
Optimization in MPC:

Faster Private Set Intersection based on OT Extension

Zhi Xing

Background

• Private set intersection (PSI)

• Semi-honest adversary model

• Random oracle model

• Oblivious transfer (OT)

2

Private set intersection

• Two parties P1 and P2

• P1 holds set X, P2 holds set Y

• Identify X ∩ Y without revealing information about elements
outside the intersection

3

Semi-honest adversary model

• The adversary tries to learn as much information as possible

• But it is not able to deviate from the protocol steps

4

Random oracle model

• A black box that responds to every unique query with a truly
random response chosen uniformly from its output domain

• If a query is repeated, it responds the same way every time

5

Oblivious transfer (OT)

• The sender wants to transfer k out of N messages to the
receiver

• The receiver picks k of the N messages according to a N-bit
choice vector

• The sender doesn’t know which messages are picked

• The receiver doesn’t know the messages other than the ones
that are picked

6

7

1. generates RSA key (N, e, d) and random values x0, x1

send one of m0, m1 receive mb, b ∈ {0, 1}

3. generates a random value k

5. calculates k0 = (v - x0)d mod N and k1 = (v - x1)d mod N

2. sends N, e, x0, x1

4. sends v = (xb + ke) mod N

6. sends m0’ = m0 + k0 and m1’ = m1 + k1

7. gets mb = mb’ - k

1-out-of-2 OT

OT extension

• (m invocations of 1-out-of-2 OT on l-bit strings)  
 
requires 3m public-key operations

• 1-out-of-2 OT extension reduces to

• Compute the rest using symmetric cryptographic operations

• Computational complexity of OT is reduced => network
bandwidth becomes the main bottleneck

8

✓
2

1

◆
�OTm

l

OTm
l OT



9

send (x

i
0, x

i
1) 2 {0, 1}2l for 1  i  m

receive x

i
b[i] 2 {0, 1}l for 1  i  m, b 2 {0, 1}m

2. receives kjs[j] for 1  j  

using choice vector s 2 {0, 1}

3. chooses a random m⇥  bit-matrix T

4. computes vj0 = tj �G(kj0) and vj1 = tj �G(kj1)� b

where tj 2 {0, 1}m denotes the j-th column of T

and G : {0, 1} ! {0, 1}m is a PRG

5. sends (vj0, v
j
1) for 1  j  

6. generates a m⇥  bit-matrix Q

as qj = vjs[j] �G(kjs[j])

7. computes yi0 = xi
0 �H(qi) and yi1 = xi

1 �H(qi � s)
where qi 2 {0, 1} denotes the i-th row of Q

and H : {0, 1} ! {0, 1}l is a CRF
8. sends (yi0, y

i
1) for 1  i  m

9. receives xi
b[i] = yib[i] �H(ti) for 1  i  m

✓
2

1

◆
�OTm

l

✓
2

1

◆
�OT



1. sends (kj0, k
j
1) 2 {0, 1}2 for 1  j  

Other OT extensions

• 1-out-of-N OT extensions

• Random OT extensions

• Use basic OT (asymmetric cryptographic operations) to
establish oblivious “symmetric keys”

• Compute the rest of the protocol using symmetric
cryptographic operations

• Examples in the proposed protocol

10

Classification of PSI Protocols

• Naive solution  
- cryptographic hash functions  
- not secure if the input domain is small or has low entropy

• Public-key-based PSI  
- based on commutative property

• Circuit-based PSI  
- sort-compare-shuffle  
- Yao’s garbled circuit protocol  
- Goldreich-Micali-Wigderson (GMW) protocol

• OT-based PSI 
- Bloom-filter-based  
- Set inclusion with hashing

11

The proposed OT-based PSI

• Basic private equality test (PEQT) protocol

• Private set inclusion protocol

• The proposed OT-based PSI protocol

12

13

check if my σ-bit x = y check if my σ-bit y = x

Basic PEQT protocol

1. uses

✓
2

1

◆
�OT �

l to transfer uniformly

distributed random l-bit strings (si0, s
i
1)

for 1  i  �
2. uses y as choice vector and obtains siy[i]

for 1  i  �

random

✓
2

1

◆
�OT extension

3. computes and sends m
P1 =

�M

i=1

si
x[i]

and decides x = y i↵ mP1 = mP2

4. computes mP2 =

�M

i=1

siy[i]

P1 P2

The basic PEQT protocol

• Can be improved by using base-N representation of inputs and  
  
 extension  

• If N = 2η, x and y are σ-bit, let t = σ / η, then x and y will be cut
into t blocks of η bits: 
x = x[1] || x[2] || … || x[t], y = y[1] || y[2] || … || y[t]  

• can be used to send l-bit strings

14

✓
N

1

◆
�OT

✓
N

1

◆
�OT t

l (si0, . . . , s
i
N�1)

Private set inclusion protocol

• Check whether y equals to any of the values in

• is used to transfer n1l-bit strings

• In the i-th transfer, N random strings are sent  
 
and is received

• For , is divided into n1 substrings of length l,  
 
one for each element in X

15

X = {x1, . . . , xn1}✓
N

1

◆
�OT t

n1l

(si0, . . . , s
i
N�1)

siy[i]

1  i  t siy[i]

Private set inclusion protocol

• P1 computes and sends for  
 
which are compared to P2’s

• Can be improved by sending only the random seeds of length  
 
l, and generating the rest (n1 - 1)l part using PRG

• Same amount of data transfer as for single PEQT

16

mP2 = �t
i=1s

i
y[i]

m
P1 [j] = �t

i=1s
i

xj [i]
[j] 1  j  n1

OT-based PSI protocol

• Run private set inclusion protocol for each

17

y 2 Y

Hashing Schemes

• Pair-wise comparison for sets of size n has O(n2) complexity

• This can be improved by hashing elements into bins using a
publicly known hash function, so only elements mapped to the
same bin are compared

• If use n bins for n elements, the number of elements in each
bin is O(1) and the overall complexity is O(n)

• However, number of elements in each bin shouldn’t be
revealed, so dummy items are added to each bin, which
increase complexity a little bit

18

Hashing Schemes

• Simple hashing  
- one hash function  
- ignores collisions

• Balanced allocations  
- two hash functions  
- maps an element to the less populated bin

• Cuckoo hashing  
- two hash functions  
- maps an element to a bin and relocates the other element if
there’s a collision

19

Evaluations

20

Evaluations

21

Evaluations

22

Q & A

Thank you.

