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Background

1. Traditional
2. Zesty
3. Chunky
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Background

“You’re not making the wrong 
pasta sauce…”

“You’re making the wrong 
pasta sauces!”
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Background
1994: The Microkernel Dilemma
“Who killed the microkernel???”
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Background
1995: The Microkernel Revelation
“Who saved the microkernel???”
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Problem

2014: “Tuned” Linux kernels dominate 
cloud server architectures, yet they do 

not come close to achieving the 
theoretical optimum performance for a 

common bottleneck, namely I/O.
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Problem
Traditional OS assumptions:
● many small applications share few 

processing cores
● applications exhibit a wide variety of 

behavior
● can’t rely on hardware to arbitrate 

I/O isolation among processes
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Problem
Server OS assumptions:
● few large applications share many 

processing cores
● applications exhibit simple and 

predictable behavior
● modern virtualization hardware is 

increasingly flexible
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Problem
Given this mismatch, why would we 
still use a commodity OS on servers?

If we instead build the right OSes, we 
can take full advantage of a server’s 
hardware, and the knowledge of what 
software that server is running.
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Problem
Read Write
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Problem
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Background: ExoKernel

21



Background: ExoKernel

Advantages:
● programmer can implement 

custom abstractions
● programmer can omit unnecessary 

abstractions
● substantially less kernel overhead
● performance++
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Background: ExoKernel

Disadvantages:
● True isolation is impossible
● OS arbitration is difficult
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Background: ExoKernel
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Background: Hardware
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Background: Hardware
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Background: ExoKernel
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Arrakis!
Application Application Application Arrakis
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Arrakis (again)!
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Arrakis
Question: How do we solve the 
isolation and arbitration 
problems?

Answer: Hardware-based 
capabilities
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Example: Network
1. Application X calls

filter = create_filter(flags, peerlist, servicelist)
2. Control plane (Arrakis) is triggered
3. Arrakis creates a filter “capability” by configuring 

(via the PF) X’s VF to allow communication 
according to the specified filter

4. Arrakis returns the filter “pointer” to X
5. X assigns filter to a new network queue on its VNIC
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Example: Storage
1. Application Y calls VSA = acquire_vsa(name)
2. Control plane (Arrakis) is triggered
3. Arrakis creates a VSA “capability” by setting up an 

entry in kernel memory containing a mapping of 
virtual storage blocks to physical ones

4. Arrakis configures Y’s VSIC to map in the new VSA 
area

5. Arrakis returns the VSA capability to Y
6. Y can then call resize_VSA(VSA, size)
7. Arrakis checks whether it can satisfy the request, 

then updates the mapping and hardware as 
needed

33



Doorbells
● Arrakis’s way of handling asynchronous events
● Each queue has an associated doorbell
● When one of X’s events is triggered, and X is 

running, the doorbell is a hardware-virtualized 
interrupt directly to X

● When one of X’s events is triggered, and X is not 
running, the doorbell triggers a kernel interrupt, 
prompting the scheduler to switch to X

● Exposed to user applications like file descriptors, i.
e. they can be polled by select()
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TenaciousD
● Persistent data structure framework to allow 

asynchronous persistent writes
● Operations are essentially “immediately persistent”
● Structure is robust to crash failures
● Operations have minimal latency
● Asynchronous API returns immediately, and may 

callback once the data is actually persistent
● Arrakis group modified Redis NoSQL to use 

TenaciousD
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Performance (Network)
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Performance (Network)
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Performance (Network)

38



Performance (Storage)
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Performance (Storage)
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Comparison with IX
Differences:
● IX only optimized for network performance, not 

storage
● IX is a fork of the Linux kernel, whereas Arrakis is a 

fork of Barrelfish (an ExoKernel derivative)
● IX uses user-space rings to help enforce security
● Takes advantage of hardware-based RSS to reduce 

processing delays
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Receive Side Scaling
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Comparison with IX
Similarities:
● Both use a library OS approach with a user-space 

network stack
● Each data plane runs a single application in a single 

address space
● Data planes have associated capabilities
● comparable performance improvements over Linux
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Thank You!
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