
MPC Compiler

Chunxu Tang

Haoyi Shi

1

PICCO: A General-Purpose Compiler for
Private Distributed Computation

2

Chunxu Tang

PICCO (Private Distributed Computation
Compiler)
• A source-to-source compiler that translates a program written in an

extension of the C programming language with provisions for annotating
private data to its secure distributed implementation in C.

3

Framework

Input party Computational party Output party

4

Framework (Cont.)

• (n, t) – secret sharing scheme
• Any private value is secret-shared among n parties such that any t+1 shares

can be used to reconstruct the secret

• Shamir secret sharing scheme
• A secret value s is represented by a random polynomial of degree t with the

free coefficient set to s.

• Participants are semi-honest

5

Overview

6

Specifications of user programs

• Private and public variable qualifiers

• private int x;
• int x;

7

Private data types

• A programmer can specify the length of the
numeric data types in bits.

8

Built-in I/O functions

• smcinput(name, id)
• name: name of the variable to read

• id: id of the input party

• smcinput(x, 1);

• smcoutput(name, id)
• name: name of the output variable

• id: id of the output party

9

Array operations

• A @ B
• element-wise multiplication

• smcinput (A, 1, 100)
• read 100 values into array A from

• the data of party 1

10

Enforcement of secure data flow

• Statements that assign an
expression that contains private
values to a public variable are not
allowed.

• For conditional statements with a
private condition, assignments to
public variables within the scope
of such statements are not
allowed.

x = a;

x: public
a: private

if (x > 0)
a = 1;

x: private
a: public

11

Support for concurrent execution

• for (statement; condition; statement)

• [statement; …]

• [statement1;]

• [statement2;]

12

Processing of user programs

Receive user
program

Parse and build
an abstract syntax

tree

Produce a
modified program

Build and maintain
a symbol table

13

Program transformations

• GMP library
• GNU Multiple Precision Arithmetic library

• Private variables -> GMP large-precision type mpz_t

• Changing arguments of functions with private return values

14

Handling of program input and output

• Take smcinput(var, i) as an example:
• The compiler looks up the type of variable var in the symbol table that stores

all declared variables.

• Replace with instructions to read data from party i.

• Type of variable var determines how many fields are used to represent the
variable and length.

15

Handling of private data types in assignments

• Produce a terminal error if a private expression is being assigned to a
public variable.

• A function call is used, but its return type is not known, the compiler
displays a warning of a potential violation of secure data flow.

16

Handling of conditional statements

• if-statements with private conditions are not allowed to contain
observable public actions in their body.

• Produce a terminal error when a violation is found.

17

Handling of conditional statements (Cont.)

• Determine all variables whose values are modified, and preserve their
values in temporary variables.

• Update each affected variable v by setting its value to
• c : private bit corresponding to the result of evaluating the condition

• : original value of v prior to executing the body of if-statement.

18

Handling of conditional statements (Cont.)

19

Modulus computation

• Compute the maximum bit length of all declared variables and
maximum bit length necessary for carrying out the specified
operations.

20

Evaluation

21

Thank you!

22

A Framework for Efficient
Mixed-Protocol Secure Two-

Party computation

Haoyi Shi

23

ABY Framework

• Two-party framework

• Mixed protocols
• Overcome the dependence on an efficient function representation

• Arithmetic Sharing

• Boolean Sharing

• Yao’s garbled circuit

24

overview

25

Arithmetic Sharing

• Shared value:

• Sharing:

• Reconstruction:

• Addition:

26

Arithmetic Sharing

• Multiplicaton:

• Pre-computed triple:

• Use OT to generate multiplication triple.

27

Sharing Conversion

• Yao to Boolean Sharing(Y2B)

• The

• For

• Boolean to Yao Sharing (B2Y)

• Let

• P0

28

Sharing Conversion

• Arithmetic to Yao Sharing (A2Y)

• Let

• Arithmetic to Boolean Sharing (A2B)

• Yao to Arithmetic Sharing (Y2A)

29

• Boolean to Arithmetic Sharing

• Perform an OT for each bit.

• Finally, P0 compute

• P1 compute

30

Benchmark the primitive operations

• In local settings, conversion cost is small.
• E.g, converting from Yao to Arithmetic shares, multiplying, and converting

back to Yao, is more efficient than performing muiltiplication in Yao sharing.

31

Benchmark the primitive operations

• Latency(seq)

• The best performance for sequential functions depends on the latency.

• E.g, multiplication in Yao is more efficient in the cloud settings.

• Throughput(par)

• Arithmetic and Boolean sharing benefit more than Yao sharing.

32

33

34

Biometric Matching

• One party provides a biometric sample.

• The other party (DB) provides several biometric samples.

• Matching: Euclidean distance.

• 4 instantiations

• B-only

• Y-only

• A+Y

• A+B

35

Biometric Matching

• Mixed protocols perform better

• Communication improves by at least a factor of 20

• Arithmetic sharing(OT-based) is better than homomorphic encryption

36

