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Abstract—In this paper, we study the problem of indexing multidimensional data in P2P networks based on distributed hash tables
(DHTSs). We advocate the indexing approach that superimposes a multidimensional index tree on top of a DHT—a paradigm that keeps
the underlying DHT intact while being able to adapt to any DHT substrate. In this context, we identify several index design issues and
propose a novel indexing scheme called multidimensional Lightweight Hash Tree (m-LIGHT). First, to preserve data locality, m-LIGHT
employs a clever naming mechanism that gracefully maps a tree-based index into the DHT and contributes to high efficiency in both
index maintenance and query processing. Second, to tackle the load balancing issue, m-LIGHT leverages a new data-aware splitting
strategy that achieves optimal load balance under a fixed index size. We present detailed algorithms for processing complex queries
over the m-LIGHT index. We also conduct an extensive performance evaluation of m-LIGHT in comparison with several state-of-the-
art indexing schemes. The experimental results show that m-LIGHT substantially reduces index maintenance overhead and improves
query performance in terms of both bandwidth consumption and response latency.

Index Terms—P2P systems, distributed hash tables, multi-dimensional indexing, range queries, k-NN queries.

1 INTRODUCTION

1sTRIBUTED Hash Table (DHT) provides a scalable, load

balanced, and robust substrate in building large-scale
distributed applications. Based on consistent hashing [10],
DHT couples data and peers in a unified identifier space.
Several DHT overlays, such as Chord [20], CAN [13], and
Pastry [17], have been proposed. Although these DHTs
employ different identifier spaces and topologies, they
share a generic lookup/put/get interface. Specifically,
given a key, DHT-lookup locates the peer that stores the
key, and DHT-put/DHT-get transfers the associated data
to/from the peer located by DHT-lookup.

Whereas simple lookup operations can be efficiently
executed over DHTs, there is a lack of support for complex
queries, such as range queries and k-nearest neighbor (k-NN)
similarity queries, which are however popular in many P2P
applications (e.g., “finding the songs that are rated above four
and released this year,” “finding the top-5 songs with ratings
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and release dates closest to that of a sample”). The reason is
that data locality, which is crucial to processing such complex
queries, is destroyed by uniform hashing employed in DHTs.

In the literature, there are two indexing approaches to
support complex queries in P2P systems: 1) over-DHT
indexing, which builds an additional indexing layer on top
of generic DHTs (e.g., Prefix Hash Trie (PHT) [5] and
Distributed Segment Tree (DST) [25]); 2) in-DHT indexing,
which modifies the internal structures of underlying DHTs
or develops new locality-preserved overlays (e.g., Skip
graphs [2] and BATON [8]). Although the over-DHT
indexing approach is generally less efficient in query
performance than the in-DHT indexing approach, it excels
in many other aspects, such as simplicity of deployment/
implementation/maintenance, and inherited load balancing
[5], [12], [7], [25]. In practice, these issues are equally
important to query performance. The over-DHT indexing
approach is particularly favorable to the applications in
which concerns about ease of implementation, deployment
and maintenance dominates the need for high performance,
e.g., deploying P2P applications in the world-wide
OpenDHT project [15]. In this paper, we study the problem
of how to efficiently support multidimensional complex
queries in existing DHT-based P2P systems and advocate
the over-DHT indexing paradigm.

A naive scheme for over-DHT indexing is to simply
build a conventional index (e.g., B-tree) on top of a DHT.
However, similar to a centralized tree index, processing a
query on such an index always requires a traversal from the
tree root to leaf nodes (where data are stored). Obviously,
this root-to-leaf traversal does not fit well with large-scale
P2P systems since the root may easily become the bottle-
neck. To address this issue, space partitioning has been
adopted in the index design [12], [5], [23]. Specifically, a
tree-based index partitions the global data space into cells,
with each corresponding to a leaf node. By evenly
partitioning each data space, the index renders the local
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space indexed by each node to be known globally. Thus, to
process a range query, one can start from the lowest internal
node that fully covers the query range, instead of always
traversing from the root.

In this paper, we follow the space partitioning method
and develop a novel index called multidimensional Light-
weight Hash Tree (m-LIGHT) over DHTs. In particular, we
investigate the following issues: 1) how to map a tree-based
index into the DHT for efficiently supporting distributed
query processing; and 2) how to perform index main-
tenance while balancing peer loads. We focus on indexing
multidimensional data and employ the kd-tree as the basic
index in our study. To materialize this index in a distributed
setting, we propose a tree-decomposition strategy, which
enlarges the local view of each peer node, yet requires no
extra maintenance overhead. Moreover, we propose a novel
multidimensional naming mechanism to map the decom-
posed tree into the DHT. Our naming mechanism exhibits
several nice properties, which lead to high efficiency in both
index maintenance and query processing. The contributions
of our study are summarized as follows:

e We propose m-LIGHT, a multidimensional data
indexing scheme over DHTs, to address both query
efficiency and maintenance efficiency. Specifically,
we propose a tree-decomposition strategy and a
novel naming mechanism to map a kd-tree index
into the DHT.

e  We develop algorithms for incremental maintenance
of the m-LIGHT index. Moreover, we propose a
data-aware splitting strategy for load balancing.
Given a fixed index size, this strategy achieves the
optimal balance of data storage on peer nodes.

e We present algorithms for lookup operations, range
queries and k-NN queries over the m-LIGHT index. In
particular, we propose a parallel range query algo-
rithm, which provides flexibility between optimizing
bandwidth consumption and query response latency.

e We conduct extensive experiments to evaluate m-
LIGHT. Compared with the state-of-the-art over-
DHT indexing schemes, namely, PHT [5] and DST
[25], m-LIGHT substantially reduces index main-
tenance overhead and strikes a better balance
between bandwidth consumption and response
latency for complex queries.

The rest of this paper proceeds as follows: Section 2
reviews the related work and presents some preliminaries
of over-DHT indexing. Section 3 presents the m-LIGHT
index structure, while its lookup operation is described in
Section 4. Sections 5 and 6 give the algorithms for
processing range queries and k-NN queries, respectively.
How to update the m-LIGHT index is presented in Section 7.
Section 8 experimentally evaluates the performance of m-
LIGHT. Finally, Section 9 concludes this paper.

2 PRELIMINARIES AND RELATED WORK

Before we present the proposed m-LIGHT index, in this
section, we give a brief introduction to 1D over-DHT
indexes and review the related work.

2047

Virtual row

O/gwll """ 1.d(#01 111y~

[0, l/z) a1l
Do AN

N 1
ﬂ*) N ﬁw P
#001 ‘ ,]p[/g A)QE/"%i[Slh‘-
#0000 #0001 ' g

1iio 1% 01
#01011 01]01 #01111
#01010 Ulll)() l O

% Y KN A N K e

#0100

Fig. 1. Binary tree and naming schemes.

2.1 Over-DHT Indexes for 1D Data

Consider a set of data records, each of which is identified by
a data key, denoted by ¢ (0 < 6 < 1). The data records are
assigned to the underlying DHT based on their data keys,
i.e., using DHT-put(6). Thus, exact-match queries can be
directly supported by the DHT using DHT-get(6). On the
other hand, to expedite complex query processing, a binary
index tree is constructed on top of the DHT. It recursively
partitions the data space into two equal-sized subspace
until the number of data records covered by each subspace
is less than a predefined threshold (see Fig. 1 for an
example). In the index tree, leaf nodes store pointers
pointing to actual data records.

A key issue for over-DHT indexes is how to store and
maintain the index nodes in the distributed DHT network. A
variety of solutions have been proposed. In a pioneering
work, PHT [5], each edge is labeled, so does each index node.
Specifically, if an edge connects to the left child of an internal
node, it is labeled with bit 0, otherwise 1. Each node is labeled
with a binary string that concatenates all bits along the path
from the root to the node. Then, the label of each index node
is used as its DHT key, based on which the index node is
distributed in the DHT network. For example, in Fig. 1, the
leftmost leaf node is labeled with #0000 and stored in the
network based on the DHT key #0000. To process a range
query, PHT figures out the lowest common ancestor (LCA)
that fully covers the query range. For example, given a query
range [0.1, 0.3], the LCA is the node labeled with #00. It then
locates this node and starting from there traverses all the way
down to the leaf nodes overlapping with the query range.
The internal nodes in PHT do not hold data and serve as
routing nodes only. To further improve query performance,
DST [25] and Range Search Tree (RST) [7] have been
proposed to replicate data in internal nodes. But as a side
effect, the index update overhead is increased significantly.
In addition, when a leaf node splits, two new child nodes will
be generated with new labels; both of them need to be
redistributed in the DHT network.

To achieve both query efficiency and index maintenance
efficiency, Lightweight Hash Tree (LIGHT) was proposed in
our prior work [21], [22]. In LIGHT, node labels are not
directly used as DHT keys of index nodes. Instead, DHT
keys are generated from node labels using a naming
function fi4(-). Specifically, fi4(-) names each leaf node to
a distinct internal node, as shown by the dashed arrows in
Fig. 1. For example, the rightmost leaf #01111 is named to
the internal node fi4(#01111) = #0, and is stored in the
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DHT based on the DHT key #0. Formally, we have the
naming function defined as follows:

fra(b1 - - bi—abi—1),

_ if b1 = by,
Fra(br---biosbioabi) = { by bi—abi-1,

otherwise.

By adopting this naming function fi4(-), only leaf nodes
are stored in the DHT network [22]. A range query can be
efficiently processed by first locating the leftmost leaf node
that satisfies the range query, and then, recursively
forwarding the query to its right neighbors. Meanwhile,
LIGHT also reduces significant amount of index main-
tenance overhead. When a leaf node splits, the DHT key of
one child will remain unchanged thanks to the nice naming
function. Thus, half of data movement is saved. Never-
theless, LIGHT deals with 1D data only.

2.2 Over-DHT Indexes for Multidimensional Data
With 1D over-DHT indexes, there are generally three
choices for processing multidimensional queries. The first
is to construct multiple independent indexes, with each
indexing 1D. A multidimensional query is then processed
in parallel over multiple indexes [1], [3], [4]. However, this
solution incurs a high query processing and index main-
tenance overhead. The second choice is Space Filling Curve
(SFC) indexing, which uses the SFC to reduce data
dimensionality and then indexes data by some 1D index
[5], [6], [18]. But the problem in SFC indexing is that the
spatial proximity in the multidimensional space may not be
preserved in the 1D SFC, which deteriorates query
efficiency. To date, the most promising solution is to
directly build multidimensional indexes. A typical ap-
proach is to index data by conventional multidimensional
indexes (e.g., kd-tree) and map these indexes into DHT
space, e.g., [6], [9], [11], [24]. Unfortunately, these existing
schemes rely on specific P2P networks. In contrast, in this
paper, we are interested to develop novel multidimensional
indexes based on generic DHTs.

3 m-LIGHT INDEXING SCHEME

In this section, we follow the design principle of LIGHT [22]
and propose a multidimensional indexing scheme, call m-
LIGHT. We note that the extension is not straightforward.
First, the label-to-DHT-key naming mechanism should be
redesigned to preserve the spatial proximity in multi-
dimensional space. Second, processing complex queries in
multidimensional space is much more complicated than in
1D space. Third, space partitioning index tree has a known
problem of load imbalance. This problem might be
aggravated in multidimensional space. Thus, index update
strategies should be aware of load distributions of index
nodes. In the following, we first introduce the space kd-tree
for indexing data in multidimensional space.

3.1 Distributed Indexing of Space Kd-Tree

To index multidimensional data, we recursively partition
the data space into cells along different dimensions in an
alternative fashion. For example, in Fig. 2a, the 2D space is
recursively halved along the x and y axes, alternatively,
until a cell contains no more than 6,,;; data records, where
Ospiit is a predefined threshold. Space partitioning is used
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Fig. 2. Space kd-tree. (a) Space partitioning. (b) Space kd-tree
decomposition (with each box corresponding to a local tree).

here, that is, a data space is always equally partitioned,
regardless of the data distribution. As mentioned, such a
space is essential to distributed query processing. We call
the index the space kd-tree, in which each leaf corresponds
to a distinct cell, and each internal node corresponds to a
region that covers several cells. As shown in Fig. 2b, every
internal node has two children. However, unlike a
conventional kd-tree, the space kd-tree has two roots.
The additional root, termed as virtual root, is a virtual node
above the ordinary one. Thus, the number of leaf nodes
equals the number of nonleaf nodes. As will be shown
later, this property enables us to name each leaf node with
a distinct internal node. The labeling strategy is similar to
that in the 1D case. If the tree edge goes left, it is labeled
with 0; otherwise 1. In particular, in the 2D case, the label
of the virtual root is 00 and the label of the ordinary root is
001 (denoted by # hereafter, # = 001). Thus, for example,
the leftmost leaf node in Fig. 2b is labeled with #000. This
is consistent with the one visualized in Fig. 2a, where 0/1
represents the cell that is near/apart from the origin in
each space partition, and the label of a cell is obtained by
interleaving the labels for all the partitions along the « and
y axes. Since each label is unique, it can be used to denote
the corresponding node in the space kd-tree.

To materialize the tree in a distributed setting, we
decompose the space kd-tree and store each piece into a
leaf bucket. Conceptually, a leaf bucket is a local tree consisting
of a distinct leaf node and all its ancestors. For example, in
Fig. 2b, the two bounding boxes illustrate two local trees of
leaves #01 and #101111.

3.2 m-Dimensional Naming Function

For a leaf bucket labeled with ), the m-dimensional naming
function f,4(-) generates its DHT key &, i.e., k = fq()). The
bucket is then stored on the peer node based on the DHT
key. In this section, we first present the naming function for
2D indexing, and then extend it to m-dimensional indexing.

3.2.1 Naming for 2D Indexing

Definition 1 (2D-Naming Function). In a 2D space kd-tree,
given the binary label of any leaf, X = by - - - b;_ab;_1b;, where
bj =[01](j=1,...,4), the 2D-naming function is recur-
sively defined as follows:

f2d(b1 e bi—Qbi—1)>

i f bi—a = bi,
Joa(by -+ - bisbi1b;) = {bl e by_obi g o

otherwise.
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Fig. 3. Naming the space kd-tree in m-LIGHT. (a) The naming function.
(b) Naming bijectively from leaves to internal nodes.

Specifically, given a binary string A =b;---b,_2b;i_1b;,
f24(+) checks its last bit b; and the last third bit b;_,. If they
are the same, the last bit is truncated and this procedure is
repeated. Otherwise, the procedure is terminated after
truncating the last bit. Thus, foq()) always produces a prefix
of A. For example, foq(#0101111) = #0101, foq(#0011111) =
#001, and frq(#101111) = #101, as in Fig. 3. In particular,
foa(#) = f24(001) = 00.

Next, we show that the naming function fo4(-) has two
important properties, including corner preservation and
bijectiveness."

Theorem 1 (Corner Preservation). Given an internal node w,
the corresponding data region has four corners, and the cells
lying on them are, respectively, named to foq(w),w, w0, and wl.?

Theorem 2 (Bijective Mapping). Let A and ) denote the sets of
leaves and internal nodes, respectively. foq(-) is a bijective
mapping from A to Q.

Theorem 1 implies that given w, the names of its four
corner cells can be directly inferred, which, as will be shown
later, is very useful for distributed range queries (since it
helps to quickly locate the range boundaries). Theorem 2
guarantees that for each DHT key (ie., the label of an
internal node), there is one and only one leaf named to it.

3.2.2 Scale up to m-Dimensional Indexing

Definition 2 (m-Dimensional Naming Function). In a space
kd-tree, given any leaf label A\ =0by---b;_p, - - - bi_1b;, where
bj =[0]1](j =1,...,4), the m-dimensional naming func-
tion is recursively defined by

fmd()\) - fmd(bl e bifm e bi*lbi)a

| fama(bre e bimm e bima),
by iy - bioa,

Zf bifm = biv
otherwise.

In the general case, the root label # is adjusted tobe 0 - - - 01
(with m consecutive 0’s). Then, the theorems presented in the
previous section also hold for m-dimensional space.

1. The proofs of all theorems are given in Appendix A, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2011.91.

2. We assume the subtree rooted at w is deep enough that all four corner
cells exist. For the case where w has only two leaves (or cells), they are
named to fyq(w) and w.
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Theorem 3 (m-Dimensional Corner Preservation). Given
any internal node w in the m-dimensional index tree, the
corresponding data cube has 2™ corners, and the cells lying on
them are, respectively, named to fpq(w),w,w0,wl, w00,
w01,..., and wll---1 (note that the last name has m — 1
consecutive 1’s in the end).

Theorem 4 (m-Dimensional Bijective Mapping). f.4(-) is a
bijective mapping from A to Q.

In the rest of this paper, for simplicity our discussions will
be mainly based on 2D indexing. Nevertheless, all algo-
rithms and proofs can be extended to m-dimensional
indexing in a natural way.

4 LookKur OPERATION

Given a data key 6, the m-LIGHT lookup operation®
returns the label of the leaf bucket that covers §, namely,
A(6). The lookup operation serves as a basis for complex
query processing.

Recall that m-LIGHT leverages space partitioning. Any
peer receiving a lookup operation for 6 can locally calculate
the set of all possible values of A\(6), which is called the
candidate set. To be more precise, for a 2D data key
6 = <b1,6o>, one can get the binary representations for &;
and 6,, respectively, and then interleave them. For example,
given 6 = <0.2,0.4>, the binary representations for 0.2 and
0.4 are 001--- and 011..., respectively. Then, the inter-
leaved binary number is 001011..., and the target label
A(<0.2,0.4>) must be a prefix of #001011.... In Fig. 2a,
M(<0.2,0.4>) = #001.

To find the target label A(6), we start with discovering
the possible maximum length of the label. Given a
predefined guess on the maximum length, I, we conduct
a DHT-lookup for the prefix of the label of length D'. If it
fails (i.e., returning a NULL value), we know that the
maximum length must be less than D'. Otherwise, we will
proceed to probe 2D', 4D',8D',..., until a failed DHT-
lookup, say with depth 27D, is encountered. Then, the
length of the target label is known to be in interval
(2971D/,29D'). In general, after the discovery phase, we
know that the target label has a length in a certain range,
denoted by (s,s + D).

Then, we employ binary search to find the exact length of
the target label. Specifically, in each loop iteration, the
algorithm probes the candidate label with the length being
the middle value of an interval, which is initialized as
[s,s + D). However, unlike the basic binary search, due to
our unique naming function, the m-LIGHT lookup can
perform some pruning during the search process. That is,
when the probe for candidate label ). fails, implying A, is
already deeper than the target leaf, the upper bound of the
interval is thus set to foq().) (rather than \.). This is because
in this probe, m-LIGHT conducts a DHT-lookup for foq(Ac),
and it actually has examined all labels between f»;().) and
A, since they are all named to fyq(\.). Similarly, if the
current probe returns a bucket that does not cover §,
implying the label tried is too short, the interval’s lower

3. In this paper, we refer to m-LIGHT lookup as “lookup” for short, and
for clarity the DHT-lookup remains its full name.
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bound is then adjusted to Inz(fs():)) (rather than A.),
where Inz(foq(A:)) denotes the longest candidate label
named to fo4(\.). This search process continues until it
returns a leaf bucket that covers §. A lookup example, and
the complexity analysis are presented in Appendix B.1 and
Appendix C, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.91, respectively.

5 RANGE QUERIES

In a multidimensional space, a range query specifies a
multidimensional region and returns all data keys falling in
that region. In this section, we present the range query
algorithm over the m-LIGHT index, where the queried
region can be of an arbitrary shape.

5.1 Basic Range Query Algorithm
Consider a query with range R. Upon receiving the query
from the user, the peer (i.e., query initiator) can locally figure
out the lowest internal node that fully covers R (i.e., the
LCA of R). The algorithm then proceeds to forward
the range query to the LCA. Specifically, the query initiator
carries out a DHT-lookup of foq(LC'A), which must reach
one corner cell in the region associated with the LCA, as
shown in Theorem 1. Upon receiving the range query, the
corner cell constructs a local tree based on its leaf label.
Among all branch nodes (i.e., the second children of the
ancestors) in the local tree, there exist one or more whose
regions overlap the query range. Denote these branch nodes
by Bi,52,..., and G, respectively. For each (;, the range
query is decomposed into the subrange R;, which is the
overlapped region between g; and R, i.e.,, R; = §; N R. Then,
R; is forwarded to §; via a DHT-lookup of f2q(03;). Note that
there is no overlap between R; and R; due to the space
partitioning method employed in m-LIGHT. Hence, the
subqueries R;(i =1,2,...,l) can be processed in parallel
and no bucket revisit is needed. For further forwarding in
each (3;, a similar process can be recursively applied until
the current query range is fully covered in one cell.
Algorithms 1 and 2 formally describe the range query
processing with m-LIGHT. The query initiator executes
Algorithm 1. It probes the name of the LCA of the query
range by a DHT-lookup, and there are three cases:

1. The DHT-lookup fails, which implies the query range
is so small that a single leaf bucket can cover it. Thus,
the range query is reduced to a lookup query.

2. The located bucket fully covers the query range; so
the range query is directly resolved.

3. Otherwise, the LCA contains more than one cell, and
the range query needs to be further processed. In
this case, it applies Algorithm 2, which is detailed in
the last paragraph.

Algorithm 1. range-query(range R)
1: wg <« lowest-common-ancestor(R)
: A «— DHT-lookup(fmni(wr))
if A == NULL then
return lookup(R.top_left_corner)
else if R C A then
return the keys of A that are in the range R

SARCLIE IR N
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7: else
8:  return recursive-forward(R, wg)

Algorithm 2. recursive-forward(range R, region )
1: A — DHT-lookup(fmq(5))
2: for all 3, € {branch nodes between X and 3} do
3: RL — ﬁt NR
4:  if R, # NULL then
5 recursive-forward(R;, (3;)

5.2 Parallel Range Query Algorithm

In many distributed query algorithms, there exists a trade-
off between query bandwidth and response latency.
Inspired by this observation, we propose a parallel query
algorithm to provide such flexibility.

The basic idea is to simultaneously forward two sub-
queries (rather than one) within a branch node. Specifically,
each branch node [ represents a space region; and from
Theorem 1, region 3 has two corner cells that are, respec-
tively, named to foq(3) and § (denoted by A; and \p). To
forward the range query, we now perform two DHT-lookups
to both fyq(8) and G, which deliver the query to A; and .
These two DHT-lookups run in parallel and, hence, each
recursive forwarding can explore the neighboring subtree by
two levels (instead of just one). As a result, the total latency
can be reduced approximately by a factor of two.

To further improve the bandwidth efficiency, we refine
the parallel process by taking the range location into
account. Specifically, the branch node # may be further
partitioned into two halves, covering A; and Xy, respec-
tively. If the query range R is completely contained in the
partition of A, the query is then forwarded to A; only.
Otherwise, the query is forwarded to both A; and As.

The formal procedure is described in Algorithms 3. In
general, if we forward h steps ahead within a branch node,
the average latency can be reduced approximately by a
factor of h + 1, but with the number of DHT-lookups also
increased. In practice, the user can tune the parameter of i
based on his/her performance preference. Appendix B.2,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.91, gives a basic range query example and a
parallel range query example.

Algorithm 3. parallel-recursive-forward(range R, region (3,
lookahead steps h)
1: A — DHT-lookup(fmq(5))
2: for all 3; € {branch nodes between X and 5} do
3:  forall §;; € {leaves of subtree rooted at 3;,
of depth h} do

4: R — ﬁi’j NR
5: if Rm‘ 7'é NULL then
6: parallel-recursive-forward(R; ;, §; j, h)

6 K-NN QUERIES

Given a query point @ and an integer k, a k-NN query returns
the k£ data keys that are nearest to (). In this section, we
present the k-NN query algorithm over the m-LIGHT index.
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First, we introduce a notion of MINDIST for measuring
the distance between a point and a rectangle [16]. In a space
kd-tree, each leaf node corresponds to a distinct cell, and
each internal node corresponds to a region that covers a
number of cells, all of which are in a rectangular shape.
MINDIST(p, R) is the minimum distance between a point p
and a rectangle R. If p is inside the rectangle, MINDIST(p,
R) is zero; if the point is outside R, MINDIST(p, R) is the
euclidean distance between the point p and the nearest
point of the rectangle. In our algorithm, if MINDIST(Q, 1)
between an index node I and the query point () is greater
than the k-NN distance we have found so far, this node I is
discarded since all keys contained in I are farther away
than the current kth NN.

The k-NN query algorithm works as follows: We start by
locating the leaf node that contains the query point Q. Then,
like processing range queries, we gradually expand the
search space by visiting all branch nodes of the leaf node until
all k nearest keys are found. Algorithm 4 gives the formal
description of k-NN query processing. The peer first
conducts a lookup to find the label of the leaf node that
contains Q). Then, it carries out a DHT-lookup for that leaf
node and computes a candidate k-NN result set based on the
retrieved keys (lines 1-3). After that, all branch nodes of the
leaf node are inserted into a priority queue H according to
their MINDIST distances to @ (lines 4-5). Each time while the
queue H is not empty, a node A is dequeued (line 7). If the
candidate results are less than k or MINDIST(Q, )) is shorter
than the kth distance—the distance of the kth NN found so
far, the algorithm proceeds to check the status of the node \. If
Ais a leaf node, we perform a DHT-lookup of f,,4()), update
the candidate result set and the kth distance (lines 10-12).
Otherwise, if A is an internal node, a DHT-lookup of f,,4(}) is
performed, which will reach one corner cell y of the space A.
For v and each branch node §; between y and ), they will be
inserted into the priority queue H (lines 14-17). Appendix B.3,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2011.91, gives an example of k-NN query.

Algorithm 4. k-NN-query(query point @, k)
1: 3 < Lookup(Q)
2: DHT-lookup( fina(5))
3: Retrieve the keys of the bucket and compute a
candidate k-NN result set C

4: for all §; € {branch nodes between 5 androot} do
5. Enqueue(H, 3)
6: while H is not empty do
7 A — dequeue(H)
8: if (|C] < k or MINDIST(Q, M) < kth distance) then
9: DHT-lookup(X)
10: if )\ is a leaf node then
11: Retrieve the keys of the bucket
12: Update the candidate result set C and kth
distance
13: else
14: ~ < DHT-lookup(fya(A))
15: Enqueue(H, 7)
16: for all §; € {branch nodes between y and A\} do
17: Enqueue(H, 3;)
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7 INDEX TREE MAINTENANCE

In this section, we discuss how m-LIGHT adjusts its structure
along with data insertions and deletions.* We first consider
the conventional threshold-based splitting strategy and
show that m-LIGHT can achieve incremental tree maintenance.
After that, we propose a data-aware splitting strategy which
offers optimal load balance among leaf buckets. The data
deletion algorithm is presented in Appendix D.3, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.91.

7.1 Incremental Tree Maintenance
To adapt the tree structure to current data distribution, we
follow the conventional threshold-based splitting strategy.
That is, we predefine two thresholds, namely, 0,,; and
Omerge, for leaf split and merge. After a data insertion, if the
number of records stored in a leaf bucket gets higher than
Ospiit, a split process is triggered. Similarly, after a data
deletion, a pair of sibling leaf buckets may be found
containing less than 6., data records, and a leaf merge is
thus triggered. Here, for simplicity, we restrict that for each
data insertion/deletion operation, only one leaf split/merge
is allowed (i.e., no cascade split/merge).

Now we are going to show how the split/merge process
actually works under this framework. First, we present a
property of the 2D naming function.

Theorem 5 (Incremental Split). Consider a leaf, say ), is split
into two nodes. The naming function foq(-) maps one to
faa(N), and the other to A.

The split process proceeds as follows: The splitting
bucket A is first divided into two buckets locally. Then, it
conducts a DHT-put operation to reassign the bucket
named to A in the underlying DHT. For the other one
named to fo4(\), it shares the same DHT key with the
splitting bucket ); thus, it is mapped to the same peer and
no data migration is needed. Similarly, to merge a pair of
leaf buckets, only one bucket needs to be transferred across
the DHT. Hence, among two operating buckets in the split/
merge, there is always one retained on the previous peer.
This nice property, termed as incremental tree maintenance,
can reduce the cost by half in terms of both the number of
DHT-lookups and the amount of transferred data.

7.2 Data-Aware Splitting Strategy

We observe that the threshold-based splitting strategy may
generate empty leaf buckets, since it does not take into
account the local data distribution when partitioning data
space. However, generating empty buckets is against the
purpose of the splitting process (i.e., balancing the load
among leaf buckets). Here, we propose a data-aware
splitting strategy which can achieve optimal load balance
among leaf buckets.

The data-aware splitting strategy requires a predefined
parameter ¢, which indicates the expected load (rather than
the upper/lower bound) in terms of the number of data
records stored in each bucket. Generally speaking, this
strategy aims at minimizing the difference between the real

4. In terms of index maintenance, m-LIGHT does not deal with peer
failures, which are handled by the underlying DHTs leveraging techniques,
like data replication.
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load and the expected one (i.e., €). When a bucket receives a
new data record, it locally computes a virtual subtree rooted
at this bucket, called optimal split subtree, which minimizes
the total difference for all leaves. Specifically, for a leaf
bucket, the difference is (I — 6)2, where [ is the number of
data records stored in the bucket. To work out the
minimized total difference, a naive solution is to apply the
brutal-force search to try all possibilities, which is however
time-consuming. Instead, we use a divide-and-conquer
approach, as shown in Algorithm 5—it first computes the
minimized total difference for the left child, and then for the
right child. The process is recursively invoked until the cell
containing no more than e data points is reached (line 2).
When the computation is done, we compare the minimized
value with the current difference. If the minimized value is
smaller, the current bucket is split according to the optimal
split subtree; otherwise, it stays unchanged. Note that the
algorithm runs locally and is invoked every time a bucket
changes its load (due to data insertions/deletions). Appen-
dix D, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.91, shows an example and proves the optimality
of this strategy in storage load balance.

Algorithm 5. local-split(leaf bucket )

1 Sipear — (A.load — 6)2
2: if Aload < € then
3: return s;,.y;.
4: else
5: Sieft +— local-split(A.leftChild())
6: Spight < local-split(A.rightChild())
7 Snon_local <~ Sleft + Sright
8 if sipcal < Spon_iocal then
9: return s;,.q.
10: else

—_
—_

return s, _jocal-

8 PERFORMANCE EVALUATION

This section presents the results of performance evaluation.
Note that m-LIGHT belongs to the multidimensional over-
DHT indexing. Thus, we compare it with the state-of-the-art
schemes in the same category, that is, PHT [5] and DST [25],
[19]. The performance metrics of our interest are index
maintenance overhead, load balance, query cost, and their
scalability to high dimensionality. Other experiment results
including scalability to high dimensionality are shown in
Appendix E, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.91.

8.1 Experiment Setup

We have implemented the m-LIGHT index in Java. The total
number of code lines is about 2,500 (including m-LIGHT,
DST, and PHT), which demonstrates the simplicity of
developing an over-DHT indexing scheme. In the experi-
ments, m-LIGHT, DST, and PHT were run over the Bamboo
DHT [14], a ring-like DHT that has good robustness and is
now deployed in a real-life project, OpenDHT [15]. Our
experimental study is based on a system built in an Internet
environment.
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In the experiments, we first tested real geographic data
and then synthetic data for scalability evaluation. The real
North-East data set contains 123,593 postal addresses
(points) in three metropolitan areas of New York, Philadel-
phia, and Boston. Along each dimension, we normalize the
data points into the range [0, 1]. In the experiments, we
inserted these data points progressively into the index, and
tested its performance under different data set sizes.

8.2 Index Maintenance Performance

The first experiment evaluates the maintenance perfor-
mance of m-LIGHT when data are progressively inserted.
Recall that data insertion in m-LIGHT involves two
operations: a lookup and a possible leaf bucket split. Both
of these two operations incur system costs, and in this
experiment, we report these costs as a whole. We take two
measures, that is, the DHT-lookup cost and the data-
movement cost. The results are shown in Figs. 4a and 4b.
For all three indexing schemes under comparison, the
cumulative maintenance costs go up linearly as more data
are inserted. We also vary the threshold 6,,;; and report the
evaluation results in Figs. 4c and 4d. In general, both of
DHT-lookup cost and data-movement cost are insensitive to
the value of 6, except that DST incurs less data-
movement cost when 0,,;; is smaller. This is because in
this case, the internal nodes in DST easily get saturated, and
many data records are not replicated on these nodes,
thereby decreasing the data-movement cost. Comparing the
three indexing schemes, due to the replication strategy, DST
is much more costly than the other two by an order of
magnitude; the m-LIGHT index achieves the best perfor-
mance in all cases tested and saves about 40 percent
maintenance cost against PHT.

8.3 Range Query Performance

We now evaluate the range query performance in terms of
bandwidth cost and response latency. The two measures are,
respectively, captured by the number of DHT-lookups and
the rounds of DHT-lookups. In the evaluation, we include
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Range span

both the basic algorithm and the parallel algorithm for m-
LIGHT. For the parallel algorithm, we test two versions, with
the parameter of lookahead steps being 2 and 4, respectively.
We compare the three m-LIGHT query algorithms with PHT
and DST. In the experiments, the queried ranges are
rectangles uniformly distributed in the data space of
[0...1,0...1]. We first vary the range span (i.e., the area of
the rectangle) and report the results in Figs. 5a and 5b. In
terms of bandwidth cost, DST consumes much more than
any other scheme, typically by an order of magnitude.
Because in our setting, D' being 28 is much bigger than the
real tree depth, rendering the queried range decomposed
into many small subranges in DST. In contrast, m-LIGHT
(basic) is the most bandwidth-efficient. The m-LIGHT
(parallel-2) and m-LIGHT (parallel-4) consume more band-
width, but as a trade-off, they achieve a significant saving in
query latency. DST is time-efficient when the ranges are
small. However, as the ranges become larger, the latency of
DST dramatically increases, whereas all other schemes are
more stable as shown in Fig. 5b.

8.4 k-NN Query Performance

We evaluate the k-NN query performance in terms of
bandwidth cost and response latency. In the evaluation, we
compare the m-LIGHT query algorithm with PHT and DST.
We randomly generate 100 query points for 100 k-NN
queries. Figs. 6a and 6b plot the average results of these k-
NN queries with k ranging from 1 to 1,024. In general, the
query costs go up linearly as k increases. In terms of the
bandwidth cost (Fig. 6a), DST consumes much more than
the other two schemes, and m-LIGHT is the best one thanks
to its nice local tree property. As for the latency, m-LIGHT
achieves the best performance among the three schemes as
shown in Fig. 6b.

In summary, the proposed m-LIGHT is more flexible and
outperforms PHT and DST in many aspects, including
index maintenance and query processing. Moreover, m-
LIGHT (parallel) trades bandwidth efficiency for significant
saving in query latency. DST has a comparable performance
with m-LIGHT in terms of range query latency. However, it
has an extremely high cost in index maintenance and query
bandwidth.

9 CONCLUSION

This paper has proposed m-LIGHT, an efficient multi-
dimensional index structure for supporting complex query
processing over DHTs. Three core techniques contribute to
the efficiency m-LIGHT: a tree-decomposition strategy, a
novel naming mechanism, and a data-aware splitting
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strategy. Experimental results based on a real data set
show that m-LIGHT outperforms state-of-the-art schemes
in various aspects, including maintenance efficiency, look-
up performance, and query performance. As an over-DHT
indexing scheme, m-LIGHT is able to adapt to any DHT
substrate, and is also easy to implement and deploy.

ACKNOWLEDGMENTS

The work of Yuezhe Tang, Shuigeng Zhou, Dingxiong Deng,
and Yue Wang were supported by the National Basic
Research Program of China under Grant No. 2007CB310806,
National Natural Science Foundation of China (NSFC) under
Grant No. 60873070, and 863 Program under Grant No.
2009AA01Z135. Shuigeng Zhou was also supported by K.C.
Wong Education Foundation-HKBU. Jianliang Xu’s work
was supported by the Research Grants Council of Hong Kong
under Projects HKBU211307 and HKBU211510. Wang-Chien
Lee was supported in part by US National Science Founda-
tion Grant CNS-0626709 and Grant I15-0534343.

REFERENCES

[1] A. Andrzejak and Z. Xu, “Scalable, Efficient Range Queries for
Grid Information Services,” Proc. Peer-to-Peer Computing, pp. 33-
40, 2002.

[2] ]. Aspnes and G. Shah, “Skip Graphs,” Proc. 14th Ann. ACM-SIAM
Symp. Discrete Algorithms (SODA '03), pp. 384-393, 2003.

[3] AR Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” Proc. ACM SIGCOMM,
pp- 353-366, 2004.

[4] M. Cai, M.R. Frank, J. Chen, and P.A. Szekely, “"MAAN: A Multi-
Attribute Addressable Network for Grid Information Services,”
Proc. Fourth Int’l Workshop Gird Computing (GIRD "03), pp. 184-191,
2003.

[5] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S.
Shenker, and ].M. Hellerstein, “A Case Study in Building Layered
DHT Applications,” Proc. ACM SIGCOMM, pp. 97-108, 2005.

[6] P. Ganesan, B. Yang, and H. Garcia-Molina, “One Torus to Rule
Them All: Multidimensional Queries in P2P Systems,” Proc.
Seventh Int’l Workshop the Web and Databases (WebDB '04), pp. 19-
24, 2004.

[71 J. Gao and P. Steenkiste, “An Adaptive Protocol for Efficient
Support of Range Queries in DHT-Based Systems,” Proc. 12th
IEEE Int’l Conf. Network Protocols (ICNP '04), pp. 239-250, 2004.

[8] H.V.Jagadish, B.C. Ooi, and Q.H. Vu, “BATON: A Balanced Tree
Structure for Peer-to-Peer Networks,” Proc. 31st Int’l Conf. Very
Large Data Bases (VLDB '05), pp. 661-672, 2005.

[9] H.V. Jagadish, B.C. Ooi, QH. Vu, R. Zhang, and A. Zhou,
“Vbi-Tree: A Peer-to-Peer Framework for Supporting Multi-
Dimensional Indexing Schemes,” Proc. 22nd Int'l Conf. Data Eng.
(ICDE '06), 2006.

[10] D.R.Karger, E. Lehman, F.T. Leighton, R. Panigrahy, M.S. Levine,
and D. Lewin, “Consistent Hashing and Random Trees: Dis-
tributed Caching Protocols for Relieving Hot Spots on the World
Wide Web,” Proc. ACM Symp. Theory of Computing (STOC '97),
pp. 654-663, 1997.



2054

[11] M. Li, W.-C. Lee, and A. Sivasubramaniam, “DPTree: A Balanced
Tree Based Indexing Framework for Peer-to-Peer Systems,” Proc.
IEEE Int’l Conf. Network Protocols (ICNP "06), pp. 12-21, 2006.

[12] S. Ramabhadran, S. Ratnasamy, ].M. Hellerstein, and S. Shenker,
“Brief Announcement: Prefix Hash Tree,” Proc. 23rd Ann. ACM
Symp. Principles of Distributed Computing (PODC '04), 2004.

[13] S. Ratnasamy, P. Francis, M. Handley, RM. Karp, and S.
Shenker, “A Scalable Content-Addressable Network,” Proc.
ACM SIGCOMM, 2001.

[14] S.C. Rhea, D. Geels, T. Roscoe, and ]. Kubiatowicz, “Handling
Churn in a DHT,” Proc. USENIX Ann. Technical Conf., pp. 127-140,
2004.

[15] S.C. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S.
Shenker, 1. Stoica, and H. Yu, “Opendht: A Public DHT Service
and Its Uses,” Proc. ACM SIGCOMM, pp. 73-84, 2005.

[16] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor
Queries,” Proc. ACM SIGMOD, pp. 71-79, 1995.

[17] A.LT. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer
Systems,” Proc. 18th IFIP/ACM Int'l Conf. Distributed Systems
Platforms (Middleware '01), pp. 329-350, 2001.

[18] C. Schmidt and M. Parashar, “Flexible Information Discovery in
Decentralized Distributed Systems,” Proc. 12th IEEE Int’l Symp.
High Performance Distributed Computing (HPDC '03), pp. 226-235,
2003.

[19] G. Shen, C. Zheng, W. Pu, and S. Li, “Distributed Segment Tree: A
Unified Architecture to Support Range Query and Cover Query,”
technical report, Microsoft Research Asia, 2007.

[20] I. Stoica, R. Morris, D.R. Karger, M.F. Kaashoek, and H.
Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications,” Proc. ACM SIGCOMM, pp. 149-160,
2001.

[21] Y. Tang and S. Zhou, “LHT: A Low-Maintenance Indexing
Scheme over DHTs,” Proc. 28th Int’l Conf. Distributed Computing
Systems (ICDCS 08), pp. 141-151, 2008.

[22] Y. Tang, S. Zhou, and J. Xu, “Light: A Query-Efficient Yet Low-
Maintenance Indexing Scheme over Dhts,” IEEE Trans. Knowledge
Data Eng., vol. 22, no. 1, pp. 59-75, Jan. 2010.

[23] P. Yalagandu and ]. Browne, “Solving Range Queries in a
Distributed System,” Technical Report TR-04-18, UT CS, 2003.

[24] C. Zhang, A. Krishnamurthy, and R.Y. Wang, “Brushwood:
Distributed Trees in Peer-to-Peer Systems,” Proc. Fourth Int’l
Workshop Peer-to-Peer Systems (IPTPS '05), pp. 47-57, 2005.

[25] C. Zheng, G. Shen, S. Li, and S. Shenker, “Distributed Segment
Tree: Support of Range Query and Cover Query over DHT,” Proc.
Fifth Int’l Workshop Peer-to-Peer Systems (IPTPS '06), Feb. 2006.

Yuzhe Tang received the BSc degree, and MSc
degree in computer science and engineering
from Fudan University, Shanghai, China, in 2006
and 2009. Currently, he is working toward the
PhD degree in the College of Computing,
Georgia Institute of Technology. His research
interests include distributed systems and data-
bases, system security, and privacy.

Jianliang Xu received the BEng degree in
computer science and engineering from Zhejiang
University, Hangzhou, China, and the PhD
degree in computer science from Hong Kong
University of Science and Technology. He is an
associate professor in the Department of Com-
puter Science, Hong Kong Baptist University. His
research interests include data management for
various networked systems including mobile
networks, sensor networks, and internet sys-
tems. He has published more than 80 technical papers in these areas. He
is a senior member of the IEEE.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO. 12, DECEMBER 2011

Shuigeng Zhou received the Bachelor's degree
of electronic engineering from Huazhong Uni-
versity of Science and Technology (HUST) in
1988, the Master's degree of electronic engi-
neering from the University of Electronic Science
and Technology of China (UESTC) in 1991, and
the PhD degree in computer science from Fudan
University, in 2000. Now he is a professor in
School of Computer Science and Shanghai Key
Laboratory of Intelligent Information Processing,
Fudan University, Shanghai, China. From 1991 to 1997, he served in
Shanghai Academy of Spaceflight Technology, as an engineer, and
since August 1995, as a senior engineer, respectively. From 2000 to
2002, he was a postdoctoral researcher in State Key Laboratory of
Software Engineering, Wuhan University. His research interests include
data management in distributed environments, data mining, bioinfor-
matics, and complex networks. He has published more than 100 papers
in domestic and international journals and conferences. Currently, he is
a member of the IEEE, IEEE Computer Society, the ACM SIGMOD, and
the IEICE.

Wang-Chien Lee received the BS degree from
the National Chiao Tung University, Hsinchu,
Taiwan, the MS degree from the Indiana
University, Bloomington, and the PhD degree
from the Ohio State University, Columbus. He is
an associate professor of computer science and
engineering at the Pennsylvania State Univer-
sity, University Park, where he leads the
Pervasive Data Access (PDA) Research Group
to perform cross-area research in database
systems, pervasive/mobile computing, and networking. Prior to joining
Pennsylvania State University, he was a principal member of the
technical staff at Verizon/GTE Laboratories. His research interests
include developing data management techniques (including accessing,
indexing, caching, aggregation, dissemination, and query processing)
for supporting complex queries in a wide spectrum of networking and
mobile environments, such as peer-to-peer networks, mobile ad hoc
networks, wireless sensor networks, and wireless broadcast systems.
Meanwhile, he has worked on XML, security, information integration/
retrieval, and object-oriented databases. His research has been
supported by the US National Science Foundation (NSF) and industry
grants. Most of his research results have been published in prestigious
journals and conference proceedings in the fields of databases, mobile
computing, and networking. He has served as a guest editor for several
journal special issues on mobile database-related topics, including the
IEEE Transactions on Computers, IEEE Personal Communications
Magazine, ACM MONET, and ACM WINET. He was the founding
program committee cochair for the International Conference on Mobile
Data Management. He is a member of the IEEE and the ACM.

Dingxiong Deng received the Bachelor's de-
gree in computer science and engineering from
East China University of Science and Technol-
ogy, in 2008. He is currently working toward the
Master's degree in the School of Computer
Science, Fudan University. His research inter-
ests include peer-to-peer networks and spatial
database.

Yue Wang is currently an undergraduate stu-
dent major in computer science and engineering
from Fudan University, Shanghai, China. His
research interests include peer-to-peer net-
works, information retrieval, and search engine.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



