MPC Compiler

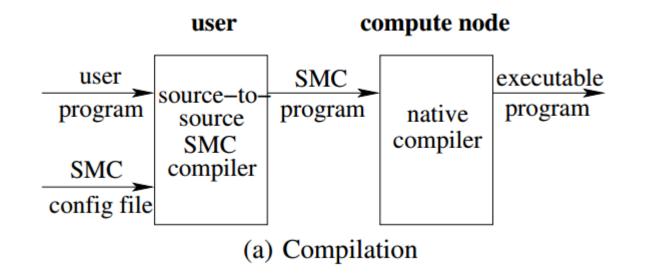
Chunxu Tang Haoyi Shi

PICCO: A General-Purpose Compiler for Private Distributed Computation

Chunxu Tang

PICCO (Private Distributed Computation Compiler)

• A source-to-source compiler that translates a program written in an extension of the C programming language with provisions for annotating private data to its secure distributed implementation in C.



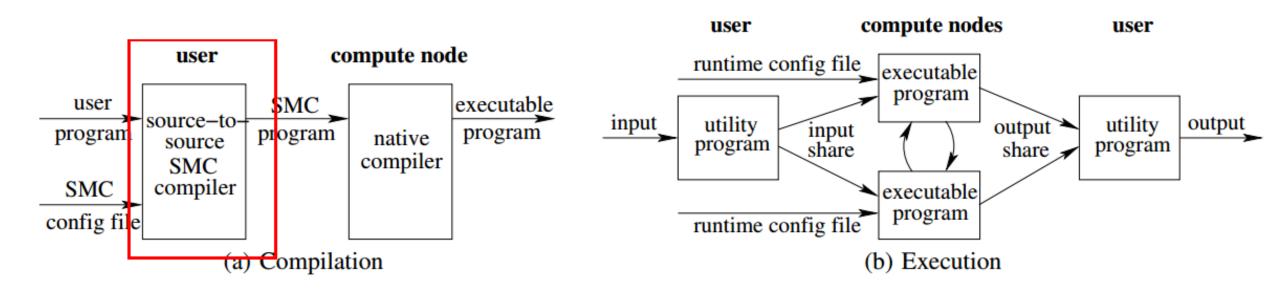
Framework

Input party Computational party Output party

Framework (Cont.)

- (n, t) secret sharing scheme
 - Any private value is secret-shared among n parties such that any t+1 shares can be used to reconstruct the secret
- Shamir secret sharing scheme
 - A secret value s is represented by a random polynomial of degree t with the free coefficient set to s.
- Participants are semi-honest

Overview



Specifications of user programs

- Private and public variable qualifiers
 - private int x;
 - int x;

public int main() {
 public int i, M;
 smcinput(M, 1, 1);
 private int<1> A[M], B[M];
 private int<10> dist = 0;
 smcinput(A, 1, M);
 smcinput(B, 1, M);

for (i = 0; i < M; i++)
 dist += A[i] ^ B[i];</pre>

smcoutput(dist, 1);
return 0;

}

Private data types

• A programmer can specify the length of the numeric data types in bits.

```
public int main() {
   public int i, M;
   smcinput(M, 1, 1);
   private int<1> A[M], B[M];
   private int<10> dist = 0;
   smcinput(A, 1, M);
   smcinput(B, 1, M);
   for (i = 0; i < M; i++)
     dist += A[i] ^ B[i];
   smcoutput(dist, 1);
   return 0;
```

}

Built-in I/O functions

- smcinput(name, id)
 - name: name of the variable to read
 - id: id of the input party
 - smcinput(x, 1);
- smcoutput(name, id)
 - name: name of the output variable
 - id: id of the output party

```
public int main() {
   public int i, M;
   smcinput(M, 1, 1);
   private int<1> A[M], B[M];
   private int<10> dist = 0;
   smcinput(A, 1, M);
   smcinput(B, 1, M);
   for (i = 0; i < M; i++)
     dist += A[i] ^ B[i];
   smcoutput(dist, 1);
   return 0;
```

Array operations

- A @ B
 - element-wise multiplication
- smcinput (A, 1, 100)
 - read 100 values into array A from
 - the data of party 1

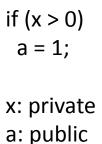
```
public int main() {
   public int i, M;
   smcinput(M, 1, 1);
   private int<1> A[M], B[M];
   private int<10> dist = 0;
```

```
smcinput(A, 1, M);
smcinput(B, 1, M);
for (i = 0; i < M; i++)
dist += A[i] ^ B[i];
```

```
smcoutput(dist, 1);
return 0;
```

Enforcement of secure data flow

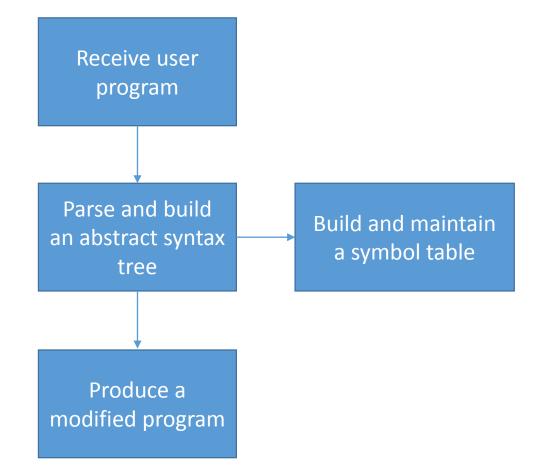
- Statements that assign an expression that contains private values to a public variable are not allowed.
- For conditional statements with a private condition, assignments to public variables within the scope of such statements are not allowed.



Support for concurrent execution

- for (statement; condition; statement)
- [statement; ...]
- [statement1;]
- [statement2;]

Processing of user programs



Program transformations

- GMP library
 - GNU Multiple Precision Arithmetic library
- Private variables -> GMP large-precision type mpz_t
- Changing arguments of functions with private return values

Handling of program input and output

- Take smcinput(*var*, *i*) as an example:
 - The compiler looks up the type of variable *var* in the symbol table that stores all declared variables.
 - Replace with instructions to read data from party *i*.
 - Type of variable *var* determines how many fields are used to represent the variable and length.

Handling of private data types in assignments

- Produce a terminal error if a private expression is being assigned to a public variable.
- A function call is used, but its return type is not known, the compiler displays a warning of a potential violation of secure data flow.

Handling of conditional statements

- if-statements with private conditions are not allowed to contain observable public actions in their body.
- Produce a terminal error when a violation is found.

Handling of conditional statements (Cont.)

- Determine all variables whose values are modified, and preserve their values in temporary variables.
- Update each affected variable v by setting its value to $c \cdot v + (1 c)v_{orig}$
 - c : private bit corresponding to the result of evaluating the condition
 - *v_{orig}*: original value of v prior to executing the body of if-statement.

Handling of conditional statements (Cont.)

```
if (t>0)
  for (i=0; i<n; i+=5)
     a[i]=a[i]+1;</pre>
```

```
mpz_t cond1;
mpz_t tmp1;
smc_gt(t,0,cond1);
for (i=0; i<n; i+=5) {
   tmp1=a[i];
   a[i]=a[i]+1;
   a[i]=cond1*a[i]+(1-cond1)*tmp1;
}
```

Modulus computation

 Compute the maximum bit length of all declared variables and maximum bit length necessary for carrying out the specified operations.

Evaluation

Experiment	Modulus p	Basic functionality		Optimized functionality		Sharemind		Two-party compiler [29]	
Experiment	length (bits)	LAN (ms)	WAN (ms)	LAN (ms)	WAN (ms)	LAN (ms)	WAN (ms)	LAN (ms)	WAN (ms)
100 arithmetic operations	33	1.40	315	0.18	31.6	71	203	1,198	1,831
1000 arithmetic operations	33	13.4	3,149	0.60	32.3	82	249	3,429	5,823
3000 arithmetic operations	33	42.7	9,444	1.60	34.5	127	325	10,774	11,979
5×5 matrix multiplication	33	17.7	3,936	0.27	31.6	132	264	3,419	5,244
8×8 matrix multiplication	33	67.8	16,126	0.45	32.1	168	376	18,853	21,843
20×20 matrix multiplication	33	1,062	251,913	2.41	35.7	1,715	2,961	N/A	N/A
Median, mergesort, 32 elements	81	703.7	98,678	256.7	6,288	7,115	22,208	4,450	5,906
Median, mergesort, 64 elements	81	1,970	276,277	649.6	12,080	15,145	47,636	N/A	N/A
Median mergesort, 256 elements	81	13,458	1,894,420	3,689	47,654	66,023	203,044	N/A	N/A
Median mergesort, 1024 elements	81	86,765	_	20,579	170,872	317,692	869,582	N/A	N/A
Hamming distance, 160 bits	9	21.2	5,038	0.17	31.1	72	188	793	816
Hamming distance, 320 bits	10	42.3	10,092	0.22	31.3	102	203	850	1,238
Hamming distance, 800 bits	11	105.8	25,205	0.35	31.5	117	254	933	989
Hamming distance, 1600 bits	12	212.7	50,816	0.57	31.8	132	284	1,037	1,265
AES, 128-bit key and block	8	319.1	75,874	35.1	3,179	652 [34]	N/A	N/A	N/A
Edit distance, 100 elements	57	48,431	9,479,330	4,258	116,632	69,980	214,286	N/A	N/A
Edit distance, 200 elements	57	201,077	_	16,038	432,456	196,198	498,831	N/A	N/A
Fingerprint matching, 20 minutiae	66	3,256	541,656	830	74,704	24,273	75,820	N/A	N/A
Fingerprint matching, 40 minutiae	66	13,053	2,140,630	2,761	172,455	55,088	172,266	N/A	N/A

Thank you!

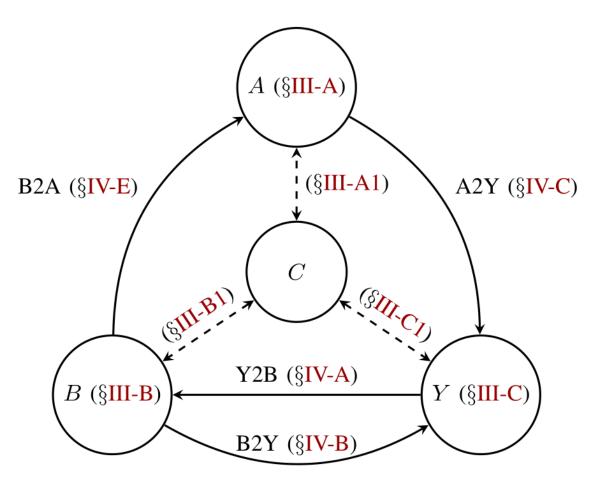
A Framework for Efficient Mixed-Protocol Secure Two-Party computation

Haoyi Shi

ABY Framework

- Two-party framework
- Mixed protocols
 - Overcome the dependence on an efficient function representation
 - Arithmetic Sharing
 - Boolean Sharing
 - Yao's garbled circuit

overview



Arithmetic Sharing

- Shared value: $\langle x \rangle_0^A + \langle x \rangle_1^A \equiv x \pmod{2^\ell} \langle x \rangle_0^A, \langle x \rangle_1^A \in \mathbb{Z}_{2^\ell}$
- Sharing: Shr_i^A(x) P_i chooses $r \in_R \mathbb{Z}_{2^{\ell}}$, sets $\langle x \rangle_i^A = x r$, and sends r to P_{1-i} , who sets $\langle x \rangle_{1-i}^A = r$
- Reconstruction: $\operatorname{Rec}_{i}^{A}(x) \quad P_{1-i}$ sends its share $\langle x \rangle_{1-i}^{A}$ to P_{i} who computes $x = \langle x \rangle_{0}^{A} + \langle x \rangle_{1}^{A}$.
- Addition:

$$\langle z \rangle^A = \langle x \rangle^A + \langle y \rangle^A$$
: P_i locally computes $\langle z \rangle^A_i = \langle x \rangle^A_i + \langle y \rangle^A_i$.

Arithmetic Sharing

• Multiplicaton: $\langle z \rangle^A = \langle x \rangle^A \cdot \langle y \rangle^A$

Pre-computed triple: ⟨c⟩^A = ⟨a⟩^A · ⟨b⟩^A
P_i sets ⟨e⟩^A_i = ⟨x⟩^A_i - ⟨a⟩^A_i and ⟨f⟩^A_i = ⟨y⟩^A_i - ⟨b⟩^A_i, both parties perform Rec^A (e) and Rec^A (f), and P_i sets
⟨z⟩^A_i = i · e · f + f · ⟨a⟩^A_i + e · ⟨b⟩^A_i + ⟨c⟩^A_i.

• Use OT to generate multiplication triple.

Sharing Conversion

- Yao to Boolean Sharing(Y2B)
 - The permutation bits of $\langle x \rangle_0^Y$ and $\langle x \rangle_1^Y = \langle x \rangle_1^Y [0] = I \langle x \rangle_0^Y [0]$
 - For P_i , $\langle x \rangle_i^B = Y2B(\langle x \rangle_i^Y) = \langle x \rangle_i^Y[0].$
- Boolean to Yao Sharing (B2Y)
 - Let $x_0 = \langle x \rangle_0^B$ and $x_1 = \langle x \rangle_1^B$.
 - P0 samples ⟨x⟩₀^Y = k₀ ∈_R {0,1}^κ. Both parties run OT_κ¹ where P₀ acts as sender with inputs (k₀ ⊕ x₀ ⋅ R; k₀ ⊕ (1 − x₀) ⋅ R), whereas P₁ acts as receiver with choice bit x₁ and obliviously obtains ⟨x⟩₁^Y = k₀ ⊕ (x₀ ⊕ x₁) ⋅ R = k_x.

Sharing Conversion

- Arithmetic to Yao Sharing (A2Y)
 - Let $x_0 = \langle x \rangle_0^A$ and $x_1 = \langle x \rangle_1^A$ $\langle x_0 \rangle^Y = \operatorname{Shr}_0^Y(x_0)$ and $\langle x_1 \rangle^Y = \operatorname{Shr}_1^Y(x_1)$ and compute $\langle x \rangle^Y = \langle x_0 \rangle^Y + \langle x_1 \rangle^Y$.
- Arithmetic to Boolean Sharing (A2B) $\langle x \rangle^B = A2B(\langle x \rangle^A) = Y2B(A2Y(\langle x \rangle^A))$
- Yao to Arithmetic Sharing (Y2A) $\langle x \rangle^A = Y2A(\langle x \rangle^Y) = B2A(Y2B(\langle x \rangle^Y))$

- Boolean to Arithmetic Sharing
 - Perform an OT for each bit.

 P_0 randomly chooses $r_i \in_R \{0,1\}^{\ell}$ $s_{i,0} = \left(1 - \langle x \rangle_0^B[i]\right) \cdot 2^i - r_i$ $s_{i,1} = \langle x \rangle_0^B[i] \cdot 2^i - r_i$ $(s_{i,0}, s_{i,1})$ $\langle x \rangle_1^B[i]$ $s_{\langle x \rangle_1^B[i]} = \left(\langle x \rangle_0^B[i] \oplus \langle x \rangle_1^B[i] \right) \cdot 2^i - r_i$ $\langle x \rangle_0^A = \sum_{i=1}^\ell r_i$ • Finally, Po compute $\langle x \rangle_1^A = \sum_{i=1}^{\ell} s_{\langle x \rangle_1^B[i]} = x - \langle x \rangle_0^A$ • P₁ compute

Benchmark the primitive operations

- In local settings, conversion cost is small.
 - E.g, converting from Yao to Arithmetic shares, multiplying, and converting back to Yao, is more efficient than performing muiltiplication in Yao sharing.

Sharing	N	IUL	C	MP	MUX		
Sharing	size	rounds	size	rounds	size	rounds	
Arithmetic	l	1					
Boolean	$2\ell^2$	l	3ℓ	$\log_2 \ell$	1	1	
Yao	$2\ell^2$	0	l	0	l	0	

Benchmark the primitive operations

- Latency(seq)
 - The best performance for sequential functions depends on the latency.
 - E.g, multiplication in Yao is more efficient in the cloud settings.
- Throughput(par)
 - Arithmetic and Boolean sharing benefit more than Yao sharing.



Fig. 2: Setup time (in μs) and communication (in Bytes) for a single atomic operation on $\ell = 32$ -bit values in a local and cloud scenario, averaged over 1 000 operations using long-term security parameters.

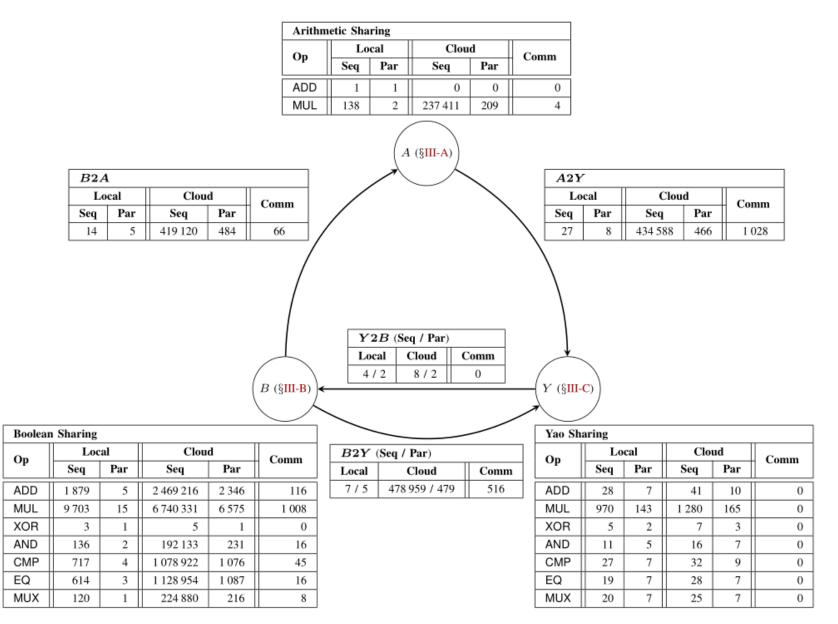


Fig. 3: Online time (in μs) and communication (in Bytes) for one atomic operation on $\ell = 32$ -bit values in a local and cloud scenario, averaged over 1 000 sequential / parallel operations using long-term security parameters.

Biometric Matching

- One party provides a biometric sample.
- The other party (DB) provides several biometric samples.
- Matching: Euclidean distance.

 $min\left(\sum_{i=1}^{d} (S_{i,1} - C_i)^2, \cdots, \sum_{i=1}^{d} (S_{i,n} - C_i)^2\right)$

- 4 instantiations
 - B-only
 - Y-only
 - A+Y
 - A+B

Biometric Matching

- Mixed protocols perform better
 - Communication improves by at least a factor of 20
- Arithmetic sharing(OT-based) is better than homomorphic encryption

	Local				Cloud	Comm.	#Msg	
	S	0	Т	S	0	Т	[MB]	#1 115g
Y-only	2.24	0.31	2.55	23.78	0.84	24.62	147.7	2
B -only	2.15	0.28	2.43	10.34	29.07	39.41	99.9	129
A+Y	0.14	0.05	0.19	2.98	0.44	3.42	5.0	8
A+B	0.08	0.13	0.21	2.34	24.07	26.41	4.6	101