
Malware Detection & 
Memory Forensics
Yue Duan

1



Malware Detection - Intro

1. Malware Detection techniques
● static analysis
● dynamic analysis

2. Detection Evasion techniques
3. Paper presentation
BareCloud: Bare-metal Analysis-based Evasive 
Malware Detection, Usenix Security’14

2



Malware Detection - Detection

Static analysis
Definition: testing and evaluation of an application by 
examining the code without executing the application

● Pros: good code coverage
● Cons: code obfuscation, encryption, false 

positives

3



Malware Detection - Detection

Dynamic analysis 
(in-guest monitoring, VMI)
Definition: testing and evaluation of an application during 
runtime

● Pros: capture behaviors accurately
● Cons: poor code coverage

4



Malware Detection - Evasion

Virtual machine environment is different from 
real machine. Those differences could be used 
to detect VM and evade analysis.
● CPU instruction semantics
● Timing attacks
● VM bugs
● Username, Windows Product ID

5



Paper presentation

BareCloud: Bare-metal Analysis-based Evasive 
Malware Detection

Dhilung Kirat, Giovanni Vigna, Christopher Kruegel
UC Santa Barbara 

USENIX Security 2014 

Motivation: Can we automatically identify evasive 
malware while preserving transparency?

6



BareCloud - System Overview

1. Prescreen; 2. Execution; 3. Behavior Extraction; 4. Behavior Comparison

7



BareCloud - Prescreen

The purpose of the pre-screening process is to 
select more interesting samples that are likely 
to have environment-sensitive behavior.

Simply use Anubis platform for prescreening.

8



BareCloud - Execution

A scheduler is implemented to run the malware 
sample on four platforms simultaneously to minimize 
the impact of external environments.

1. Bare-metal 
2. Anubis (Emulator)
3. Ether (intel VT)
4. Virtualbox (Type 2 hypervisor)

9



BareCloud - Execution

malware initiator: component that starts the 
execution of the malware.

To make it transparent, the malware initiator 
removes itself and all of its artifacts after 
initiating the malware.

10



BareCloud - Behavior Extraction

Two common ways for behavior extraction:
1. VMI based approach
2. In-guest monitoring

However, these two approaches do not fit in 
the bare-metal scenario. Because these two 
approaches are not transparent enough.

11



BareCloud - Behavior Extraction

As a result, BareCloud extracts file system 
behaviors and network behaviors.

1. File system behavior: compare the disk 
contents from before and after the malware 
execution.

2. Network behavior: use an external traffic 
capture component. 12



BareCloud - Behavior Extraction

● Extract file metadata information from raw 
disk image before and after the execution 
of malware.
(delete, create, modify)

● Extract registry keys metadata from raw 
registry hive.

● Process file system and registry behavior to 
identify critical modification of system 
config

13



BareCloud - Behavior Normalization

Behavioral profile extracted contains both 
malware behavior as well as the background 
operating system behavior. We need to filter 
out the normal behavior.

Use a “void” program that does nothing other 
than stall infinitely to extract background 
behavior. 14



BareCloud - Behavior Comparison

Malicious behavior only occupies a small 
portion of the whole behavior profile.

Traditional Jaccard similarity will produce 
very high similarity score even if the system 
could detect some evasive behaviors.

15



BareCloud - Behavior Comparison

Compare the behavior profiles in a 
hierarchical way

16



BareCloud - Evaluation

110,000+ malware samples are collected and 
analyzed. 5835 evasive malware samples are 
found.

17



Memory Forensics

1. Memory Forensics Intro
2. Paper presentation
DSCRETE: Automatic Rendering of Forensic 
Information from Memory Images via 
Application Logic Reuse
Usenix Security’14

18



Memory Forensics

Per Wikipedia, Memory forensics is forensic 
analysis of a computer's memory dump.

A series of existing research has been made to 
reverse engineer the data structures reside 
within the memory dump, including Volatility, 
MACE, Siggraph, etc.

19



Memory Forensics

Now, a pending issue has raised up. Though we 
can perform analysis to recover the data 
structures, we still have no idea what kind of 
content is actually inside the structures.

For example, a buffer might hold a PDF file 
content or a JPEG photo.

20



Memory Forensics - paper

DSCRETE: Automatic Rendering of Forensic 
Information from Memory Images via 

Application Logic Reuse
Brendan Saltaformaggio, Zhongshu Gu, Xiangyu Zhang, 

and Dongyan Xu

Usenix Security’14
Motivation: Can we recover memory content via logic 
reuse?

21



DSCRETE - Observations

1. Application that defined the data structure 
also contains printing/rendering logic for it!
Let’s call the rendering logic - P function. It 
transforms data structure to formatted 
application output.

2. Given incorrect input, P function will crash!
22



DSCRETE - Assumptions

1. The subject binary can be executed 
(recreate any execution environment)

2. ASLR is disabled
(Investigator’s machine but not suspect’s)

3. OS kernel paging data structures in the 
subject memory image are inact
(extract memory pages)

23



DSCRETE - Overview

1. Find P Candidates
1.1 Tracing; 1.2 Identification;

2. Testing (find real P)
3. Scanner(recover the content)

24



DSCRETE - Finding candidates

Tracing collects a dynamic data dependence 
trace from the application binary execution. It 
will contain the future scanner’s code (P!).

HOW: Execute the binary with some inputs 
(input1) and save the output to a file 
(output1).

25



DSCRETE - Finding candidates

DSCRETE will collect each instruction’s data 
dependency and record lib function or system 
call invocations as well as their parameters.

Also, DSCRETE saves a snapshot of the stack 
and heap at the invocation of external lib 
functions that lead to output system calls.

26



DSCRETE - Finding candidates

Starting from the system calls that have 
interesting data structures as parameters, the 
system finds the closure points.
Closure point:
1. Take interesting data structures as input
2. All selected output/rendering functions 
must depend onit.

27



DSCRETE - Testing

Tester: test all the closure points and find P!

HOW: Execute the binary again. Input (input2) 
is different from input1. When closure point is 
executed, swap the pointer to input1, see if 
the output (output2) is valid and same as 
output1.

28



DSCRETE - Scanner

Once the P is found, pack P into a scanner 
tool. And use this tool to recover the content.

P is fed with each offset in suspect’s memory 
image. 

29



DSCRETE - Example

Consider an example

struct pdf* my_pdf; 
my_pdf = load_pdf_file(…); 
main_loop(my_pdf); // User edits PDF 
save_pdf_file(my_pdf); 
exit(0)

30



DSCRETE - Example

save_pdf_file(struct pdf* ptr) 
{ 
 char* buf = format(ptr); 
 fwrite(buf, …); 
} 

This is the P function! If an invalid input is 
given, this function will crash.

31



DSCRETE - Example

During step 1, fwrite will be recorded as well 
as a snapshot of stack and heap!

The first instruction of save_pdf_file(struct pdf* 
ptr) is the closure point! It loads ptr to 
argument register and fwrite() depends on it.

32



DSCRETE - Example

struct pdf* my_pdf; 
my_pdf = load_pdf_file(…); 
main_loop(my_pdf);
save_pdf_file(my_pdf); 
exit(0);

33

input1

input2



DSCRETE - Evaluation

Almost no FP/FN with reasonable performance 

34


