
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 1

Auto-pipelining for Data Stream Processing
Yuzhe Tang, Student Member, IEEE, Buğra Gedik, Member, IEEE

Abstract—Stream processing applications use online analytics to ingest high-rate data sources, process them on-the-fly, and generate

live results in a timely manner. The data flow graph representation of these applications facilitates the specification of stream computing

tasks with ease, and also lends itself to possible run-time exploitation of parallelization on multi-core processors. While the data flow

graphs naturally contain a rich set of parallelization opportunities, exploiting them is challenging due to the combinatorial number of

possible configurations. Furthermore, the best configuration is dynamic in nature; it can differ across multiple runs of the application,

and even during different phases of the same run. In this paper, we propose an auto-pipelining solution that can take advantage of

multi-core processors to improve throughput of streaming applications, in an effective and transparent way. The solution is effective in

the sense that it provides good utilization of resources by dynamically finding and exploiting sources of pipeline parallelism in streaming

applications. It is transparent in the sense that it does not require any hints from the application developers. As part of our solution,

we describe a light-weight runtime profiling scheme to learn resource usage of operators comprising the application, an optimization

algorithm to locate best places in the data flow graph to explore additional parallelism, and an adaptive control scheme to find the right

level of parallelism. We have implemented our solution in an industrial-strength stream processing system. Our experimental evaluation

based on micro-benchmarks, synthetic workloads, as well as real-world applications confirms that our design is effective in optimizing

the throughput of stream processing applications without requiring any changes to the application code.

Index Terms—stream processing; parallelization; auto-pipelining

✦

1 INTRODUCTION

With the recent explosion in the amount of data available
as live feeds, stream computing has found wide applica-
tion in areas ranging from telecommunications to health-
care to cyber-security. Stream processing applications im-
plement data-in-motion analytics to ingest high-rate data
sources, process them on-the-fly, and generate live re-
sults in a timely manner. Stream computing middleware
provides an execution substrate and runtime system for
stream processing applications. In recent years, many
such systems have been developed in academia [1], [2],
[3], as well as in industry [4], [5], [6].

For the last decade, we have witnessed the prolifer-
ation of multi-core processors, fueled by diminishing
gains in processor performance from increasing oper-
ating frequencies. Multi-core processors pose a major
challenge to software development, as taking advantage
of them often requires fundamental changes to how
application code is structured. Examples include em-
ploying thread-level primitives or relying on higher-level
abstractions that have been the focus of much research
and development [7], [8], [9], [10], [11], [12]. The high-
throughput processing requirement of stream processing
applications makes them ideal for taking advantage of
multi-core processors. However, it is a challenge to keep
the simple and elegant data flow programming model

• Y. Tang is a Ph.D. student at the College of Computing, Georgia
Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30332. E-mail:
yztang@gatech.edu. The work was done while the author was at the IBM
T.J. Watson Research Center.
• B. Gedik is an Asst. Professor at the Computer Engineer-
ing Deparment, Bilkent University, 06800, Ankara, Turkey. E-mail:
bgedik@cs.bilkent.edu. Part of the work was done while the author was
at the IBM T.J. Watson Research Center.

of stream computing, while best utilizing the multiple
cores available in today’s processors.

Stream processing applications are represented as data
flow graphs, consisting of reusable operators connected
to each other via stream connections attached to operator
ports. This is a programming model that is declarative at
the flow manipulation level and imperative at the flow
composition level [13]. The data flow graph represen-
tation of stream processing applications contains a rich
set of parallelization opportunities. For instance, pipeline
parallelism is abundant in stream processing applications.
While one operator is processing a tuple, an upstream
operator can process the next tuple concurrently. Many
data flow graphs contain bushy segments that process
the same set of tuples, and which can be executed
in parallel. This is an example of task parallelism. It is
noteworthy that both forms of parallelism have advan-
tages in terms of preserving the semantics of a parallel
program. On the other hand, exploiting data parallelism
has additional complexity due to the need for morphing
the graph to create multiple copies of an operator and
to re-establish the order between tuples. Pipeline and
task parallelism do not require morphing the graph and
preserve the order without additional effort. These two
forms of parallelism can be exploited by inserting the
right number of threads into the data flow graph at the
right locations. It is desirable to perform this kind of
parallelization in a transparent manner, such that the
applications are developed without explicit knowledge
of the amount of parallelism available on the platform.
We call this process auto-pipelining.

There are several challenges to performing effective
and transparent auto-pipelining in the context of stream
processing applications.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 2

First, optimizing the parallelization of stream process-
ing applications requires determining the relative costs
of operators. The prevalence of user-defined operators
in real-world streaming applications [5] means that cost
modeling, commonly applied in database systems [14], is
not applicable in this setting. On the other hand, profile-
driven optimization that requires one or more profile
runs based on compiler-generated instrumentation [15],
[16], while effective, suffers from usability problems
and lack of runtime adaptation. On the usability side,
requiring profile runs and specification of additional
compilation options has proven to be unpopular among
users in our own experience (see Appendix J). In terms
of runtime adaptation, the profile run may not be rep-
resentative of the final execution. In summary, a light-
weight dynamic profiling of operators is needed in order
to provide effective and transparent auto-pipelining.

Second, and more fundamentally, it is a challenge
to efficiently (time-wise) find an effective (throughput-
wise) configuration that best utilizes available resources
and harnesses the inherent parallelism present in the
streaming application. Given N operator ports and
up to T threads, there are combinatorial possibili-

ties,
∑T

k=0

(

N
k

)

to be precise. In the absence of auto-
pipelining, we have observed application developers
struggling to insert threads manually1 to improve
throughput. This is no surprise, as for a medium size
application with 50 operators on an 8-core system, the
number of possibilities reach multiple billions. Thus, a
practical optimization solution needs to quickly and au-
tomatically locate an effective configuration at runtime.

Finally, deciding the right level of parallelism is a
challenge. The behavior of the system is difficult to
predict for various reasons. User-defined operators can
contain locks that inhibit effective parallelization. The
overhead imposed by adding an additional thread in
the execution path is a function of the size of the
tuples flowing through the port. The behavior of the
operating system scheduler can not be easily modeled
and predicted. The impact of these and other system
artifacts are observable only at runtime and treated as a
blackbox. While the optimization step can come up with
threading configuration changes that are expected to im-
prove performance, such decisions need to be tried out
and dynamically evaluated to verify their effectiveness.
As such, we need a control algorithm that can backtrack
from bad decisions.

In this paper we describe an auto-pipelining solution
that addresses all of these challenges. It consists of:

• A light-weight run-time profiling scheme that uses a
novel metric called per-port utilization to determine the
amount of time each thread spends downstream of a
given operator input port.

• A greedy optimization algorithm that finds locations in
the data flow graph where inserting additional threads

1. SPL language [5] provides a configuration called ‘threaded port’
that can be used to manually insert threads into a data flow graph.

helps eliminate bottlenecks and improve throughput.

• A control algorithm that decides when to stop inserting
additional threads and also backtracks from decisions
that turn out to be ineffective.

• Runtime mechanics to insert/remove threads while
maintaining lock correctness and continuous operation.

We implemented our auto-pipelining solution on
IBM’s System S [3] — an industrial strength stream pro-
cessing middleware. We evaluate its effectiveness using
micro-benchmarks, synthetic workloads, and real-world
applications. Our results show that auto-pipelining pro-
vides better throughput compared to hand-optimized
applications at no cost to application developers.

2 BACKGROUND

We provide a brief overview of the basic concepts associ-
ated with stream processing applications, using SPL [5]
as the language of illustration. We also describe the
fundamentals of runtime execution in System S.

2.1 Basic concepts

Listing 1 in Appendix A gives the source code for a
very simple stream processing application in SPL, with
its visual representation depicted in Figure 1 below.

Sensor
Source

Query
Source

Sensors

Queries

Join TCPSink
Results

Fig. 1: Data flow graph for the SensorQuery app.

The application is composed of operator instances con-
nected to each other via stream connections. An opera-
tor instance is a vertex in the application graph. An
operator instance is always associated with an operator.
For instance, the operator instance shown in the middle
of the graph in Figure 1 is an instance of a Join

operator. In general, operators can have many different
instantiations, each using different stream types, param-
eters, or other configurations such as windows. Operator
instances can have zero or more input and output ports.
Each output port generates a uniquely named stream,
which is a sequence of tuples. Connecting an output
port to the input of an operator establishes a stream
connection. Operators are often implemented in general
purpose languages, using an event driven interface, by
reacting to tuples arriving on operator input ports. Tuple
processing generally involves updating some operator-
local state and producing result tuples that are sent out
on the output ports.

There are two important aspects of real-world appli-
cations that are highly relevant for our work:

• Real-world applications are usually much larger in
terms of the number of operators they contain, reaching
hundreds or even thousands.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 3

• Real-world applications contain many user-defined re-
usable operators to implement cross-domain or domain-
specific manipulations.

The former point motivates the need for automatic
parallelization, whereas the latter motivates the need for
dynamic profiling.

2.2 Execution model

A distributed stream processing middleware, such as
System S, executes data flow graphs by partitioning
them into basic units called processing elements. Each pro-
cessing element contains a sub-graph and can run on a
different host. For small and medium-scale applications,
the entire graph can map to a single processing element.
Without loss of generality, in this paper we focus on a
single multi-core host executing the entire graph. Our
auto-pipelining technique can be applied independently
on each host when the whole application consists of
multiple, distributed processing elements.

There are two main sources of threading in our stream-
ing runtime system, which contribute to the execution
of the data flow graphs. The first one is operator threads.
Source operators, which do not have any input ports,
are driven by a separate thread. When a source operator
makes a submit call to send a tuple to its output port,
this same thread executes the rest of the downstream
operators in the data flow graph. As a result, the same
thread can traverse a number of operators, before even-
tually coming back to the source operator to execute the
next iteration of its event loop. This behavior is because
the stream connections in a processing element are im-
plemented via function calls. Using function calls yields
fast execution, avoiding scheduler context switches and
explicit buffers between operators. We refer to this opti-
mization as operator fusion [16], [15]. Non-source opera-
tors can also create operator threads, but this is rare. In
general, the number and location of operator threads are
not flexible because they are dictated by the application
and the operator implementations.

The second source of threading is threaded ports.
Threaded ports can be inserted at any operator input
port. When a tuple reaches a threaded port, the currently
executing thread will insert the tuple into the threaded
port buffer, and go back to executing upstream logic.
A separate thread, dedicated to the threaded port, will
pick up the queued tuples and execute the downstream
operators. Threaded port buffers are implemented as
cache-optimized concurrent lock-free queues [17].

The goal of our auto-pipelining solution is to auto-
matically place threaded ports at operator input ports
during run-time, so as to maximize throughput.

3 SYSTEM OVERVIEW

In this section we give an overview of our auto-
pipelining solution. Figure 2 depicts the functional com-
ponents and the overall control flow of the solution. It
consists of five main stages that run in a continuous loop
until a termination condition is reached.

Profiling

Per-port utilizations

Optimization

Threaded ports

Thread
Insertion

Evaluation

Performance
feedback

Controller

Empty set

Halt

Fig. 2: Overview of the
auto-pipelining system.

The first stage is the pro-
filing stage. In this stage a
light-weight profiler deter-
mines how much time each
of the existing threads spend
on executing the operators
in the graph. This profiling
information, termed per-port
utilization, is used as input
to the optimization stage. An
optimization algorithm that
uses a greedy heuristic deter-
mines what the next action
should be. The next action
could either be to halt, as
it could find nothing but an
empty set of threaded ports at this time, or it could
be to add additional threads at specific input ports.
If the optimizer decides to add new threads, then the
thread insertion component applies this decision. This is
followed by the evaluation component, which evaluates
the performance of the system after the thread inser-
tions. The performance results from the evaluation are
put into the controller component as a feedback, which
takes one of two possible actions. It could vet all the
thread insertions and go to the next iteration of the
process. Alternatively, it could remove some or all of
the inserted threads, reverting back the decisions taken
by the optimizer. This could be followed by moving to
the next iteration of the process or halting the process.
In the former case, it applies a blacklisting algorithm to
avoid coming up with the same ineffective configuration
in the next iteration.

The system can be taken out of the halting state in case
a shift in the workload conditions is detected. However,
the focus of this work is on finding an effective operating
point right after the application launch.

3.1 An Example Scenario

Throughout the paper we use an example application
to illustrate various components of our solution. The
compile-time and run-time data flow graphs for this
application are given in Figures 3 and 4, respectively. For
simplicity of exposition, we assume that all operators
have a single input port and a single output port.
However, our solution trivially extends to the general
case and has been implemented and evaluated for the
multi-port scenario (see Section 8).

The sample application consists of an 11-operator
graph as shown in Figure 3. There are four source oper-
ators (namely, o0, o2, o5 and o7) which generate tuples.
At runtime, there are four threads initially, t0, . . . , t3,
that execute the program, assuming no threaded ports
have been inserted. Figure 4 shows the execution path
of different threads in different colors and shapes. Note
that some operators are present in the execution path of
multiple threads. For instance, threads t0 and t1 share
operator o3 in their execution paths.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 4

Fig. 3: Operator graph Fig. 4: Runtime op. graph

The runtime graph cannot be derived solely from
the compile-time graph. The paths threads take can
depend on tuple runtime values, as well as operator
runtime behavior, such as selectivity or tuple submission
decisions. Hence, the compile-time graph restricts each
thread in terms of what operators it can traverse, but
does not exactly define its path. We derive the runtime
graph based on runtime profiling (see Section 6).

We now look at the metrics that will help us formulate
the auto-pipelining problem.

3.1.1 Profiling Metrics

The main profiling metric collected by our auto-
pipelining solution is called the per-port utilization, which
we denote with µ(o, t). The variable o represents any
arbitrary operator, and t represents any thread that can
execute that operator. We define the utilization, µ(o, t),
to be the amount of CPU utilized by thread t when
executing all downstream operators starting from the
input port of operator o. During program execution,
the profiler maintains µ(o, t) for every operator/thread
pair for which the thread t executes the operator o. In
Figure 4, for example, the input port of operator o6 is
associated with utilization 30%, meaning that thread t2
spends 30% of the CPU time on executing o6 and its
downstream operators, which are operators o4 and o10.
Thus µ(o6, t2) = 0.3.

For each thread, we also define per-thread utilization,
denoted as µ(t), which is the overall CPU utilization
of thread t. For example, in Figure 4, thread t2 has a
utilization of 90%, thus µ(t2) = 0.9.

The reason we pick per-port CPU utilization, µ(o, t),
as our main profiling metric is that it simplifies predict-
ing the relative work distribution between threads after
inserting a new thread on an input port. For instance, if
a threaded port is being added in front of operator o6
in Figure 4, the newly created thread will take 30% CPU
utilization from the existing thread t2.

Predicting the relative work distribution for a po-
tential thread insertion is performed in the following
way. Assume that T (o) = {t |µ(o, t) > 0} denotes the
list of threads that contain a given operator o in their
execution path. Adding a threaded port at operator o
will have two consequences. First, all of the threads in
T (o) will execute only up to the input port of operator
o. Second, a new thread, t′, will execute the rest of the
executions paths for all threads in T (o). The prediction
of the work distribution for the newly created thread t′ is

µ′(t′) =
∑

t∈T (o) µ(o, t). For an existing thread t ∈ T (o),
the prediction is µ′(t) = µ(t) − µ(o, t). For instance, in
Figure 4, when a threaded port is added to operator o3,
we predict µ′(t0) = 0.4, µ′(t1) = 0.5, and µ′(t′) = 1.

It is important to note that µ′ is a relative metric of
how the work is partitioned between the existing threads
and the newly created thread. It is not an accurate
prediction of what the CPU utilizations will be after the
thread insertion. The expectation is that, given enough
processing resources and enough work present in the
application, the actual utilizations (µ) will be higher
than the relative predictions (µ′). For instance, consider
a simple chain of operators executed by a single thread
that has µ(t0) = 1. Adding a threaded port in the
middle of this chain will result in µ′(t0) = 0.5 and
µ′(t1) = 0.5. We use these relative utilization values
to assess whether or not inserting a new thread in this
location will improve performance. After the insertion,
the optimistic expectation is that µ(t0) = µ(t1) > 0.5,
because u′(t0) < 1 and u′(t1) < 1, which leaves room
for improvement in throughput. The evaluation and
control stages of our solution deal with cases where this
expectation does not hold.

3.1.2 Utility Function

The predicted relative utilizations are used to define a
utility function that measures a threaded port insertion’s
goodness. Given an insertion at operator o, causing the
creation of thread t′, we define its utility as

U(o, t′) = max(µ′(t) | t ∈ T (o) ∪ {t′}).

The utility function for a given operator and its new
thread is the largest predicted relative work distribution
across all of the threads with that operator in its path.
Our goal is to minimize this utility function. The intuition
behind the utility function is simple: the thread that
has the highest predicted work (µ′) will become the
bottleneck of the system.

Suppose T (o) = {t0} and our predictions after inser-
tion of a new thread t′ at operator o are µ′(t0) = 0.3
and µ′(t′) = 0.6. The utility of this insertion is U(o, t′) =
max(0.6, 0.3) = 0.6. A better insertion at a different
operator o′, where T (o′) = {t0}, that would give a lower
utility value is: µ′(t0) = 0.5 and µ′(t′) = 0.5, leading to
U(o′, t′) = 0.5. However, it may not always be possible to
find such an insertion based on the per-port utilizations
of the operators reported by profiling.

For a set of thread insertions, say C = {〈o, t′〉}, we
define an aggregate utility function U(C) as:

U(C) = max(U(o, t′) | 〈o, t′〉 ∈ C).

Here, we pick the maximum of the individual utilities.
We will further discuss and illustrate the aggregate
utility function shortly.

3.2 The Optimization Problem

Recall that the goal of the optimization stage is to
find one or more threaded ports that will improve the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 5

throughput of the system. We propose the following
heuristic for the optimization stage:

Minimize the aggregate utility function while making
sure that one and only one threaded port is inserted in
the execution path of each heavily utilized thread.

This formulation is based on three core principles:
1) Help the needy: At each step, we only insert threads

in the execution path of heavily utilized threads. A
heavily utilized thread is a bottleneck, which implies that
if it has more resources, overall throughput will improve.

2) Be greedy but generous: By definition our solution
is greedy, as at each step it comes up with incremental
insertions that will improve performance. However, in-
serting a single thread at a time does not work, which
is why we make sure that a thread is inserted in the
execution path of each heavily utilized thread. To see
this point, consider the scenario where two threads
execute a simple chain of four equal sized operators.
The first thread executes the first two operators, and
the second thread executes the remaining two. As an
incremental step, if we only help the first thread, we
will end up having three threads, where the last thread
still executes two operators. This imbalance will become
the bottleneck and thus the throughput will not increase.
But, if we help both of the two original threads, we
expect the throughput to increase.

A more subtle, but critical, point is the requirement
that one and only one thread is added to the execution
path of each heavily utilized thread. This is strongly
related to the greedy nature of the algorithm. If we are
to insert more than one thread in the execution path
of a given thread, then the prediction of a thread’s µ′

requires significantly more profiling information (such
as the amount of CPU time a thread spends downstream
of a port when it reaches that port by passing through a
given set of upstream input ports). We want to maintain
a light-weight profiling stage that will not disturb ap-
plication performance during profiling. Hence, we make
our algorithm greedy by inserting at most one thread in
the execution path of an existing thread, but for each one
of the heavily utilized threads (thus generous).

3) Be fair: We minimize the utility function U , which
means that new threads are inserted such that the newly
created and the existing threads have balanced load.

4 OPTIMIZATION ALGORITHM

We now describe a base optimization algorithm and a
set of enhancements that improve its running time. A
cost analysis is provided in Appendix B.

4.1 The Algorithm

For a simple chain of operators, designing an algorithm
that meets the criteria given in Section 3.2 is straightfor-
ward. However, operators that are shared across threads
complicate the design in the general case. We need to
make sure that one and only one thread is inserted in
the execution path of each existing thread, even though
the same thread can be inserted in the execution path

of multiple existing threads. The main idea behind the
algorithm is to reduce the search space via selection and
removal of shared operators from the set of possible
solutions, and then explore each sub-space separately.

Before describing the algorithm in detail, we first
introduce a simple matrix form that represents a sub-
space of possible solutions.

Matrix representation: For each thread, we initially have
all the operators in the execution path of it as a possible
choice for inserting a threaded port. As the algorithm
progresses, we gradually remove some of the operators
from the list to reduce the search space. For instance, the
runtime operator graph from Figure 4 can be converted
into the following matrix representation:

t0 o0, 90% o1, 15% o3, 50% o4, 20%
t1 o2, 100% o3, 50% o4, 20%
t2 o5, 90% o6, 30% o4, 15% o10, 5%
t3 o7, 95% o8, 60% o9, 30% o10, 20%

The matrix contains one row for each thread in the
unmodified application. For each row, it lists the set of
operators that are in the execution path of the thread
with their associated CPU utilization metrics, which is
µ(o, t). Note that the source operators are placed on the
first column and are separated from the rest. They are
not considered as potential places to add threaded ports
as they have no input ports. We exclude them from
the matrix representation for the rest of the paper. The
remaining operators are in no particular order, but we
sort them by their index for ease of exposition.

The algorithm is composed of four major phases,
namely bottleneck selection, solution reduction, candidate
formation, and solution selection.

Bottleneck Selection: The first phase is the bottleneck
selection, which identifies highly utilized threads. A
threshold β ∈ [0, 1] is used to eliminate threads whose
CPU utilizations are below it. For instance, if β = 0.92,
threads t0 and t2 are eliminated since their utilizations
are smaller than the threshold and thus are not deemed
bottlenecks. For the rest of this section, we assume
β = 0.8 for the running example, which means all of
the four threads are considered as bottlenecks.

Solution Reduction: The second phase is the solution
reduction, which performs a tree search to reduce the
solution space. At the root of the tree is the initial matrix.
At each step, we choose one of the leaf matrices that
still contains shared operators based on the runtime data
flow graph. We pick one of these shared operators for
that leaf matrix and perform selection and removal to yield
two sub-matrices in the tree.

Selection means that we select the shared operator as
part of the solution, and thus remove all other oper-
ators from the rows that contain the shared operator.
Furthermore, we remove all operators that originally
appeared together with the shared operator in the same
row, from other rows, since they cannot be selected in a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 6

valid solution. Figure 5 shows an example. Consider the
edge labeled S3, which represents the case of selecting
shared operator 3. After the selection, the first two rows
now have operator 3 as the only choice. Furthermore,
operators 1 and 4—which previously appeared in the
same row as 3—are removed from all rows, as picking
them would result in inserting more than one thread on
the execution paths of the first two threads.

Removal means we exclude the shared operator from
the solution, and thus we remove it from all rows where
it appears. Figure 5 shows an example. Consider the
edge labeled R3, which represents the case of removing
the shared operator 3.

The solution reduction phase continues until the leaf
matrices have all of their shared operators removed.

Candidate Formation: After the solution reduction phase,
all leaves of the tree contain pre-candidate solutions.
The goal of the candidate formation phase is to create
candidate solutions out of the pre-candidate ones. As
part of candidate formation, first we apply a filtering
step. If we encounter a leaf matrix where a thread is
left without an operator in its row, yet there is another
dependent thread that has a non-empty row, then we
eliminate this leaf matrix. We consider threads that share
operators in their execution paths as dependent.

Fig. 5: Solution reduction and
candidate formation.

As an example,
the rightmost two
leaves in Figure 5
are removed in
the filtering step.
After the filtering
step, we convert
each remaining pre-
candidate solution
into a candidate
solution by making
sure that each non-
empty row contains
a single operator,
i.e., we convert
each matrix into a
column vector. When
there are multiple
operators in a row,
we compute the
utility function U(o, t) for each, and pick the one that
gives the lowest value. As an example, the pre-candidate
solution pointed at by arrow S4 in Figure 5 is converted
into a candidate solution by picking operator 8 as
opposed to operator 9. Operator 8 has a lower utility
value, U(o8, t3) = 0.6, compared to operator 9’s utility,
U(o9, t3) = 0.65.

Solution Selection: In the solution selection phase, we
pick the best candidate among the ones produced
by the candidate formation phase. Recall that our
utility function U(o, t) was defined on a per-thread
basis. To pick the best candidate, we use the

aggregate utility function U(C), where C = {〈o, t〉}
represents a candidate solution. Recall that we
pick the maximum of the individual utilities2, thus
U(C) = max(U(o, t) | 〈o, t〉 ∈ C). We pick the candidate
solution with the minimum aggregate utility as the
final solution. In the running example, this corresponds
to picking C = {〈o4, t0〉, 〈o4, t1〉, 〈o4, t2〉, 〈o8, t3〉} with
aggregate utility of 0.8.

4.2 Algorithm Enhancements

We further propose and employ two enhancements to
our basic algorithm.

Pruning: Our enhanced algorithm stops branching
when it finds that the utility function value for some
of the rows in the current matrix is already equal to
or larger than 100%. For example, in Fig. 5, there is
no point to continue branching after R4, since thread t1
has no potential threaded port to add and will remain
bottlenecked after inserting other threads.

Sorting: In the solution reduction phase, we use the
degree of operator sharing as our guideline for picking
the next solution to further reduce. We sort the shared
operators based on the number of rows they appear in.
This way, if a shared operator shows up in the execution
path of many threads, it is considered earlier in the
exploration as it will result in more effective reduction
in the search space, especially when used with pruning.
When selected, shared operators have a higher chance of
causing the utility function value to go over 100% due
to contribution from multiple threads.

5 EVALUATION AND CONTROL

The thread insertions proposed by the optimization stage
are put into effect by the runtime. After inserting the new
threads, the evaluation stage measures the throughput
on input ports which received a threaded port. The
throughput is defined as the number of tuples processed
per second. If the throughput increased for all of the
input ports that has received a threaded port, then the
controller stage moves on to the next iteration.

If the throughput has not increased for some of the
input ports, then the control stage performs blacklisting.
The ports for which the throughput has not improved
are blacklisted. Furthermore, the thread insertions are
reverted by removing these threaded ports from the flow
graph. Blacklisted input ports are excluded from consid-
eration in future optimization stages. If the percentage of
blacklisted input ports exceeds a pre-defined threshold
α ∈ [0, 1], then the process halts. Otherwise, we move
on to the next iteration. It is possible that the process
halts even before the threshold α is reached, as a feasable
solution may not be found during the optmization stage.

Alternative blacklisting policies can be applied to re-
duce the change of getting stuck at a local minima. For
instance, the blacklisted ports can be maintained on a

2. When there are more than one dependent thread groups, utility U

is computed independently for each group and the maximum is taken
as the final aggregate utility.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 7

per-pipelining configuration basis rather than globally,
at the cost of keeping more state around.

6 PROFILER

We describe the basic design of the profiler component.
The implementation details can be found in Appendix C.

Our profiler follows the design principle of gprof [18],
that is, to use both instrumentation and periodic sam-
pling for profiling. However, the instrumentation is not
part of the generated code. Instead, the SPL runtime has
lightweight instrumentation which records thread activ-
ity with respect to operator execution. More specifically,
the instrumented SPL runtime monitors the point at
which a thread enters or exits an input port, so that it can
track which ports are currently active. It uses a special
per-thread stack, called the E-stack, for this purpose.

In order to collect the amount of CPU time a thread
spends downstream of an input port, our system pe-
riodically samples the thread status and traverses the
E-stacks. We call the period between two consecutive
samplings the sampling period, denoted by ps. If there
are N occurrences during the last po seconds where
thread t was found to be active doing work downstream
of operator o’s input port, then the per-port thread
utilization µ(o, t) is given by N

po/ps
. The intuition for this

calculation is that it is the number of observations (N)
divided by how many times we sample during a given
time period (po/ps).

Periodic sampling is inherently subject to statistical
inaccuracy, thus enough samples should be collected
for accurate results. This could be achieved by either
increasing the duration of profiling (po) or decreasing
the sampling period (ps). Given the long running nature
of streaming applications, we favor the former approach.

7 DYNAMIC THREAD INSERTION/REMOVAL

Thread insertion and removal is implemented by dy-
namically adding and removing threaded ports. Both
activities require suspending the current flow of data for
a very brief amount of time, during which the circular
buffer associated with the threaded port is added/re-
moved to/from the data flow graph. Finally, the sus-
pended flow is resumed. Suspending the flow, however,
is not the only step necessary to preserve safety. In the
presence of stateful operators, dynamic lock insertion
and removal is required to ensure mutually exclusive
access to shared state. This is further discussed in Ap-
pendix D. Our implementation does make use of thread
pools, since the additional work that is performed during
thread injection and removal dominates the overall cost.

8 EXPERIMENTAL RESULTS

We evaluate the effectiveness of our solution based
on experimental results. We perform three kinds of
experiments. First, we use micro-benchmarks to eval-
uate the components of our solution and verify the
assumptions that underlie our techniques. Second, we

evaluate the running time efficiency of our optimiza-
tion algorithm under varying topologies and application
sizes, using synthetic applications. Third, using three
real-world applications, we compare the throughput our
auto-pipelining scheme achieves to that of manual op-
timization as well as no optimization. The second set
of experiments, based on synthetic applications, can be
found in Appendix F.

8.1 Experimental Setup

We have implemented our auto-pipelining scheme in
C++, as part of the SPL runtime within System S [3].

All of our experiments were performed on a host with
2 Intel Xeon processors. Each processor has 4 cores, and
each core is a 2-way SMT, exposing 16 hardware threads
per node, but only 8 independent cores. When running
the experiments, we turn off hyperthreading so that the
number of virtual cores equals the number of physical
cores (which is 8)3.

8.2 Micro-benchmarks

For the micro-benchmarks, we use a simple application
topology that consists of a chain of 8 operators. All
operators have the same cost and perform the same
operation (a series of multiplications). The cost of an
operator is configurable. Plots for cost-throughput trade-
off are given in Appendix E.

8.2.1 Pipelining benefit

Pipelining is beneficial under two conditions. First,
enough hardware resources should exist to take advan-
tage of an additional thread. Second, the overhead of
copying a tuple to a buffer and a thread switch-over
should be small enough to benefit from the additional
parallelism. When these conditions do not hold, the eval-
uation and control stages of our auto-pipelining solution
will detect this and adjust the adaptation process.

We evaluate the pipelining benefit and show how it
relates to the overhead associated with threaded ports
by measuring the speedup obtained when executing our
application with two threads instead of one. Figure 6
plots the speedup as a function of the per-tuple pro-
cessing cost, for different tuple sizes. When the per-
tuple processing cost is small, it is expected that using
an additional thread will introduce significant overhead.
In fact, we observe that the additional thread reduces
the performance (speedup less than 1). As the per-tuple
processing cost gets higher, we see that perfect speedup
of 2× is achieved. The tuple sizes also have an impact
on the benefit of pipelining. For large tuple sizes, the ad-
ditional copying required to go through a buffer creates
overhead. Thus, the crossover point for achieving > 1×
speedup happens at a lower per-tuple cost for smaller
sized tuples. For small tuples, custom allocators [19]
can be used to further improve the performance. For
large tuples, the copying of the data contents dominates
the cost. While copy-on-write (COW) techniques can be

3. This is done to avoid impacting the scalability micro-benchmarks.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 8

20 22 24 26 28 210 212 214 216 218 220

Per tuple processing cost (# of mult iplicat ions)

0.0

0.5

1.0

1.5

2.0

S
p
e
e
d
u
p
c
o
m
p
a
re
d
to
th
e
s
e
q
u
e
n
ti
a
l
c
a
s
e

Pipelining Benefit

tuple size= 10

tuple size= 50

tuple size= 100

tuple size= 500

tuple size= 1K

tuple size= 5K

Fig. 6: Speedup vs. process-
ing cost.

21 22 23 24 25 26 27 28 29 210

Num ber of sam ples per second

0

2

4

6

8

10

12

14

16

O
v

e
rh

e
a

d
(%

)
c
o

m
p

a
re

d
to

n
o

p
ro

fi
li

n
g

Profiling Overhead

overhead, # threads= 1

overhead, # threads= 2

overhead, # threads= 4

overhead, # threads= 8

Fig. 7: Profiling over-
head vs. sampling rate.

1 2 3 4 5 6 7 8
Number of threads

0.5

1

2

4

8

S
p
e
e
d
u
p
c
o
m
p
a
re
d
to

th
e
s
e
q
u
e
n
ti
a
l
c
a
s
e

Impact of Threads

per tuple cost= 24

per tuple cost= 28

per tuple cost= 212

per tuple cost= 216

per tuple cost= 220

Fig. 8: Speedup for different
of threads

0 5 10 15 20

0.5

1

2

4

8

Adaptat ion

per tuple cost= 24

per tuple cost= 28

per tuple cost= 212

per tuple cost= 216

per tuple cost= 220

0 5 10 15 20
Time (secs)

Adaptat ion

0.5

1

2

4

8

S
p
e
e
d
u
p
c
o
m
p
a
re
d
to
th
e
s
e
q
u
e
n
ti
a
l
c
a
s
e

Fig. 9: Adaptation with auto-
pipelining

used to avoid this cost, it is well accepted that COW
optimizations are not effective in the presence of multi-
threading.

8.2.2 Profiling overhead

Light-weight profiling that does not disturb application
performance is essential for performing auto-pipelining
at run-time. In Figure 7 we study the profiling overhead.
The overhead is defined as the percent reduction in
the throughput compared to the non-profiling case. The
figure plots the overhead as a function of the number
of samples taken per second, for different number of
threads. The operators are evenly distributed across
threads. We observe that, as a general trend, the profiling
overhead increases as the profiling rate grows. For the
remainder of the experiments in this paper, we use a pro-
filing sampling rate of ps = 100, which corresponds to
a 3% reduction in performance. Note that the profiler is
only run for a specific period (for po seconds) during one
iteration of the adaptation phase. Once the adaptation is
complete, no overhead is incurred due to profiling.

We further observe that increasing the profiling rate
beyond a threshold does not increase the overhead any-
more. This is because the system starts to skip profiling
signals when the sampling period ps is shorter than the
time needed to run the logic associated with the profiling
signal. Interestingly, the profiling overhead does not
monotonically increase with the number of threads. At
first glimpse, this may be unexpected since more threads
means more execution stacks to go through during pro-
filing. However, with more threads, each execution stack
has less entries, which decreases the overhead.

For most operator graphs, it is the depth of the op-
erator graph that impacts the worst case profiling cost,
rather than the number of threads used. For instance, for
a linear chain, the number of stack entries to be scanned
only depends on the depth of the graph. For bushy
graphs this number can also depend on the number of
threads, even though it is rarely linear in the number of
threads in practice (a reverse tree is the worst case).

8.2.3 Impact of threads

Recall that one of the principles of our optimization is
to insert a threaded port in the execution path of each
bottleneck thread. We do this because the speedup from
adding threads one-at-a-time will result in a series of
non-improvements, followed by a jump in performance

when all bottleneck threads finally get help. In Figure 8,
we verify this effect. The figure plots the speedup as
a function of the number of threads, for different tuple
costs. The threads are inserted in a balanced way, by
picking the thread that executes the highest number of
operators and partitioning it into two threads.

We observe that, for sufficiently high per-tuple pro-
cessing costs, the speedup is a piece-wise function which
jumps at certain number of threads, like 2, 4, and 8.
Each such jump point corresponds to a partitioning
where all threads execute the same number of operators.
This result justifies our algorithm design which inserts
multiple threaded ports in one round. For low per-tuple
processing costs (such as 28) the speedup is not ideal,
and for very low per-tuple processing costs (such as 24),
the performance degrades.

8.2.4 Adaptation

We evaluate the adaptation capability of our solution
by turning on auto-pipelining in an application whose
topology is a simple chain of Functor operators. For
this experiment, we measure the throughput of the
application as a function of time. The adaptation period
is set to 5 seconds. We report the throughput relative
to the sequential case. Figure 9 reports these results for
different per-tuple processing costs.

We observe that our algorithm intelligently achieves
optimal speedup for different per-tuple costs. For in-
stance, when the per-tuple cost is 24, our algorithm
finds out that its second optimization decision does not
improve overall throughput, and thus it rolls back to the
previous state. For higher per-tuple costs, such as 220, the
algorithm does not stop adding threaded ports until it
reaches the unpartitionable state, that is 1 operator per
thread. Comparing Figures 8 and 9, we see that auto-
pipelining lands on the globally optimal configuration
in terms of the throughput.

The total adaptation time of the system depends on
two major components: (i) the number of steps taken,
and (ii) the adaptation period. Since our algorithm helps
all bottlenecked threads at each step, its behavior with
respect to the number steps taken is favorable. For
instance it takes log2(8) = 3 steps to reach 8 threads
in Figure 9. For more dynamic scenarios, we can reduce
the adaptation period to reduce the overall adaptation
time. The only downside is that, reducing the adaptation
period without decreasing the accuracy of the profiling

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 9

data requires increasing the profile sampling rate, which
can increase the profiling cost.

8.3 Application Benchmarks

The application benchmarks consist of three real-world
stream processing applications with their associated
workloads. These applications are named Lois, Vwap,
and LinearRoad. The LinearRoad application (the small-
est of the three) is depicted in Figure 10, whereas other
applications are depicted in Appendix G.

The Lois [20] dataset is collected from a Scandinavian
radio-telescope under construction in northwestern Eu-
rope. The goal of the Lois application is to detect cosmic
ray showers by processing the live data received from
the radio-telescope.

The Vwap [21] dataset contains financial market data
in the form of a stream of real-time bids and quotes. The
goal of the Vwap application is to detect bargains and
trading opportunities based on the processing of the live
financial feed.

LinearRoad [22] dataset contains speed, direction, and
position data for vehicles traveling on road segments.
The goal of the application is to compute tolls for
vehicles traveling on the hypothetical “Linear Road”
highway.

The breakdown of the operators constituting the appli-
cations and summaries of the application characteristics
are given in Appendix G. It is important to note that
the Lois and LinearRoad applications have few bush
segments in their topology, whereas Vwap has many.
The LinearRoad application makes heavy use of custom
operators, whereas the other applications are composted
of mostly built-in operators.

Fig. 10: LinearRoad – A vehicle toll computation app.

We run three versions of these programs: unopti-
mized, hand-optimized, and auto-pipelined. The hand-
optimized versions are created by explicitly inserting
threaded ports in the SPL code of the application. This
was carried out by the application developers, indepen-
dent of our work. For all cases, we measure the total
execution time for the entire data set. For the auto-
pipelined version, the adaptation period is also included
as part of the total execution time.

Figure 11 gives the results. For the Lois application, we
see around 1.5× speedup compared to the unoptimized
version, for Vwap we see around 3× speedup, and for
LinearRoad we see 2.56× speedup. Note that these are
real-world applications, where sequential portions and
I/O bound pieces (sources and sinks) make it difficult
to attain perfect speedup. It is impressive that our auto-
pipelining solution matches the hand-optimized perfor-
mance in the case of Lois, and improves upon it by
around 2× for both Vwap and LinearRoad. It is also

worth noting that in the case of Lois, the programmer
has statically added threaded ports based on her experi-
ence and the suggestion from a fusion optimization tool
called COLA [16]. Considering that the auto-pipeliner
takes around 20 seconds to adapt in this particular case,
the throughout attained for the auto-pipelining solution
is in fact higher than the hand-optimized case.

Fig. 11: Running time for Lois and Vwap

Overall, auto-pipelining provides equal or signifi-
cantly better performance compared to hand optimiza-
tion, at no additional cost to the application developers.

9 RELATED WORK

Our work belongs to the area of auto-parallelization and
we survey the related topics accordingly. Coverage of
related work on profiling is given in the Appendix H.

Dynamic multi-threaded concurrency platforms, such
as Cilk++ [8], OpenMP [7], and x10 [12], decouple ex-
pressing a program’s innate parallelism from its exe-
cution configuration. OpenMP and Cilk++ are widely
used language extensions for shared memory programs,
which help express parallel execution in a program at
development-time and take advantage of it at run-time.

Kremlin [23] is an auto-parallelization framework that
complements OpenMP [7]. Kremlin recommends to pro-
grammers a list of regions for parallelization, which is
ordered by achievable program speedup.

Cilkview [24] is a Cilk++ analyzer of program scal-
ability in terms of number of cores. Cilkview performs
system-level modeling of scheduling overheads and pre-
dicts program speedup. Bounds on the speedup are
presented to programmers for further analysis.

Autopin [25] is an auto-configuration framework for
finding the best mapping between system cores and
threads. Using profile runs, Autopin exhaustively probes
all possible mappings and finds the best pinning config-
uration in terms of performance.

StreamIt [26] is a language for creating streaming ap-
plications and can take advantage of parallelism present
in data flow graph representation of applications, in-
cluding task, pipeline, and data parallelism. However,
StreamIt is mostly a synchronous streaming system,
where static scheduling is performed based on compile-
time analysis of filters written in the StreamIt language.

Alchemist [27] is a dependence profiling technique
based on post-dominance analysis and is used to detect
candidate regions for parallel execution. It is based on

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 10

the observation that a procedure with few dependencies
with its continuation benefits more from parallelization.

Task assignment in distributed computing has been an
active research problem for decades. General task assign-
ment is intractable. In [28], several programs with special
structures are considered and the optimal assignment is
found by using a graph theoretic approach.

There has been extensive research in the literature
on compiler support for instruction-level or fine-grained
pipelined parallelism [29]. In this work, we look at
coarse-grained pipelining techniques that address the
problem of decomposing an application into higher-level
pieces that can execute in pipeline parallel.

Relevant to our study is the work in [30], which
provides compiler support for coarse-grained pipelined
parallelism. To automate pipelining, it selects a set of
candidate filter boundaries (a middleware interface ex-
posed by DataCutter [31]), determines the communica-
tion volume for these boundaries, and performs decom-
position and code generation in order to minimize the
execution time. To select the best filters, communication
costs across each filter boundary are estimated by static
program analysis and a dynamic programming algo-
rithm is used to find the optimal decomposition.

A more detailed analysis of the differences of our work
from others is given in Appendix I.

10 CONCLUSION

In this paper, we described an auto-pipelining solution
for data stream processing applications. It automatically
discovers pipeline and task parallelism opportunities
in stream processing applications, and applies dynamic
profiling and controlling to adjust the level of parallelism
needed to achieve the best throughput. Our solution is
transparent in the sense that no changes are required on
the application source code. Our experimental evalua-
tion shows that our solution is also effective, matching
or exceeding the speedup that can be achieved via
expert tuning. Our solution has been implemented on
a commercial-grade data stream processing system. We
provide directions for future work in Appendix K.

REFERENCES

[1] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani,
I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom,
“STREAM: The Stanford stream data manager,” IEEE Data Engi-
neering Bulletin, vol. 26, no. 1, 2003.

[2] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik, “The design of the Borealis
stream processing engine,” in CIDR, 2005.

[3] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and
C. Venkatramani, “Design, implementation, and evaluation of the
linear road benchmark on the Stream Processing Core,” in ACM
SIGMOD, 2006.

[4] “StreamBase Systems,” http://www.streambase.com, retrieved
October, 2011.

[5] B. Gedik and H. Andrade, “A model-based framework for build-
ing extensible, high performance stream processing middleware
and programming language for IBM InfoSphere Streams,” Soft-
ware: Practice and Experience, 2012.

[6] “S4 distributed stream computing platform,” http://www.s4.io/,
retrieved October, 2011.

[7] “Openmp. http://www.openmp.org,” retrieved October, 2011.
[8] “Cilk++. http://software.intel.com/en-us/articles/intel-cilk-

plus/,” retrieved October, 2011.
[9] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for multi-

core processor parallelism. O’Reilly, 2007.
[10] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel pro-

grammability and the Chapel language,” IJHPCA, vol. 21, pp.
291–312, 2007.

[11] G. L. S. Jr., “Parallel programming and code selection in fortress,”
in ACM PPoPP, 2006.

[12] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” in OOPSLA, 2005.

[13] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “Spade:
The System S declarative stream processing engine,” in ACM
SIGMOD, 2008.

[14] M. M. A. et al, “System R: A relational approach to data manage-
ment,” ACM TODS, vol. 1, no. 2, pp. 97–137, 1976.

[15] B. Gedik, H. Andrade, and K.-L. Wu, “A code generation ap-
proach to optimizing high-performance distributed data stream
processing,” in ACM CIKM, 2009.

[16] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. L. Wolf, K.-
L. Wu, H. Andrade, and B. Gedik, “COLA: Optimizing stream
processing applications via graph partitioning,” in USENIX Mid-
dleware, 2009.

[17] J. Giacomoni, T. Moseley, and M. Vachharajani, “FastForward for
efficient pipeline parallelism: a cache-optimized concurrent lock-
free queue,” in ACM PPoPP, 2008.

[18] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: A call
graph execution profiler (with retrospective),” in Best of PLDI,
1982, pp. 49–57.

[19] “TCMalloc: Thread-caching malloc,” http://goog-perftools.
sourceforge.net/doc/tcmalloc.html, retrieved August, 2012.

[20] “Lois. http://www.lois-space.net/,” retrieved October, 2011.
[21] H. Andrade, B. Gedik, K.-L. Wu, and P. S. Yu, “Processing high

data rate streams in System S,” JPDC, vol. 71, no. 2, pp. 145–156,
2011.

[22] A. Arasu, S. Babu, and J. Widom, “The cql continuous query
language: Semantic foundations and query execution,” The VLDB
Journal, vol. 15, no. 2, pp. 121–142, 2006.

[23] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin:
Rethinking and rebooting gprof for the multicore age,” in PLDI,
2011.

[24] Y. He, C. E. Leiserson, and W. M. Leiserson, “The cilkview
scalability analyzer,” in ACM SPAA, 2010.

[25] T. Klug, M. Ott, J. Weidendorfer, and C. Trinitis, “Autopin:
Automated optimization of thread-to-core pinning on multicore
systems,” HiPEAC, vol. 3, pp. 219–235, 2011.

[26] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs,”
in ASPLOS, 2006.

[27] X. Zhang, A. Navabi, and S. Jagannathan, “Alchemist: A transpar-
ent dependence distance profiling infrastructure,” in CGO, 2009,
pp. 47–58.

[28] S. H. Bokhari, “Assignment problems in parallel and distributed
computing,” in Kluwer Academic Publishing, 1987.

[29] S. M. Krishnamurthy, “A brief survey of papers on scheduling for
pipelined processors,” ACM SIGPLAN Notices, vol. 25, no. 7, pp.
97–106, 1990.

[30] W. Du, R. Ferreira, and G. Agrawal, “Compiler support for
exploiting coarse-grained pipelined parallelism,” in SC, 2003, p. 8.

[31] M. D. Beynon, T. M. Kurç, Ü. V. Çatalyürek, C. Chang, A. Suss-
man, and J. H. Saltz, “Distributed processing of very large
datasets with DataCutter,” Parallel Computing Journal, vol. 27,
no. 11, pp. 1457–1478, 2001.

[32] E. Jeřábek, “Dual weak pigeonhole principle, Boolean complexity,
and derandomization,” Annals of Pure and Applied Logic, vol. 129,
pp. 1–37, 2004.

[33] S. Liang and D. Viswanathan, “Comprehensive profiling support
in the Java virtual machine,” in COOTS, 1999, pp. 229–242.

[34] “Oprofile. http://oprofile.sourceforge.net/about/,” retrieved Oc-
tober, 2011.

[35] J.-A. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. Leung, R. L. Sites, M. T. Vandevoorde, C. A.
Waldspurger, and W. E. Weihl, “Continuous Profiling: Where have
all the cycles gone?” in SOSP, 1997, pp. 1–14.

http://www.streambase.com
http://www.s4.io/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 11

Yuzhe Tang received the BSc degree, and MSc
degree in Computer Science and Engineering
from Fudan University, Shanghai, China, in 2006
and 2009, respectively. At the time of this writing
he was an intern at the IBM T. J. Watson Re-
search Center working with Dr. Gedik on high
performance streaming systems. He is currently
a Ph.D student at the Data Intensive Distributed
Systems Lab, in College of Computing, at the
Georgia Institute of Technology. His research
interests include distributed systems and cloud

computing, databases, system security and privacy. He has worked
on HBase and Hadoop ecosystem, profiling and system optimizations,
anonymity protocols and data management over DHT networks.

Buğra Gedik is currently an Assistant Profes-
sor at the Computer Engineering Department,
Bilkent University, Turkey. Prior to that he worked
as a Research Staff Member at the IBM T. J.
Watson Research Center. His research inter-
ests are in distributed data-intensive systems
with a particular focus on stream computing. In
the past, he served as the Chief Architect for
IBM’s InfoSphere Streams product. He is the
co-inventor of the SPL and the SPADE stream
processing languages. He is the co-recipient of

the IEEE ICDCS 2003, IEEE DSN 2011, ACM DEBS 2011 and 2012
best paper awards. He served as the co-PC chair for the ACM DEBS
2009 and IEEE CollaborateCom 2007 conferences. He is an associate
editor for the IEEE Transactions on Services Computing journal. He
served on the program committees of numerous conferences, including
IEEE ICDCS, VLDB, ACM SIGMOD, IEEE ICDE, and EDBT. He has
published over 60 peer-reviewed articles in the areas of distributed
computing and data management. He has applied for over 30 patents,
most of them related to his work on streaming technologies. He was
named an IBM master inventor and is the recipient of an IBM Corporate
Award for his work in the System S project. He has obtained his
Ph.D. degree in Computer Science from Georgia Institute of Technology,
USA and prior to that, his B.S. degree in Computer Engineering and
Information Science from Bilkent University, Turkey.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 12

APPENDIX A
SENSORQUERY SPL APPLICATION

Listing 1: SensorQuery: A simple application in SPL.
composite SensorQuery {

type

Location = tuple<float32 x, float32 y>;

Sensor = tuple<uint64 sid, float64 value, Location sloc>;

Query = tuple<uint64 qid, Location qloc, float64 radius>;

Result = Sensor, Query, tuple<float32 distance>;

graph

stream<Sensor> Sensors = SensorSource() {}

stream<Query> Queries = QuerySource() {}

stream<Result> Results = Join(Sensors as S; Queries as Q) {

window Sensors: sliding, time(10.0);

Queries: sliding, count(0);

param match: distance(S.sloc, Q.qloc) <= Q.radius;

output Results: distance = distance(S.sloc, Q.qloc);

}

() as Sink = TCPSink(Results) {

param

role : client;

address : "192.168.0.10";

port : 40000;

}

}

APPENDIX B
COMPLEXITY ANALYSIS

Here, we provide a cost analysis of the base algorithm.
Suppose there are initially r threads, which is equal

to the number of rows in the initial solution matrix.
Further assume that there are s shared operators in
the runtime graph. To analyze the complexity of our
algorithm, we start by calculating the number of leaf
candidates, denoted as cn(s, r), in the solution reduction
phase. cn(s, r) =

∑

x cn(s, r, x), where cn(s, r, x) denotes
the number of candidates with x shared operators in
them. cn(s, r, x) must be smaller than the cardinality of
x choose s, that is cn(s, r, x) ≤

(

s
x

)

. Note that a single
candidate can have up to r

2 shared operators in it as
each shared operator fixes the assignments for at least
two rows of the solution matrix. Therefore,

cn(s, r) =
∑

x∈[0,min (s, r
2
)]

cn(s, r, x)

≤
∑

x∈[0,min (s, r
2
)]

(

s

x

)

=

Θ(2s) if r
2 ≥ s

2 −√
s,

Θ
[

(s
r/2)

(

1−r/s
)

]

otherwise.
(1)

The last step is due to a closed form for partial sum of
binomial coefficients [32]. cn(s, r) can be used as a rough
bound for algorithm complexity, assuming each candi-
date costs O(1) computation units. The complexity of the
algorithm can be further bounded by considering that
the solution reduction operates independently for sets of
initial threads that are disjoint in terms of their operators.
Thus we can represent the number of candidates as
∑

〈si,ri〉
cn(si, ri) where

∑

i ri = r and si represents the

number of shared operators in the ith thread group. For
large graphs, max({ri}) is often smaller that r. However,
this does not change the worst case complexity.

We can provide a finer-grained complexity analysis by
breaking down the per-candidate cost. First, we use m to
denote the number of operators that appear in the initial
solution matrix. The algorithm finds the set of shared
operators in a two-level nested loop, in which case each
loop is a scan of the whole matrix, costing O(m2) units.
During the solution reduction phase, cn(s, r) leaf candi-
dates in the search tree implies cn(s, r)− 1 = O(cn(s, r))
internal nodes. The split operation at each internal node
needs a full scan of the matrix, resulting in a cost of at
most m. The candidate formation phase needs to scan the
matrix of each candidate, thus leading to per-candidate
cost of at most m. The last phase, solution selection,
costs r units per candidate since each candidate is a
column vector. In total, the complexity is bounded by
O(m2 + cn(s, r) · (2m+ r)), which further simplifies to
O(m2 + cn(s, r) ·m).

As we will see later in Section 8, the algorithm runs
quite fast in practice for large graphs, especially when
the the pruning optimization is applied.

Fig. 12: Profiler implementation

APPENDIX C
PROFILER IMPLEMENTATION

Our runtime profiler implementation consists of three
components. Figure 12 illustrates each component,
which we also describe below.

E-stack

For each application thread, the profiling system main-
tains a simple execution stack, called an E-stack. The
system pushes/pops entries into/from the E-stack every
time the thread associated with the stack enters/exits
an operator. Figure 13 shows a snapshot of the E-stack
of a thread executing operator o10 after going through
operators o5 and o6.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 13

Fig. 13: Example of an E-stack

Signal handler

For each sampling period ps, the profiling system
checks the execution stacks of all actively running
threads. This is achieved by registering a timer for the
signal SIGPROF with the timer interval set to ps. The
operating system then sends signal SIGPROF every ps
seconds, which one of the application threads receives
inside of a signal handler. Upon each receipt of the sig-
nal, the signal handler takes snapshots of the E-stack for
all currently active4 threads. For each stack entry in an
E-stack snapshot, it increments a counter for the thread
and operator pair associated with the entry. Note that
it scans the entire stack because our goal is to compute
the amount of CPU time a thread spends downstream of
a given operator input port. For instance, in Figure 13,
it increments the counters for operators o5, o6, and o10,
as the active thread is doing work downstream of all of
these three operators at this time.

Summarization

Every optimization period po, the counters maintained
for each thread and operator pair are summarized into
the per-port thread utilization numbers. These are the
final set of statistics that will be used by the optimization
stage.

A problem associated with the simple counting
scheme used for profiling is that, in a multi-threaded
environment, the more active threads there are, the
more frequently (in wall clock time) signal SIGPROF is
delivered. This skews the statistics. We use a mechanism
called frequency autoscaling to correct this skew. Rather
than incrementing each counter by 1 at each sampling
step, we increment it by 1/A where A is the number of
currently active threads.

To handle profiling in a multi-threading environment,
the consistency problem arises when E-stacks are written
by SPL runtime while being read by the signal handler.
HProf [33] tackles this problem by suspending threads
at every sampling, which however interrupts program
execution and increases overhead. We avoid thread sus-
pension or any locking mechanism by writing E-stack
entries in an atomic yet efficient way.

Each stack entry is stored as a 64-bit volatile value in a
64-bit system — a 32-bit operator identifier and a 32-bit
port index. We rely on the details of the Intel architecture
to ensure that reading the stack entries is atomic. The
current size of the stack is also kept as a volatile counter.
Since the updating of the stack entries and the stack size

4. The proc system in Linux is used for this purpose in the current
prototype.

are not transactional, sometimes the profiler can scan
an entry that is not active. However, since this happens
with very low frequency it barely impacts the aggregate
values computed by the profiler.

APPENDIX D
LOCKING & THREAD INSERTION/REMOVAL

There is a subtle concern regarding thread safety in
the presence of thread insertion/removal and multi-
threaded execution of stateful operators. Before we de-
scribe the potential problems that may result from thread
insertions, we first give a brief overview of the relevant
aspects of the programming model used to develop
operators in SPL.

Operators are implemented through an event-driven
interface as described in Section 2.1. An operator that
contains state which is modified as a result of process-
ing tuples delivered to one of its input ports is said
to be stateful. Such operators need to ensure that the
state is protected against concurrent modification. Recall
that operators can be executed concurrently by multiple
threads. In SPL, stateful operators use an auto port mutex
object to protect their state from concurrent modification.
An auto port mutex is a scoped mutex that either creates
a critical section around a block of code, or simply
reduces to a no-op at the cost of an untaken branch.

The SPL runtime decides which one of these behaviors
is to be exhibited depending on safety analysis. Operator
developers always protect their state from concurrent
access using auto port mutexes, yet the runtime can de-
cide to effectively remove these mutexes when it is safe
to do so. The safety analysis is performed by a simple
process of thread propagation to decide if an operator can
potentially be called by multiple threads.

Fig. 14: Thread propagation: Initial state

Fig. 15: Thread propagation: After adding port 2

The thread propagation analysis is performed every
time a thread is inserted or removed at runtime. When a
thread is inserted, the analysis is needed to turn on some
of the auto port mutexes to ensure safety. For a thread
removal, it needs to be performed to turn off some of the
auto port mutexes to ensure good performance.

Figure 14 shows an example SPL application. In this
example, we want to add a threaded port to operator
o2. As a result of this change, there will be two threads
executing the downstream operator o3 as shown in
Figure 15. If o3 is a stateful operator, then the auto
port mutexes used by the operator are turned on by

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 14

0 10 20 30 40 50 60 70

1

10

100

1k

10k

100k

1M
S

e
a

rc
h

 c
o

s
ts

of operators

 basic

 pruned

 pruned+ sorted

Fig. 16: Performance of op-
timization algorithm with
the reverse tree topology

30 60 90 120 150 180 210 240 270 300

1

10

100

1000

10000

100000

S
e

a
rc

h
 c

o
s
ts

of operators

 basic

 pruned

 pruned+ sorted

(a) Less shared threads (sr = 0.5)

30 60 90 120 150 180 210 240 270 300

1

10

100

1000

10000

100000

1000000

S
e

a
rc

h
 c

o
s
ts

of operators

 basic

 pruned

 pruned+ sorted

(b) More shared threads (sr = 2)

0.0625 0.125 0.25 0.5 1 2 4 8

10

100

1000

S
e

a
rc

h
 c

o
s
ts

Sampled ratio (how much sharing)

 basic

 pruned

 pruned+ sorted

(c) As a function of sampled ratio

Fig. 17: Performance of optimization algorithm with random topology

the runtime, before the flow is resumed following the
insertion.

APPENDIX E
OPERATOR COST VS. THROUGHPUT

Fig. 18: Per-tuple processing time and max. rate as a
function of processing cost.

Figure 18 plots the time it takes to process a single
tuple (left y-axis), as well as the maximum rate of
processing that can be achieved with a single operator
(right y-axis) as a function of the per-tuple processing
cost represented as the number of multiplications.

APPENDIX F
SYNTHETIC BENCHMARKS

This set of experiments evaluate the running-time effi-
ciency of our optimization algorithm, as well as the effec-
tiveness of the two enhancements, pruning and sorting.

In these experiment, we use two different kinds of
synthetic topologies. These are the reverse tree and the
random graph topologies. For a reverse tree topology,
each leaf-level operator serves as a starting point for
a different thread and each thread executes the set of
operators that forms a path from the leaf-level operator
to the root. We pick this topology as it represents an
extreme scenario where there is massive amount of
sharing across threads. In our experience, this kind of
topology is not seen often in practice.

For a random topology, operator IDs are randomly
picked from a finite domain of integers [0, d). Here, a
parameter called sampled ratio, denoted by sr, is used to

measure the degree of overlapping between threads, that
is, how many operators in one thread can be shared by
another thread. Suppose there are n threads and each
thread executes m operators, then sr = n·m

d . Utilization
values are uniformly distributed among operators for
each thread.

We run each experiment 5 times and report the aver-
age performance numbers. The reported performance is
the search cost, which is quantified by the number of tree
nodes traversed during the execution of the optimization
algorithm.

Figure 16 presents the results for the reverse tree topol-
ogy, in which different tree sizes are tested from 23 to
26. As expected, search costs of our basic algorithm (i.e.,
without any enhancements) grow exponentially with the
number of shared operators 5. We observe that com-
pared to the basic algorithm, pruning is very effective.
It achieves an order of magnitude saving in search cost
(the y-axis is in log scale). Applying sorting on top of
pruning provides modest additional improvement, only
for small number of operators.

Our results are further corroborated by the random
graph based experiments. For these experiments, we var-
ied two parameters: the number of operators n and the
sampled ratio sr. These results are shown in Figure 17.

Figure 17a plots the search cost as a function of
number of operators with fewer sharing (the sampled
ratio sr is as small as 0.5), while Figure 17b plots the
search cost as a function of number of operators with
more sharing (sr is set to 2). We observe that although
the search costs with more sharing between threads tend
to be higher, the overall trend with increasing number
of operators is similar. Search costs largely grow linear
with the number of operators.

Figure 17c plots the search cost as a function of the
sampled ratio. We observe that the search costs first grow
with increasing sampled ratios and then drop. While
increased sharing raises the cost of the algorithm initially,
excessive sharing results in shrinking the search space,
resulting in this bi-modal behavior.

Overall, Figure 17 shows that pruning is a very ef-
fective optimization strategy for our algorithm, under

5. In a reverse tree topology, the number of operators equals that of
shared operators.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 15

Fig. 19: Lois – Cosmic ray shower detection application

Fig. 20: Vwap – Bargain detection application

various circumstances, often providing an order of mag-
nitude improvement in running time.

APPENDIX G
APPLICATION GRAPHS

The Vwap and Lois applications are depicted in Fig-
ures 20 and 19, respectively. LinearRoad application is
depicted in Figure 10.

Vwap is a medium-scale application (58 operators)
that contains large number of Functor, Join, and Aggre-
gate operators. The heavy joins and aggregations create
opportunities for pipeline parallelism.

Lois is a small-scale application (22 operators) that
contains large number of Functor operators. It contains
3 Barriers, which is indicative of task parallelism being
present in the flow graph. LinearRoad is a small-scale
application (15 operators) that contains large number
of Custom operators. It contains 2 Unions, which is
indicative of task parallelism also being present in the
flow graph.

The Lois and LinearRoad applications have few
branches in their topology, whereas Vwap has many.
The LinearRoad application makes heavy use of custom
operators, whereas the other applications are composted
of mostly built-in operators.

Table 1 gives a breakdown of the operators constitut-
ing the three applications.

APPENDIX H
RELATED WORK ON PROFILERS

There are generally two ways to implement a program
profiler; statistical sampling and code instrumentation.
While sampling is less disruptive to the base program,
instrumentation-based profiling can obtain more accu-
rate results.

OProfile [34] and DCPI [35] are representative of
sampling-based profiling schemes. They use hardware

Instance Count
Operator Kind Lois Vwap LinearRoad

Functor 13 24 3

Join 0 12 0

Split 0 3 2

Barrier 3 0 0

Union 0 0 2

Aggregator 2 12 0

Custom 1 0 5

FileSource 1 1 1

FileSink 2 6 1

TABLE 1: Breakdown of operators used in the Lois and
Vwap applications

performance counters to attain high frequency with
fairly low overhead.

Code instrumentation for profiling can be applied
statically (i.e., before program execution) or dynamically
(i.e., during execution). In particular, static instrumen-
tation code can be added to source code manually,
automatically through compiler assist, or to the compiled
binary via binary translation.

Gprof [18] is a hybrid profiler in the sense that both in-
strumentation and sampling are used. Static instrumen-
tation keeps track of caller graph and the execution time
is obtained by statistical sampling. Our profiler used in
auto-pipelining is similar in the sense that it uses both
sampling and instrumentation, but the instrumentation
is dynamically turned on/off within the SPL runtime,
rather then being injected at compile-time.

APPENDIX I
COMPARISON TO RELATED SYSTEMS

Compared to [30] our auto-pipelining scheme is exe-
cuted during runtime, since stream processing applica-
tions can contain arbitrary user-defined operators and
dynamic runtime behavior, making static analysis im-
practical. This leads to various different design choices:
First, rather than relying on static program analysis, we
use online profiling to estimate the system overheads
and to discover system bottlenecks. Second, while offline
decomposition can afford to use dynamic programming
for global optimal filter/threaded port selection, our on-
line approach relies on a greedy algorithm for exploring
local optimality. Last, computing units in our pipelines
do not need to be linearly chained.

Compared to StreamIt, SPL applications follow the
asynchronous streaming model, where operator selec-
tivity, cost, and behavior are not known at compile-
time. The approach we presented in this paper is thus
completely dynamic, both in terms of profiling and
optimization.

Compared to other existing work, our auto-pipelining

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XXX 2012 16

solution is similar to Autopin in terms of run-time auto-
configuration. However, our solution avoids exhaus-
tive search by employing a novel optimization algo-
rithm which is based on profiling statistics. In terms
of automatically finding parallelism opportunities, our
system is similar to Kremlin and Cilkview. However,
the threaded ports exposed in the SPL runtime pro-
vide a flexible mechanism for optimization, only re-
quiring operator-level profiling information. Thus we
avoid the heavy profiling needs of systems like Kremlin
and Cilkview. Finally, auto-pipelining requires no pro-
grammer intervention and is designed for data stream
processing systems.

APPENDIX J
OFFLINE VERSUS ONLINE PROFILING

Online profiling has the advantage that it can be per-
formed dynamically at runtime, without user interven-
tion. On the downside, it may adversely impact the
runtime performance. In our context, we have shown
that the online profiling can be done in a lightweight
manner (see Appendix C).

Offline profiling often requires the application devel-
opers to perform profile runs and manage additional
compilation options for this purpose. While this has
the advantage that the actual deployment will not be
impacted by the profiling overheads, it requires that the
workload and resource setup used for the profile and
deployment runs are the same. Furthermore, it cannot
adapt to runtime changes in workload and resource
availability and application behavior.

In our own experience with the IBM InfoSphere
Streams product and its research prototype precursor
System S, application developers avoid the use of of-
fline profiling, except for the difficult cases where man-
ual performance optimization runs into difficulties. The
work proposed in this paper addresses this problem by
removing the additional burden put on the developers
with respect to profiling, at a very small cost at runtime.

APPENDIX K
FUTURE WORK

Here, we list a number of future research directions that
can build upon this work.

• Placement of the threads created by our algorithm to
cores in the system is an additional dimension that
can improve the performance. The placement can
be performed with the goal of minimizing the over-
head of accessing shared resources. This problem
can be extended to the case of NUMA platforms,
where the access to memory is non-uniform.

• While we looked at pipelining in this paper, another
important kind of parallelism is data parallelism.
Some operators in data stream processing systems
can be replicated and data partitioning can be used
to improve throughput. However, data parallelism
requires safety analysis that involves understanding

some properties of the operators (such as selectivity
and partitioned state). An interesting research direc-
tion is to combine data parallelism and pipelining
for auto-parallelizing streaming applications.

• Finally, the auto-pipelining problem can be ex-
tended to the case of distributed stream processing
applications that can cross host boundaries.

ACKNOWLEDGEMENTS

We would like to thank Scott Schneider and Kun-Lung
Wu from IBM T. J. Watson Research Center, and Ling Liu
from Georgia Institute of Technology for their contribu-
tions that has greatly helped in improving this work.

	Introduction
	Background
	Basic concepts
	Execution model

	System Overview
	An Example Scenario
	Profiling Metrics
	Utility Function

	The Optimization Problem

	Optimization Algorithm
	The Algorithm
	Algorithm Enhancements

	Evaluation and Control
	Profiler
	Dynamic Thread Insertion/Removal
	Experimental Results
	Experimental Setup
	Micro-benchmarks
	Pipelining benefit
	Profiling overhead
	Impact of threads
	Adaptation

	Application Benchmarks

	Related Work
	Conclusion
	References
	Biographies
	Yuzhe Tang
	Bugra Gedik

	Appendix A: SensorQuery SPL Application
	Appendix B: Complexity Analysis
	Appendix C: Profiler Implementation
	Appendix D: Locking & Thread Insertion/Removal
	Appendix E: Operator cost vs. throughput
	Appendix F: Synthetic Benchmarks
	Appendix G: Application Graphs
	Appendix H: Related Work on Profilers
	Appendix I: Comparison to Related Systems
	Appendix J: Offline versus online profiling
	Appendix K: Future Work

