation)

❖ What is NEWSQL ?

❖ Implementation

❖ Summary



Everyone is talking about Big Data
❖ Huge data is being amassed

    -Web-based data 

-OLTP

-Real time analytics

❖ Big Question: How do we store this data and generate 
value from it?

❖ Enterprises want to store and query this data

3



Old SQL

❖ Relational DBMS Model

❖ Parallel, shared nothing architectures

❖ Underlying Idea: Partiton data and parallelize 
computation

4



OldSQL Problems
❖ Closed architecture

❖ Pay to scale

❖ Still cant scale much

 - reasons like 2Phase Commit, structure of the data, etc

❖ Buffer pool 

❖ Row-level locking- reads/writes/deadlock detection

❖ Recovery - writing logs

5



NOSQL
❖ GFS-  Big byte stream files and replication

❖ MapReduce 

❖ Give up SQL

❖ Give up ACID

❖ Concentrate on Scalability and Performance 

❖ Eventual consistency: In absence of updates, all replicas 
will converge towards identical copies 

6



Give Up SQL? Problems

❖ SQL is not overhead

❖ High level languages are good

❖ Hard to beat the compiler

❖ Features : Data independence, less code, etc

7



Give Up ACID? Problems

❖ ACID is not overhead

❖ Implementing ACID in user code is difficult

❖ Can you guarantee you won’t need ACID tomorrow?

8



Who needs ACID

❖ Everybody with Integrity constraints

❖ Huge number of transactions

❖ Order sensitive transactions

❖ When eventual consistency gives incorrect results

9



NewSQL
❖ Preserve SQL

❖ Preserve ACID

❖ Improve performance and scalability with innovative 
architecture

❖ Eliminate Locking: MVCC, etc

❖ Support Built in-replication: PAXOS, etc 

❖ Reduce logging overhead - failover

10



What is NEWSQL

❖  SQL/high programming language as the primary mechanism for 
application interaction

❖  ACID support for transactions

❖  Non-locking concurrency control mechanism so real-time reads will not 
conflict with writes, and thereby cause them to stall.

❖ An architecture providing much higher per-node performance

❖ A scale-out, shared-nothing architecture, capable of running on a large 
number of nodes without bottlenecking

11



Implementations

❖ Spanner: Google's Globally-Distributed Database, 
Google Inc.

❖ Storage Management in AsterixDB, UCI et al.

12



Spanner

❖ Globally distributed database

❖ Synchronous Replication

❖ Externally consistent

❖ Non- blocking reads 

❖ Lock-free read-only transactions

❖ Application-controlled replication configurations

13



Logical Data Layout

14



Physical Data Layout

15

❖ Interleaved tables



Sharding

16



Replication

17



Serving Structure

18



Strict Two Phase Locking

19



Snapshot Reads

20



Picking Commit Timestamps

21



External Consistency

22



True Time

23



Timestamp Assignment: True Time

24



True Time Architecture

25



Storage Management in AsterixDB

❖ Unstructured web application data

❖ Write intensive data

❖ Problem to ingest, store, analyze and index data

❖ Solution: AsterixDB

26



Storage Management

❖ Log structured Merge Design

❖ ACID 

27



LSM-ification

❖ Data writes are buffered in memory 

❖ Flushed to disk in batched append only manner

❖ Writes are sequential disk access(fast)

❖ Reads are multiple random access(slow)

❖ Merge disk components

❖ Efficient reconciliation

28



Summary

❖ One size does not fit all!

❖ Don’t compromise semantics

❖ Use the right tool for the job.

29



Thank You! 

30


