Optimization in MPC:

Faster Private Set Intersection based on OT Extension

Zhi Xing

Background

- Private set intersection (PSI)
- Semi-honest adversary model
- Random oracle model
- Oblivious transfer (OT)

Private set intersection

- Two parties P_1 and P_2
- P_1 holds set X, P_2 holds set Y
- Identify $X \cap Y$ without revealing information about elements outside the intersection

Semi-honest adversary model

- The adversary tries to learn as much information as possible
- But it is not able to deviate from the protocol steps

Random oracle model

- A black box that responds to every unique query with a truly random response chosen uniformly from its output domain
- If a query is repeated, it responds the same way every time

Oblivious transfer (OT)

- The sender wants to transfer *k* out of *N* messages to the receiver
- The receiver picks *k* of the *N* messages according to a *N*-bit choice vector
- The sender doesn't know which messages are picked
- The receiver doesn't know the messages other than the ones that are picked

1-out-of-2 OT

2. sends N, e, x_0, x_1

- 3. generates a random value *k*
- 4. sends $v = (x_b + k^e) \mod N$

5. calculates $k_0 = (v - x_0)^d \mod N$ and $k_1 = (v - x_1)^d \mod N$

6. sends $m_0' = m_0 + k_0$ and $m_1' = m_1 + k_1$

7. gets $m_b = m_b$ ' - k

OT extension

- $\binom{2}{1} OT_l^m$ (*m* invocations of 1-out-of-2 OT on *l*-bit strings) requires 3*m* public-key operations
- 1-out-of-2 OT extension reduces OT_l^m to OT_{κ}^{κ}
- Compute the rest using symmetric cryptographic operations
- Computational complexity of OT is reduced => network bandwidth becomes the main bottleneck

$\begin{array}{c} \text{send } (x_0^i, x_1^i) \in \{0, 1\} \\ \\ \text{receive } x_{b[i]}^i \in \{0, 1\} \\ \end{array}$	^{2l} for $1 \le i \le m$ $\binom{2}{1} - OT_l^m$ $\in \{0,1\}^l$ for $1 \le i \le m, b \in \{0,1\}^m$	
	1. sends $(k_0^j, k_1^j) \in \{0, 1\}^{2\kappa}$ for $1 \le j \le$	$\leq \kappa$
2. receives $k_{s[j]}^j$ for $1 \le j \le \kappa$ using choice vector $s \in \{0, 1\}^{\kappa}$		$\binom{2}{1} - OT_{\kappa}^{\kappa}$
	3. chooses a random $m \times \kappa$ bit-matrix	< T .
	4. computes $v_0^j = t^j \oplus G(k_0^j)$ and $v_1^j =$	$t^j \oplus G(k_1^j) \oplus b$
	where $t^j \in \{0,1\}^m$ denotes the <i>j</i> -th	α column of T
	and $G: \{0,1\}^{\kappa} \to \{0,1\}^{m}$ is a PRC	۲ ت
	5. sends (v_0^j, v_1^j) for $1 \le j \le \kappa$	
6. generates a $m \times \kappa$ bit-matrix Q as $q^j = v^j_{s[j]} \oplus G(k^j_{s[j]})$		
7. computes $y_0^i = x_0^i \oplus H(q_i)$ and y_1^i	$\dot{t} = x_1^i \oplus H(q_i \oplus s)$	
where $q_i \in \{0,1\}^{\kappa}$ denotes the <i>i</i> -t	th row of Q	
and $H: \{0,1\}^{\kappa} \to \{0,1\}^{l}$ is a CR	$2\mathrm{F}$	
8. sends (y_0^i, y_1^i) for $1 \le i \le m$		
	9. receives $x_{b[i]}^i = y_{b[i]}^i \oplus H(t_i)$ for $1 \leq $	$i \leq m$

Other OT extensions

- 1-out-of-*N* OT extensions
- Random OT extensions
- Use basic OT (asymmetric cryptographic operations) to establish oblivious "symmetric keys"
- Compute the rest of the protocol using symmetric cryptographic operations
- Examples in the proposed protocol

Classification of PSI Protocols

- Naive solution
 - cryptographic hash functions
 - not secure if the input domain is small or has low entropy
- Public-key-based PSI
 - based on commutative property
- Circuit-based PSI
 - sort-compare-shuffle
 - Yao's garbled circuit protocol
 - Goldreich-Micali-Wigderson (GMW) protocol
- OT-based PSI
 - Bloom-filter-based
 - Set inclusion with hashing

The proposed OT-based PSI

- Basic private equality test (PEQT) protocol
- Private set inclusion protocol
- The proposed OT-based PSI protocol

Basic PEQT protocol

3. computes and sends $m_{P_1} = \bigoplus s_{x[i]}^i$

check if my
$$\sigma$$
-bit $y = x$
 P_2

random $\begin{pmatrix} 2\\ 1 \end{pmatrix} - OT$ extension

2. uses y as choice vector and obtains $s_{y[i]}^i$ for $1 \le i \le \sigma$

4. computes
$$m_{P_2} = \bigoplus_{i=1}^{\sigma} s_{y[i]}^i$$

and decides $x = y$ iff $m_{P_1} = m_{P_2}$

 σ

i=1

The basic PEQT protocol

- Can be improved by using base-*N* representation of inputs and $\binom{N}{1} OT$ extension
- If N = 2^η, x and y are σ-bit, let t = σ / η, then x and y will be cut into t blocks of η bits:
 x = x[1] || x[2] || ... || x[t], y = y[1] || y[2] || ... || y[t]

•
$$\binom{N}{1} - OT_l^t$$
 can be used to send *l*-bit strings $(s_0^i, \dots, s_{N-1}^i)$

Private set inclusion protocol

- Check whether y equals to any of the values in $X = \{x_1, \ldots, x_{n_1}\}$
- $\binom{N}{1} OT_{n_1l}^t$ is used to transfer n_1l -bit strings
- In the *i*-th transfer, N random strings $(s_0^i, \ldots, s_{N-1}^i)$ are sent and $s_{y[i]}^i$ is received
- For 1 ≤ i ≤ t, sⁱ_{y[i]} is divided into n₁ substrings of length l,
 one for each element in X

Private set inclusion protocol

- P_1 computes and sends $m_{P_1}[j] = \bigoplus_{i=1}^t s_{x_j[i]}^i[j]$ for $1 \le j \le n_1$ which are compared to P_2 's $m_{P_2} = \bigoplus_{i=1}^t s_{y[i]}^i$
- Can be improved by sending only the random seeds of length
 l, and generating the rest (*n*₁ 1)*l* part using PRG
- Same amount of data transfer as for single PEQT

OT-based PSI protocol

• Run private set inclusion protocol for each $y \in Y$

Hashing Schemes

- Pair-wise comparison for sets of size *n* has $O(n^2)$ complexity
- This can be improved by hashing elements into bins using a publicly known hash function, so only elements mapped to the same bin are compared
- If use *n* bins for *n* elements, the number of elements in each bin is O(1) and the overall complexity is O(n)
- However, number of elements in each bin shouldn't be revealed, so dummy items are added to each bin, which increase complexity a little bit

Hashing Schemes

- Simple hashing
 - one hash function
 - ignores collisions
- Balanced allocations
 - two hash functions
 - maps an element to the less populated bin
- Cuckoo hashing
 - two hash functions

- maps an element to a bin and relocates the other element if there's a collision

Evaluations

Type	Symm. Security Parameter ĸ	80-bit					128-bit					Asymptotic
Type	Set Size n	210	212	214	216	218	2 ¹⁰	212	214	216	2 ¹⁸	Asymptotic
Public-Key	DH-based FFC [32]	0.4	1.6	6.2	24.7	98.8	4.8	19.1	76.5	306.0	1,224.1	2n asym
	DH-based ECC [32]	0.7	2.8	11.0	44.1	177.5	1.6	6.5	26.1	104.2	416.2	2n asym
	RSA-based [16]	0.5	2.0	7.9	31.3	124.9	7.7	31.0	124.3	497.2	1,982.1	2n asym
Circuit [30]	Yao [8,31]	1.2	5.7	27.7	128.2	-	1.6	6.3	28.4	129.1	-	$12n\sigma \log_2 n$ sym
	GMW [1]	1.9	8.6	35.2	161.9	806.5	2.6	12.8	58.9	276.4	1,304.2	$30n\sigma \log_2 n$ sym
	Vector-MT GMW §3.2	1.2	5.1	21.2	100.3	462.7	1.9	7.8	36.5	168.9	762.4	$18n\sigma \log_2 n$ sym
от	Garbled Bloom Filter [19]	0.3	0.9	3.9	16.1	71.9	0.6	2.0	8.5	37.1	154.4	4.32nκ sym
	Random Garbled Bloom Filter §4.3	0.15	0.5	2.0	8.1	34.3	0.27	1.0	4.1	16.7	67.6	3.6nĸ sym
	Set Inclusion §5 + Hashing §6	0.13	0.2	0.8	3.3	13.5	0.26	0.3	0.9	3.7	13.8	0.75nσ sym

Table 5: Runtimes in seconds for PSI protocols with one thread over Gigabit LAN ($\sigma = 32$: bit size of set elements, asym: public-key operations, sym: symmetric cryptographic operations).

Evaluations

Type	Symm. Security Parameter κ	80-bit					128-bit					Asymptotic	
Type	Set Size n	210	212	214	216	218	2 ¹⁰	212	214	216	218	Asymptotic	
Public-Key	DH-based FFC [32]	0.4	1.5	6.0	24.0	96.0	1.1	4.5	18.0	72.0	288.0	Зпр	
	DH-based ECC [32]	0.1	0.2	1.0	3.8	15.0	0.1	0.4	1.5	6.0	24.0	3nφ	
	RSA-based [16]	0.3	1.1	4.3	17.3	69.0	0.8	3.1	12.5	50.0	200.0	$2n\rho + 2n\kappa$	
Circuit [30]	Yao [8,31]	28.1	135.0	630.0	2,880.0	12,960.0	45.0	216.0	1,008.0	4,608.0	20,736.0	$9n\kappa\sigma\log_2 n$	
	GMW [1]	31.3	150.0	700.0	3,200.0	14,400.0	50.0	240.0	1,120.0	5,120.0	23,040.0	$10n\kappa\sigma\log_2 n$	
	Vector-MT GMW §3.2	18.8	90.0	420.0	1,920.0	8,640.0	30.0	144.0	672.0	3,072.0	13,824.0	$6n\kappa\sigma\log_2 n$	
от	Garbled Bloom Filter [19]	3.4	13.5	54.0	216.0	864.0	7.6	30.2	121.0	483.8	1,935.4	$2.88n\kappa(\kappa+\lambda)$	
	Random GBF §4.3	1.1	4.5	18.1	72.6	290.4	2.9	11.6	46.2	184.9	739.7	$1.44n\kappa^2 + n(\lambda + 2\log_2 n)$	
	Set Inclusion §5 + Hashing §6	0.2	0.8	3.3	13.4	54.3	0.3	1.2	4.8	19.4	78.3	$0.5n\kappa\sigma + 6n(\lambda + 2\log_2 n)$	

Table 6: Communication complexity in MB for PSI protocols. ($\sigma = 32$: bit size of set elements, security parameters $\kappa, \lambda, \rho, \phi$ as defined in §2.1). Numbers are computed from the asymptotic complexity given in the last column.

Evaluations

Туре	Network	Gigabit LAN	802.11g WiFi	Intra-country WAN	Inter-country WAN	HSDPA
	(Bandwidth (Mbit/s) / Latency (ms))	(1,000 / 0.2)	(54 / 0.2)	(25 / 10)	(10 / 50)	(3.6 / 500)
Public-Key	DH-based ECC [32]	104.2	104.8	107.6	111.8	115.9
Circuit [30]	Yao [8,31]	129.1	779.5	1,735.5	4,631.8	11,658.6
	Vector-MT GMW §3.2	168.9 (11.3)	370.5 (18.1)	770.4 (27.5)	1,936.5 (67.2)	5,310.9 (170.2)
ОТ	Random Garbled Bloom Filter §4.3	16.6	37.2	70.8	164.9	445.0
	Set Inclusion §5 + Hashing §6	3.7	5.0	8.8	22.8	77.5

Table 7: Runtimes in seconds for PSI protocols with one thread in different network scenarios for $n = 2^{16}$ elements, $\sigma = 32$: bit size of elements, and $\kappa = 128$ -bit security (cf. Tab. 2); online time for Vector-MT GMW in ().

Thank you.