Kernel 10 Optimization

Scott Constable

Overview

1. Background

2. Problem Statement

3. More Background

4. Arrakis OS

5. Comparison with IX OS

Background

Background

Normal Curve

Standard Deviation

~

19.1%

0 0.5 1 1.5 2 2.5 3

Count

Background

Distribution of 1000 random numbers between 0 and 1
| I I I

140 -

120 - -

100

80

60

40

20

0O 01 02 03 04 05 06 07 08 09 1.0

Random number

Background

Background

1. Traditional
2. Zesty
3. Chunky

Background

HEART . !
Smar 4

v Traditiond! @

Background

“You're not making the wrong
pasta sauce...”

“You're making the wrong
pasta sauces!”

Background

10

Background

?

Background

1994: The Microkernel Dilemma
“Who killed the microkernel?7?7?”

12

Background

1995: The Microkernel Revelation
“Who saved the microkernel???”

13

Problem

2014: "Tuned” Linux kernels dominate
cloud server architectures, yet they do
not come close to achieving the
theoretical optimum performance for a
common bottleneck, namely |/O.

14

Problem

Traditional OS assumptions:

e many small applications share few
processing cores

e applications exhibit a wide variety of
behavior

e can't rely on hardware to arbitrate
/O isolation among processes

15

Problem

Server OS assumptions:

few large applications share many
processing cores

applications exhibit simple and
predictable behavior

modern virtualization hardware is
increasingly flexible

16

Problem

Given this mismatch, why would we
still use a commodity OS on servers?

If we instead build the right OSes, we
can take full advantage of a server’s
hardware, and the knowledge of what
software that server is running.

17

Network stack

Scheduler

Copy

Kernel crossing

Total

Problem

n
out

n
out

return
syscall

Linux

Receiver running

1.26
1.05

0.17

0.24
0.44

0.10
0.10

3.36

(37.6%)
(31.3%)

(5.0%)

(7.1%)
(13.2%)

(2.9%)
(2.9%)

(o = 0.66)

1.24
1.42

2.40

0.25
0.55

0.20
0.13

6.19

CPU idle
(20.0%)
(22.9%)

(38.8%)

(4.0%)
(8.9%)

(3.3%)
(2.1%)

(o = 0.82)

18

epoll()

recv()

send()

Parse input
Lookup/set key
Prepare response
Log marshaling
Write log
Persistence
Other

Total

Problem

2.42
0.98
3.17
0.85
0.10
0.60

0.55
8.67

Read
Linux

(27.91%) 2.64
(11.30%) 1.55
(36.56%) 5.06
(9.80%) 2.34
(1.15%) 1.03
(6.92%) 0.59
3.64
6.33
137.84
(6.34%) 2.12
(0 = 2.55) 163.14

Write

Linux
(1.62%)
(0.95%)
(3.10%)
(1.43%)
(0.63%)
(0.36%)
(2.23%)
(3.88%)

(84.49%)
(1.30%)

(o = 13.68)

19

System call duration [us]

90

80 |
70 |
60 |
S50 |
40 |
30 |
20 |
10 |

Problem

write L
fsync

-AJ]JJ

hp " G5

'\’{3 7 e*{4

AB

Sxtyq

Otrr, 01
864’78

Thy

20

Background: ExoKernel

i A A

Normal Kernel Exokernel
Programs communicate with Libraries or Kernel

Programs can
communicate with the
Kernel hardware much more
directly

——

[Library] [Library }
' '

[Programs

.

21

Background: ExoKernel

Advantages:

e programmer can implement
custom abstractions

e programmer can omit unnecessary
abstractions

e substantially less kernel overhead

e performance++

22

Background: ExoKernel

Disadvantages:
e True isolation is impossible
e OS arbitration is difficult

23

Background: ExoKernel

i A A

Normal Kernel Exokernel
Programs communicate with Libraries or Kernel

Programs can
communicate with the
Kernel hardware much more
directly

——

[Library] [Library }
' '

[Programs

.

24

Background: Hardware
£

Virtual NIG Virtual NIC

¥YM 1

Virtual Machine Manager (VMM)

Software Virtual Switch

! NIC D svice Driver |

Standard NIC

25

Background: Hardware

26

Background: Hardware

Machine
Manager
(VMM) PF Driver

.
Vlrtu_al Vlrtu_al Vlrl:u_al Physical
Function Function Function T

'
Descriptors, etc. Descriptors, etc Descriptors, etc. BARSs
Descriptors, etc.

=E EE EE

Virtual Ethernet Bridge and Classifier
Intel® Ethernet with SR-1I0V

27

Background: ExoKernel

i A A

Normal Kernel Exokernel
Programs communicate with Libraries or Kernel

Programs can
communicate with the
Kernel hardware much more
directly

——

[Library] [Library }
' '

[Programs

.

28

Arrakis!

PF Driver

Virtual Virtual Virtual [Physical
Function Function Function Function
BARs BARs BARs
Descriptors, etc. 2scriptors, etc. Descriptors, etc. BARs
Descriptors, etc.

Virtual Ethernet Bridge and Classifier
Intel® Ethernet with SR-IOV

29

r N
App App g Control
- Plane | &
libos l § T aE>
> A
= y \d

Arrakis (again)!

e

N &

VSA

e
NICN __Swien

VSIC
y
VSA VSA

| ,

|

|

|

: v&ﬁ
|

|

|

|

|

Storage Controller

B e e o - - c— — — — — —

30

Arrakis

Question: How do we solve the
Isolation and arbitration
problems?

Answer: Hardware-based
capabilities

31

W N

il

Example: Network

. Application X calls

filter = create _filter(flags, peerlist, servicelist)
Control plane (Arrakis) is triggered

Arrakis creates a filter “capability” by configuring
(via the PF) X's VF to allow communication
according to the specified filter

Arrakis returns the filter “pointer” to X

X assigns filter to a new network queue on its VNIC

32

W=

NOo O

Example: Storage

Application Y calls VSA = acquire_vsa(name)
Control plane (Arrakis) is triggered

Arrakis creates a VSA “capability” by setting up an
entry in kernel memory containing a mapping of
virtual storage blocks to physical ones

Arrakis configures Y’s VSIC to map in the new VSA
area

Arrakis returns the VSA capability to Y

Y can then call resize VSA(VSA, size)

Arrakis checks whether it can satisfy the request,
then updates the mapping and hardware as
needed

33

Doorbells

Arrakis’s way of handling asynchronous events
Each queue has an associated doorbell

When one of X’s events is triggered, and X is
running, the doorbell is a hardware-virtualized
interrupt directly to X

When one of X’s events is triggered, and X is not
running, the doorbell triggers a kernel interrupt,
prompting the scheduler to switch to X

Exposed to user applications like file descriptors, i.

e. they can be polled by select()

34

TenaciousD

Persistent data structure framework to allow
asynchronous persistent writes

Operations are essentially “immediately persistent
Structure is robust to crash failures

Operations have minimal latency

Asynchronous API returns immediately, and may
callback once the data is actually persistent
Arrakis group modified Redis NoSQL to use
TenaciousD

35

Performance (Network)

Network stack

Scheduler

Copy

Kernel crossing

Total

n
out

n
out

return
syscall

Linux Arrakis

Receiver running CPU idle POSIX interface Native interface
1.26 (37.6%) 1.24 (20.0%) 0.32 (22.3%) 0.21 (55.3%)
1.05 (31.3%) 1.42 (22.9%) 0.27 (18.7%) 0.17 (44.7%)
0.17 (5.0%) 2.40 (38.8%) - -

0.24 (7.1%) 0.25 (4.0%) 0.27 (18.7%) -

0.44 (13.2%) 0.55 (8.9%) 0.58 (40.3%) -

0.10 (2.9%) 0.20 (3.3%) - -

0.10 (2.9%) 0.13 (2.1%) - -

336 (o =0.66) 6.19 (o=0.82) 1.44 (0 <0.01) 038 (o0 <0.01)

36

Performance (Network)

Throughput [K packets / s]

1200
1000
800
600
400
200
0

37

Performance (Network)

Throughput [K transactions / s]

160
140 |
120 |
100
80
60
40
20

1

Lmux :

Linux (SEPOLL) s &
Arrakis/P s

2 4

6

Number of CPU cores

38

Performance (Storage)

epoll()

recv()

send()

Parse input
Lookup/set key
Prepare response
Log marshaling
Write log
Persistence
Other

Total

Read hit Durable write
Linux Arrakis/P Linux Arrakis/P
2.42 (2791%) 1.12 (27.52%) 2.64 (1.62%) 1.49 (4.73%)
0.98 (11.30%) 0.29 (7.13%) 1.55 (0.95%) 0.66 (2.09%)
3.17 (36.56%) 0.71 (17.44%) 5.06 (3.10%) 0.33 (1.05%)
0.85 (9.80%) 0.66 (16.22%) 2.34 (1.43%) 1.19 (3.78%)
0.10 (1.15%) 0.10 (2.46%) 1.03 (0.63%) 0.43 (1.36%)
0.60 (6.92%) 0.64 (15.72%) 0.59 (0.36%) 0.10 (0.32%)
- - 3.64 (2.23%) 2.43 (7.71%)
- - 6.33 (3.88%) 0.10 (0.32%)
- - 137.84 (84.49%) 24.26 (76.99%)
0.55 (6.34%) 0.46 (11.30%) 2.12 (1.30%) 0.52 (1.65%)
8.67 (o =255 407 (0=0.44) 163.14 (o0 = 13.68) 31.51 (o0 =1.91)

39

Performance (Storage)

Throughput [K transactions / s]

1200
1000
800
600
400
200
0

1

| .o | p—

Linux threads ——
Linux procs oo
Arrakis/P e

2 4 6
Number of CPU cores

40

Comparison with IX

Differences:

|X only optimized for network performance, not
storage

IX is a fork of the Linux kernel, whereas Arrakis is a
fork of Barrelfish (an ExoKernel derivative)

|X uses user-space rings to help enforce security
Takes advantage of hardware-based RSS to reduce
processing delays

41

Receive Side Scaling

Hash type specified
<>

Received Data

Hash
Function

l LSBs

Hash Valuel////]

CPUO

Indirection
Table

CPU 1

CPU 2

CPUn

42

Comparison with IX

Similarities:

Both use a library OS approach with a user-space
network stack

Each data plane runs a single application in a single
address space

Data planes have associated capabillities
comparable performance improvements over Linux

43

Thank You!

