
Information Flow
Yue Duan

1

INFORMATION FLOW

1. Introduction to information flow
2. How to track information flow
3. Paper presentation
Quantitative Information Flow as Network
Flow Capacity

by Stephen McCamant, Michael D. Ernst
PLDI’08

2

Introduction to Information Flow

From Wiki,
Information flow in an information theoretical
context is the transfer of information from a
variable x to a variable y in a given process.
Not all flows may be desirable.

3

Introduction to Information Flow

Explicit flow: explicitly leak information to a
publicly observable variable

int a = 0;
int b = a;

Should be handled relatively easily.

4

Introduction to Information Flow

Implicit flow: leakage of information through
the program control flow.

if (a == 3)
b = 5;

else
b = 7;

Practically more difficult to handle.
5

How to track information flow

Dynamic taint analysis: run a program and
observe which computations are affected by
predefined taint sources such as user input.

First mark input data from untrusted sources
tainted, then monitor program execution to
track how the tainted attribute propagates.

6

How to track information flow

Example of taint logic: (From TaintDroid)

7

How to track information flow

Potential shortcomings:
1. Overtainting problem
● Tainting may explode, rendering taint

analysis useless.
2. No quantitative measurement
3. Weak in implicit flow handling

8

Paper presentation

Quantitative Information Flow as Network
Flow Capacity

by Stephen McCamant, Michael D. Ernst
PLDI’08

Goal: Determine how much information about
a program’s secret inputs is revealed by its
public outputs.

9

Motivation

Tainting approach:
– good at detecting illegal flow
– cannot give a precise measurement of secret
information

10

Motivation

● Subset of inputs are secret.
● Subset of outputs are public.
● Express confidentiality as a limit on number

of secret bits revealed in public outputs.
● Goal: Develop scheme for dynamic

quantitative information flow analysis

11

Dynamic Max-Flow analysis

Key idea of the solution:
Information-flow = a network flow capacity
● Information channels = a network of

limited-capacity pipes
● Amount of secret information can be

revealed = maximum flow through the
network

12

Dynamic Max-Flow analysis

Flow Graph Construction
● Edges represent values

○ capacities = # bits of data they can hold.
● Nodes represent basic operations
● A source node = all secret inputs
● A sink node = all public outputs
● Directed and acyclic graph

13

Dynamic Max-Flow analysis

14

To limit the potential information flow, new
node is added.

Dynamic Max-Flow analysis

● Implicit Flow are caused by branches,
pointers, arrays.

● Each implicit flow operation as part of a
larger computation with defined outputs.

● Edges are added to connect each implicit
flow operation to the outputs of the
enclosed computation.

15

Dynamic Max-Flow analysis

Consider computing a square root. If the
square root is computed by code that uses a
loop or branches on the secret value, these
implicit flows can be conservatively accounted
for by assuming that they might all affect the
computed square root value

16

Dynamic Max-Flow analysis

Enclosure regions
● Mark a single-exit control-flow region
● Declare locations the enclosed code might

write to
● Specified by annotations, Inferred using

static analysis

17

Dynamic Max-Flow analysis

Example of enclosure
regions.
● Edges from implicit

flow operations to the
enclosure node and
from that enclosure
node to outputs.

18

Dynamic Max-Flow analysis

● Implicit flows:
○ input buffer and num dot
○ num dot and common
○ num and the output

19

Dynamic Max-Flow analysis

Edge capacity

● 2-way branch: add edge
with a 1-bit capacity

● Pointer op: add edge
with capacity equal to
number of secret bits

20

Dynamic Max-Flow analysis

Reveals 9 bits the secret
input:
● 1 bit of which character

is more common
● 8 bits from the count

21

Soundness and Consistency

Soundness:

A bound of k is sound iff there is also a code c
where for each message i, Alice and Bob could
have communicated i using exactly k bits.

22

Soundness and Consistency

23

● Assume Divide(a,b) returns c = a/b
● Alice controls inputs a,b
● Bob sees public output c
● a=2,b=0 for “Attack”
● a=4,b=1 for “No attack”
● Code c: 1 Attack, 0 No attack
● 1 bit bound is sound

Soundness and Consistency

24

Consistency over multiple executions
● Combines the graphs from multiple

executions and analyzes together.
● Merges all the edges at the “same” program

location into a single edge
○ capacity = sum of the original capacities

Implementation

● Dynamic Instruction rewriting via Valgrind.
● Associate positive integer tags with any

values that could contain secret
information
○ �Registers, each byte in memory gets a tag

● �Tag == 0 means no secret information,
not necessary to include in graph

25

Efficient Max Flow

● Solving for maximum flow takes O(VE)
○ �V = # of vertices
○ �E = # of edges

● Plan: Linear in actual program runtime
● Solution: Collapse edges, nodes to shrink

graph size

26

Efficient Max Flow

● Performance

27

Checking Flow Bound

● A cut = set of edges whose removal
disconnects the source from the sink.

● Use Classic max Classic max-flow-min-cut
theorem to find max flow
○ The value of any flow is bounded by the capacity of

any cut, and the maximum flows are those with the
same value as the minimum-capacity cuts

28

Checking Flow Bound

Once a maximum flow has been discovered,
the tool computes a cut by
● enumerate the nodes on the source side of

the cut by depth-first search
● the cut edges are those that connect nodes

reached in the DFS to nodes not reached.

29

Checking Flow Bound

After getting the cut, we do a checking.
● Taint-based checking: Checking that no

secret information reaches the output other
than across a given cut.
○ The cut edges correspond to annotations that clear

the taint bits on data

30

Case Studies

Performed case study on 5 programs.
● ImageMagick is a suite of programs for

converting and transforming bitmap images.
● Evaluate some of its transformations to

assess how much information about the
original they preserve.

31

Case Studies

Which one hides
information the
best?

32

Case Studies

33

That’s it! Thanks!

34

