
Kernel IO Optimization

Scott Constable

1



Overview
1. Background
2. Problem Statement
3. More Background
4. Arrakis OS
5. Comparison with IX OS

2



Background

3



Background

4



Background

5



Background

6



Background

1. Traditional
2. Zesty
3. Chunky

7



Background

8



Background

“You’re not making the wrong 
pasta sauce…”

“You’re making the wrong 
pasta sauces!”

9



Background

10



Background

?
11



Background
1994: The Microkernel Dilemma
“Who killed the microkernel???”

12



Background
1995: The Microkernel Revelation
“Who saved the microkernel???”

13



Problem

2014: “Tuned” Linux kernels dominate 
cloud server architectures, yet they do 

not come close to achieving the 
theoretical optimum performance for a 

common bottleneck, namely I/O.

14



Problem
Traditional OS assumptions:
● many small applications share few 

processing cores
● applications exhibit a wide variety of 

behavior
● can’t rely on hardware to arbitrate 

I/O isolation among processes

15



Problem
Server OS assumptions:
● few large applications share many 

processing cores
● applications exhibit simple and 

predictable behavior
● modern virtualization hardware is 

increasingly flexible

16



Problem
Given this mismatch, why would we 
still use a commodity OS on servers?

If we instead build the right OSes, we 
can take full advantage of a server’s 
hardware, and the knowledge of what 
software that server is running.

17



Problem

18



Problem
Read Write

19



Problem

20



Background: ExoKernel

21



Background: ExoKernel

Advantages:
● programmer can implement 

custom abstractions
● programmer can omit unnecessary 

abstractions
● substantially less kernel overhead
● performance++

22



Background: ExoKernel

Disadvantages:
● True isolation is impossible
● OS arbitration is difficult

23



Background: ExoKernel

24



Background: Hardware

25



Background: Hardware

26



Background: Hardware

27



Background: ExoKernel

28



Arrakis!
Application Application Application Arrakis

29



Arrakis (again)!

30



Arrakis
Question: How do we solve the 
isolation and arbitration 
problems?

Answer: Hardware-based 
capabilities

31



Example: Network
1. Application X calls

filter = create_filter(flags, peerlist, servicelist)
2. Control plane (Arrakis) is triggered
3. Arrakis creates a filter “capability” by configuring 

(via the PF) X’s VF to allow communication 
according to the specified filter

4. Arrakis returns the filter “pointer” to X
5. X assigns filter to a new network queue on its VNIC

32



Example: Storage
1. Application Y calls VSA = acquire_vsa(name)
2. Control plane (Arrakis) is triggered
3. Arrakis creates a VSA “capability” by setting up an 

entry in kernel memory containing a mapping of 
virtual storage blocks to physical ones

4. Arrakis configures Y’s VSIC to map in the new VSA 
area

5. Arrakis returns the VSA capability to Y
6. Y can then call resize_VSA(VSA, size)
7. Arrakis checks whether it can satisfy the request, 

then updates the mapping and hardware as 
needed

33



Doorbells
● Arrakis’s way of handling asynchronous events
● Each queue has an associated doorbell
● When one of X’s events is triggered, and X is 

running, the doorbell is a hardware-virtualized 
interrupt directly to X

● When one of X’s events is triggered, and X is not 
running, the doorbell triggers a kernel interrupt, 
prompting the scheduler to switch to X

● Exposed to user applications like file descriptors, i.
e. they can be polled by select()

34



TenaciousD
● Persistent data structure framework to allow 

asynchronous persistent writes
● Operations are essentially “immediately persistent”
● Structure is robust to crash failures
● Operations have minimal latency
● Asynchronous API returns immediately, and may 

callback once the data is actually persistent
● Arrakis group modified Redis NoSQL to use 

TenaciousD

35



Performance (Network)

36



Performance (Network)

37



Performance (Network)

38



Performance (Storage)

39



Performance (Storage)

40



Comparison with IX
Differences:
● IX only optimized for network performance, not 

storage
● IX is a fork of the Linux kernel, whereas Arrakis is a 

fork of Barrelfish (an ExoKernel derivative)
● IX uses user-space rings to help enforce security
● Takes advantage of hardware-based RSS to reduce 

processing delays

41



Receive Side Scaling

42



Comparison with IX
Similarities:
● Both use a library OS approach with a user-space 

network stack
● Each data plane runs a single application in a single 

address space
● Data planes have associated capabilities
● comparable performance improvements over Linux

43



Thank You!

44


