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Abstract—In emerging multi-domain cloud computing, it is crucially important to provide efficient search on distributed

documents while preserving their owners’ privacy, for which privacy preserving indexes or PPI presents a possible solution.

An understudied problem for PPI techniques is how to provide differentiated privacy preservation in the face of multi-keyword

document search. The differentiation is necessary as terms and phrases bear innate differences in their meanings.

In this paper we present ǫ-MPPI, the first work on distributed document search with quantitative privacy preservation. In the

design of ǫ-MPPI, we identified a suite of challenging problems and proposed novel solutions. For one, we formulated the

quantitative privacy computation as an optimization problem that strikes a balance between privacy preservation and search

efficiency. We also addressed the challenging problem of secure ǫ-MPPI construction in the multi-domain network which lacks

mutual trusts between the domains. Towards a secure ǫ-MPPI construction with practical performance, we proposed techniques

for improved performance of secure computations by making a novel use of secret sharing. We implemented the ǫ-MPPI

construction protocol with a functioning prototype. We conducted extensive experiments to evaluate the prototype’s effectiveness

and efficiency based on a real-world dataset.

Index Terms—Privacy, secure computation, multi-domain clouds, data indexing, distributed systems.
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1 INTRODUCTION

In the age of cloud computing, data users, while enjoying a

multitude of benefits from the cloud (e.g. cost effectiveness

and data availability), are simultaneously reluctant or even

resilient to use the clouds, as they lose data control. The

recent research and industrial efforts towards returning data

control back to cloud users have given birth to a variety

of multi-domain cloud platforms, most notably emerging

information networks. In an information network, a data

owner can retain the full control of her data by being able

to choose from an array of service providers one that she

can presumably trust or even be able to launch a personal

server administrated directly by herself. The information

network does not need mutual trusts between servers, that

is, an owner only needs to trust her personal server and

nothing more.

Information networks emerge in a variety of application

areas. For an example, in the enterprise intranet (e.g.

IBM YouServ system [1], [2]), employees can store and

manage their own documents on personally administrated

machines. While the employees have their personal privacy

concerns and could set up access control policies on the

local documents, they may be required by the corporate-

level management team to share certain information for

the sake of promoting potential collaborations [2]. For
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another example, several distributed social networks (e.g.

Diaspora [3], Status [4] and Persona [5]) recently emerge

and become increasingly popular, which are based on the

design of decoupling the storage of social information

and social networking functionality. Unlike the centralized

monolithic social networking (e.g. Facebook and LinkedIn),

the distributed social networks allow an average social user

to launch a personal server for storing her own social data

and enforcing self-defined access control rules for privacy-

aware information sharing [6]. Other examples of informa-

tion networks include electronic Healthcare over the public

Internet (e.g. the open-source NHIN Direct project [7]),

peer-to-peer file sharing with access controls [8] and others.

In all these networks, a data owner can have an exclusive

domain for administration of physical resources (e.g., a

virtual machine) and data management of personal data

under the full user control. Domains located inside multiple

servers are isolated and distrusted between each other.1 In-

formation sharing and exchanges across a domain boundary

are desirable for various application needs.
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Fig. 1: The PPI system

1. In this paper, an owner is associated to one distinct domain and owns
one (virtual) server in the network. We use the notation of an owner, a
domain and a server, interchangeably.
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For privacy-aware search and information sharing in the

information networks, a candidate solution is a privacy

preserving index on access controlled distributed docu-

ments [9], [10], [11], or PPI for short. In Figure 1, a PPI

is a directory service hosted in a third-party entity (e.g. a

public Cloud) that serves the global data to a number of

data consumers or searchers. To find documents of interest,

a searcher would engage in a two-stage search procedure:

First she poses a query of relevant keywords against the PPI

server, which returns a list of candidate owners (e.g. p0 and

p1) in the network. Then for each candidate owner in the

list, the searcher contacts its server and requests for user

authentication and authorization before searching locally

there. Note that the authentication and authorization only

occur inside the information network, but not on the PPI

server.

Comparing to existing work on secure data serving in the

cloud [12], [13], [14], the PPI scheme is unique in the sense

that 1) Data is stored in plain-text (i.e. without encryption)

in the PPI server, which makes it possible for efficient

and scalable data serving with rich functionality. Without

use of encryption, PPI preserves user privacy by adding

noises to obscure the sensitive ground truth information.

2) Only coarse-grained information (e.g. the possession

of a searched phrase by an owner) is stored in the PPI

server, while the original content which is private is still

maintained and protected in the personal servers, under the

user-specified access control rules.

Differentiating the Privacy Preservation of Multi-term

Phrases

In the PPI system, it is desirable to provide differentiated

privacy preservation regarding different search phrases and

owners. The data model (elaborated in § 2) used in a PPI

system and an information network is that each server

possesses multiple documents, each consisting multiple

terms. What is deemed private and should be protected

by a PPI is the possession information in the form of

“whether an owner possesses at least one document relevant

to a multi-term phrase 2 ”. Under this model, the meaning

of differentiated privacy preservation is of two folds: 1)

Different (single) terms are not born equal in terms of how

sensitive they are. For example, in an eHealthcare network,

it is natural for a woman to consider her medical record

of an “abortion” operation to be much more sensitive than

that of a “cough” treatment. 2) A multi-term phrase, as a

semantic unit, can be much more (or less) sensitive than a

single term contained in the phrase. For instance, “text” and

“driving” are two terms that may be deemed non-sensitive

in their solitary appearances, but a record of “text driving”

can be considered more sensitive.

The existing PPI work [9], [10], [11], while designed to

protect privacy, is not able to differentiate privacy preserva-

tion on different terms. Due to the quality-agnostic methods

used for constructing these PPIs, they can not deliver a

2. In this paper, we use “term” and “keyword” interchangeably.

quantitative guarantee for privacy preservation for search

of a single term, let alone that of a multi-keyword phrase.

In this paper, we propose ǫ-MPPI, a new PPI abstraction

which can quantitatively control the privacy leakage for

multi-keyword document search. In the ǫ-MPPI system,

different phrases, be it either a single term or a multi-term

phrase, can be configured with an intended degree on pri-

vacy, denoted by ǫ. ǫ can be of any value from 0 to 1; Value

0 represents the least concern on privacy preservation, while

value 1 aims at the best privacy preservation (potentially

at the expense of extra search overheads). By this means,

an attacker, searching a multi-term phrase on ǫ-MPPI, can

only have the confidence of mounting successful attacks

bounded by what the phrase’s privacy degree allows.

Constructing an ǫ-MPPI from an information network is

challenging from the angles of both the computation and

system designs. Computationally, the ǫ-MPPI construction

requires careful design to properly add false positives (i.e.

an owner who does not possess a term or a phrase falsely

claims to possess it) so that a true positive owner can

be hidden among the false positive ones, thus preserving

privacy.

In terms of system designs, in a real information network

which lacks mutual trusts between autonomously operated

servers, it is necessary and desirable to construct ǫ-MPPI

securely without a trusted authority. The task of distributed

secure ǫ-MPPI construction would be very challenging. On

one hand, constructing ǫ-MPPI to meet the stringent privacy

constraints under a number of multi-term searches while

minimizing extra search costs can be essentially modeled

as an optimization problem, solving which requires com-

plex computations such as a non-linear programming or

NLP. On the other hand, while the common wisdom for

secure computations (as required by the secure ǫ-MPPI

construction) is to use a multi-party computation technique

or MPC [15], [16], [17], [18] which protects input data pri-

vacy, the existing MPC techniques can work pragmatically

well only with a simple workload in a small network. For

example, FairplayMP [16], a representative practical MPC

platform, “needs about 10 seconds to evaluate (very simple)

functions” [19] which can otherwise be done within mil-

liseconds by the regular non-secure computation. Directly

applying the MPC techniques to the ǫ-MPPI construction

problem which involves a complex computation and a large

number of personal servers could lead to a cost that is truly

spectacular and practically unacceptable.

To address the challenges of efficient secure ǫ-MPPI

construction, our core idea is to draw a line between the

secure part and non-secure part in the computation model.

We minimize the secure computation part as much as

possible by exploring various techniques (e.g. computation

reordering). By this way, we have successfully separated the

complex NLP computation from the MPC part such that the

expensive MPC in our ǫ-MPPI construction protocol only

applies to a very simple computational task, thus optimizing

overall system performance.

The contributions of this paper can be summarized as

following.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

• We proposed ǫ-MPPI to address the needs of differ-

entiated privacy protection of multi-term phrases in

a PPI system. To best of our knowledge, ǫ-MPPI is

the first work on the problem. ǫ-MPPI guarantees the

quantitative privacy protection by carefully controlling

the false positives in a PPI and thus effectively limiting

an attacker’s confidence.

• We proposed a suite of practical ǫ-MPPI construc-

tion protocols applicable to the network of mutually

untrusted personal servers. We specifically considered

both the single-term and multi-term phrase cases, and

optimized the performance of the secure ǫ-MPPI con-

struction from both angles of computation model and

system design by exploring the ideas of simplifying

the secure computation tasks as much as possible

while without sacrificing the quality of privacy preser-

vation.

• We implemented a functioning prototype for ǫ-MPPI,

based on which an experiment study confirms the

performance advantage of our index construction pro-

tocol.

2 THE ǫ-MPPI MODEL

2.1 Data and System Model

In an information network, each individual owner virtually

owns a private domain pi in which physical resources (e.g.

a machine or a virtual machine) are fully administrated by

the owner or by someone the owner presumably trusts. In

our model, we consider m such owners in the network. In

a domain, the owner maintains unstructured data, mostly

a collection of documents consisting of multiple terms.

We denote a term by tj , and there are totally n terms

in the vocabulary. For example, for media file sharing

applications, such documents can be text describing the

original media files, or in other applications, it could be

personal medical records or social presence data. For an

owner, all her personal documents are protected under

access control rules defined by herself. Since the domain

is fully managed by the owner, it is trivial to enforce the

access rules. For search efficiency, an inverted index may be

constructed locally inside each owner’s domain. We abstract

the content of an owner by a list of terms contained in

the documents of the owner. This list, called local vector,

has each element to describe the possession of a term by

this owner. For example, List 〈t1 : 0, t0 : 1〉 owned by pi
indicates that pi possesses some documents containing term

t0, but it is not the case for term t1.

On the searcher side, our query model is a series of

queries, each as a multi-term phrase. We denote a multi-

term phrase by rk where k is the phrase index, and we

consider l phrases/queries in total, that is, k ∈ [0, l− 1]. A

query on phrase rk needs to return all documents distributed

in the network that are relevant to rk. In practice, a queried

phrase consists of fewer than 7 terms. Associated with each

query rk , we assume an intended privacy protection degree,

denoted by ǫk, upon which everyone in the ǫ-MPPI system

agrees.3

Phrase Information networkmPPI

Local vector Local vector

mPPI 

construction

Search

Result

Fig. 2: The PPI data model: Different shapes in the local

vector represent different indexed terms and ǫ-MPPI maintains the

mapping from terms to data owners. × represents a false positive

owner in ǫ-MPPI, which actually does not possess term △.

To carry out the query, we consider a two-stage search-

and-then-authorize process. Query on phrase rk is first sent

to the third-party ǫ-MPPI server, which will then redirect

the query to all servers whose local vectors match rk,

that is, the corresponding element is 1. After that, each

forwarded server authorizes the searcher and then uses local

inverted index to find relevant documents. We stress that our

query is for document/resource discovery in an untrusted

environment. The document discovery is different from

the traditional search which occurs between two trusted

entities and has to assume trust relationship established in

advance; for instance in social networks, a social user’s

search is forwarded to her trusted friends. In our case,

there is no trust between the searcher and searched servers,

which allows searchers to freely discover more potential

documents of interest owned by people yet to trust.

To perform the forwarding in the search process, we

employ an ǫ-MPPI which is internally structured as a

coarse-grained inverted index, that is, the indexing occurs

at the owner/server level rather than the document level.

Figure 2 shows the intuition. Conceptually, the index can

be modeled by an term-to-owner incident matrix, denoted

by M(i, j), in which a row and column represent an

owner and an indexed term respectively, and a cell, say

at row i and column j, is a binary value 0 or 1, which

indicates whether owner pi possesses content relevant to

term tj . The published ǫ-MPPI data, denoted by M ′(i, j),
is similar to the ground-truth data, M(i, j), except for the

added noises. For an ǫ-MPPI server, the possession data is

useful for redirecting search requests; given queried phrase

rk, ǫ-MPPI redirects to all candidate owners pi’s such

that M ′(i, j) = 1 for ∀j ak,j = 1. The notations are

summarized in Table 1.

2.2 Attack Model

Our threat model considers an attacker who can make a

probabilistic claim about the sensitive possession fact that

“owner pi possesses a phrase rk”. For phrase rk, this fact

amounts to that M(i, j) = 1, for ∀j ak,j = 1. Knowing

such fact may disclose data owner privacy especially when

the relevant data is inaccessible to the searcher and not

supposed to be known by the searcher. Recall the previous

3. Choosing a proper sensitivity degree for a phrase (namely ǫk) is
dependent on specific applications, and is a problem out of this paper’s
scope, while it is addressed by other recent work [20].
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example; a person may not want to disclose her records of

“text driving”, since disclosing them could harm her chance

in the job market or even causes a legal issue.

To choose a vulnerable owner and phrase to attack, the

attacker can employ different strategies and exploit various

information. Here, we consider an information-flow model

in which exploitable information flows from data sources

to the attacker through channels; the data sources and

channels depend on the role and capability of the attacker.

We consider the following three situations:

A Knowing the public PPI (M ′): The attacker can

learn the published PPI data (i.e. M ′) through a

public channel, because M ′(i, j) is in a public domain

and made available to anyone without authentication.

Through a regular PPI search on the PPI server,

one can exploit M ′(i, j) and makes a claim on the

ground truth of phrase rk possessed by owner pi (if

M ′(i, j) = 1). The attacker may launch a series of

searches on multiple phrases and combine the search

results to improve the attack success ratio on a single

phrase. For example, the attacker can choose to first

search a multi-term phrase , say t1t0, and then search

a single-term included in it, say t1.

B Knowing the ground truth (M ): The attacker can

know certain part of ground truth data M . It can be

disclosed through two possible situations: B.1) acces-

sible part of data on a server (in this case the attacker is

a regular searcher), and B.2) collusion with the owner

so that the owner’s ground-truth data is known to the

searcher. The information can further help the attacker

learn other part of M about inaccessible owners.

C Knowing the index construction: The attacker can

learn information revealed during the index construc-

tion process. This is possible because the attacker can

collude with owners and in the index construction

process owners have to exchange information and thus

may potentially learn others’ private information.

2.3 Privacy Metric and Degree

We measure the privacy disclosure by the attacker’s con-

fidence in the success of an attack. Given that the PPI

search results are mixed with false positives, the attacker’s

confidence translates into the probability that the attacker

can successfully pinpoint a true positive provider from

a search result. For an extreme example, if the search

results are all true positives (and the attacker knows that),

the privacy should be considered to be disclosed with

TABLE 1: Notations

pi The i-th owner m Number of owners

tj The j-th term n Number of terms

rk The k-th phrase l Number of phrases

ǫk Privacy degree for phrase
tk

ǫ′j Calculated privacy degree
for term tj

σ′

k Frequency of phrase rk σj Frequency of term tj
M Term-incidence matrix M ′ Published term-incidence

matrix

A[ak,j ] Membership of a term in
a phrase (be it present or
non-present)

a high degree. Formally, we define the privacy degree

to be Pr(M |M ′, O); here M is inaccessible content to

the searcher, and O is exploitable information sources as

previously described.

Based on our information flow model, we define a series

of privacy degrees which capture different levels of privacy

leakage:

• UNLEAKED: The information can not be leaked from

the source, thus making any attacks unsuccessful.

This is the highest level of privacy preservation, since

we essentially prohibit any information flows to the

attacker, leaving her possible attacks baseless.

• NOGUARANTEE: The information can flow to the

attacker but there is no guarantee on achieved privacy

degree, rendering the privacy leakage level unpre-

dictable.

• FIXEDPROTECTION: In this case, the system may

guarantee privacy degree, but the privacy guarantee is

at fixed values, and can not be configurable if users

prefer a privacy degree that is not provided.

• ǫ-PHRASE-PRIVACY: Users can control privacy pro-

tection to achieve the desired level. The privacy pro-

tection is measured by the metrics described as above,

and the PPI system provides guarantees that configured

value of privacy degree must be achieved. Formally, a

PPI is with degree ǫ-PHRASE-PRIVACY, if and only if

for any phrase rk with pre-configured privacy degree

ǫk, the following inequality holds.

Pr(Mk|M
′
k, O) ≤ 1− ǫk (1)

In this work, we mainly consider a statistical guaran-

tee, that is, the actual privacy protection is expected

to be better than the user-configured protection level.

In our technical report [21], we propose extensions

with finer-grained control of the quality of privacy

preservation.

Note that we consider a multi-term search as a single

unit for user-privacy configuration; that is, multiple phrases,

while maybe overlapping, are configured separately in its

privacy preservation. Our privacy preserving mechanism is

designed to guarantee that the achieved false positive rate

will meet privacy configurations of all relevant phrases.

2.4 ǫ-MPPI Privacy Guarantees

In our ǫ-MPPI design, we consider all three attack types

described above. We consider that an attacker can mount

one particular type or multiple types of attacks in or-

der to gain higher success ratio. We show the privacy

degrees achievable in our ǫ-MPPI under different attack

circumstances, as shown in Table 2. We will analyze those

privacy guarantees in details (§ 6). For the record, this paper

focuses on the privacy and information confidentiality, and

does not particularly address authenticity or other security

properties.
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TABLE 2: Attacks and achieved privacy degree

Attacks
Privacy degrees in ǫ-MPPI

A B.1 B.2 C
+ ǫ-PHRASE-PRIVACY

+ ǫ-PHRASE-PRIVACY

+ ǫ-PHRASE-PRIVACY

+ + ǫ-PHRASE-PRIVACY

+ + + FIXEDPROTECTION

+ + FIXEDPROTECTION

+ + + FIXEDPROTECTION

3 ǫ-MPPI CONSTRUCTION OVERVIEW

In this section, we present an overview for the computation

model of ǫ-MPPI construction.

The ǫ-MPPI construction can be modeled as a process

consisting two stages: a multi-source analytical computa-

tion and a randomized publication. Given privacy degree

{ǫk} and ground-truth information M , the multi-source

analytical computation produces a number of probability

values, denoted by {β}. Then the randomized publication

process leverages the probabilities to randomly add false

positives for publishing each owner’s local vector. To be

specific, given a β value for term tj or phrase rk , the

randomized process is essentially to flip the binary elements

in the local vector based on the following formula.

0 →

{

1, with probability β

0, otherwise

1 → 1 (2)

In this formula, the input value is from ground-truth

possession data M and the output is the published data

in M ′. When the input is 1 meaning that an owner does

possess the term or phrase, it is always published to be 1
in M ′. Here, this truthful publication rule can guarantee

a true positive owner is always included in a relevant

search result, thus ensuring a 100% search recall. When

the input is 0 meaning an owner does not possess the term,

it is flipped to be 1 with probability β. This untruthful

publication rule adds false positive owners in the published

PPI for obscuring the identities of true positive ones. Note

that the false positives, while preserving privacy, may cause

additional search cost and decrease search precision. We

illustrate the PPI publication framework in Figure 3, where

two false positives (i.e. the underlined number) are added

in the published PPI. For term t0, with β = 0.5, one out of

two negative owners (i.e. the two 0s in the first row in the

figure) are expected to be flipped to 1 as a false positive.

p0p1p2
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t1

t2

0 1 1

1 0 0

1 1 1

Terms

Owners
p3

0

0

1

Construct Index 

p0p1p2

t0

t1

t2

0 1 1

1 1 0

1 1 1

p3

1

0

1

Ground-truth 

index M PPI M’

β=0.5

β=0.33

β=0

Fig. 3: PPI publication with probability β’s

Single-term publication: Under this framework, the

key is the first stage, that is, to carry out the multi-

source analytics and compute β properly for the quality of

privacy preservation. We start with publishing the single-

terms individually. In this case, each β should be associated

with one term. It needs to compute β large enough to

make the expected number of flipped binary values (or

false positives) be bigger than the desired level of privacy

preservation, that is, ǫj ·m(1− σj). We have the following

equation:

ǫj =
(1− σj) · βb(tj)

(1 − σj) · βb(tj) + σj

⇒ βb(tj) = [(σ−1
j − 1)(ǫ−1

j − 1)]−1 (3)

More challenging is to handle the multi-term phrases.

We propose two paradigms for β computations for multiple

terms (§ 4): 1) a single term-oriented publication in which

we re-use the single-term publication process for the phrase

publication. Specifically, per-term β’s are produced by

the multi-source analytical process and different terms get

published independently in the randomized process, 2) a

phrase-wise publication in which per-phrase β’s are pro-

duced by the multi-source analytical process and different

terms are published in a correlated fashion. We further

propose two approaches under the single term-oriented

publication, called MaxE(§ 4.1.1) and ENLP(§ 4.1.3) re-

spectively. We propose one approach for the phrase-wise

publication, called IBeta(§ 4.2.1). Our ǫ-MPPI design is

also capable of handling new server joins, as elaborated in

our technical report [21].

We realize the computation framework securely over the

information network without mutual trusts (§ 5).

4 PUBLISHING ǫ-MPPI
Our ǫ-MPPI is designed to be configurable on a per-

phrase basis. Multi-term publication in ǫ-MPPI is built

upon the single-term publication. We proposed two gen-

eral approaches for such extensions: single term-oriented

publication and phrase-wise publication.

4.1 Single Term-Oriented Publication

For a single term-oriented publication, our idea is to reuse

the single term publication process in a multi-term context.

To be specific, we treat the single-term publication process

as a black box, and convert per-phrase privacy degree

ǫk to the per-term degree ǫ′j as the input to single-term

publication process. We propose two specific approaches

to convert the per-phrase ǫ to the per-term ǫ′.

4.1.1 MaxE: A Basic Heuristic

A basic heuristic to generate the per-term degree (ǫ′), which

we call MaxE, is to augment a term’s privacy degree to be

bigger than the privacy degrees of any private phrases that

cover the term. To be specific, given term tj and a set

of phrases that contains tj , say {rk}, the per-term privacy



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

degree, ǫ′j , is set to be the maximal among all the private

degrees, {ǫk}, as below:

ǫ′j = max
∀kk s.t. aj,kk=1

(ǫkk) (4)

For example, given terms t0 and t1, if the per-phrase privacy

degrees are ǫ0 = 0.4 for two-term phrase r0 = t1t0,

ǫ1 = 0.3 for single-term phrase t0 and ǫ2 = 0.5 for

single-term phrase t1, then using Equation 4 we have

ǫ′0 = max (ǫ1, ǫ0) = 0.4 and ǫ′1 = max (ǫ2, ǫ0) = 0.5.

The intuition behind MaxEis that when publishing on a

per-term basis, it can guarantee that both per-term privacy

and relevant per-phrase privacy are protected. We analyze

how well the MaxE approach preserves the multi-term

privacy. First, since the MaxE approach publishes multiple

terms independently, we have the following theorem.

Theorem 4.1: When terms are independently distributed

on owners, the single term-oriented publication can guar-

antee (statistically) that the false positive rate, that is,

1−Pr(Mk|M
′
k) for multi-term phrase rk , is as big as the

false positive rate of any single term in the phrase. That is,

1− Pr(Mk|M
′
k) ≥ max

∀j s.t. ak,j=1
(1− Pr(Mj |M

′
j)) (5)

Proof: The proof is based on mathematical induction. We
start with the base case where two terms, t0 and t1, are considered.
Since terms are independent, the frequency of the two-term
phrase, “t0t1”, is the multiplication of those of each term, that
is, σ(0,1) = σ0σ1. Terms are independently published and the
total false positives of phrase “t0t1” come from three sources,
and the number, denoted by F(0,1), is expected to be F(0,1) =
σ0(1−σ1)×β1+(1−σ0)σ1×β0+(1−σ0)(1−σ1)×β0β1, leading
to the multi-term false positive as below. Here we use fp(·) to
denote the false positive rate, such as, fpk = 1− Pr(Mk|M

′

k).

fp(0,1) =
F(0,1)

F(0,1) + σ0σ1

= 1−
1

1 + (σ−1
0 − 1)β0

·
1

1 + (σ−1
1 − 1)β1

(6)

In the single-term case, say term t0, given publishing probability
β0, false positive rate fp0 is expected to be,

fp0 = 1−
1

1 + (σ−1
0 − 1)β0

(7)

Similarly,

fp1 = 1−
1

1 + (σ−1
1 − 1)β1

(8)

Plugging Equation 7, 8 in Equation 6, it yields,

fp(0,1) = 1− (1− fp0)(1− fp1)

= fp1 + fp0(1− fp1) (9)

Since fp0, fp1 ∈ [0, 1], fp0(1 − fp1) ≥ 0 and fp(0,1) ≥ fp1.
By symmetry, fp(0,1) ≥ fp0, and thus, we have,

fp(0,1) ≥ max (fp0, fp1)

Now suppose it holds that fp(0,...,k−1) ≥ maxj=0,...,k−1 fpj .
Consider the case for fp(0,...,k). Publishing based on term
tk and phrase “t0 . . . tk−1” is similar to that based on t1
and t0. Thus by applying Equation 9, we have fp(0,...,k) =
(1 − fpk)fp(0,...,k−1) + fpk. It yields that fp(0,...,k) >
max (fp(0,...,k−1), fpk). Based on the inductive hypothesis,we
can get,

fp(0,...,k) ≥ max
j=0,...,k

fpj

Since the single-term publication guarantees that 1 −
Pr(Mj |M

′
j) ≥ ǫ′j . Thus by plugging Equation 4 in Equa-

tion 5, we have,

1− Pr(Mk|M
′
k) ≥ max

∀j s.t. ak,j=1
(1− Pr(Mj |M

′
j))

≥ max
∀j s.t. ak,j=1

(ǫ′j)

≥ max
∀j s.t. ak,j=1

(

max
∀kk s.t. aj,kk=1

(ǫkk)
)

≥ max
∀j s.t. ak,j=1

(

ǫk

)

= ǫk (10)

Note that the last step is due to that ak,j = 1. Equation 10

means that multi-term privacy degree can be guaranteed as

long as the single term privacy can be guaranteed and terms

are distributed independently.

4.1.2 Extending MaxE for Correlated Terms

In order to handle the case where terms are correlated in

distribution, we extend the MaxE protocol with additional

requirements. Here we mainly consider two terms, say t0
and t1; for phrases with more than two terms they can

be recursively broken down to multiple two-term phrases.

Given frequencies of two terms 4, δ0 and δ1, we require

that the publication probability β0 and β1 should follow:

β0

β1
=

δ0

δ1
(11)

β0 ≥
1

δ1

(

δ(0,1) −
(δ0 − δ(0,1))(δ1 − δ(0,1))

1− δ0 − δ1 + δ(0,1)

)

β1 ≥
1

δ0

(

δ(0,1) −
(δ0 − δ(0,1))(δ1 − δ(0,1))

1− δ0 − δ1 + δ(0,1)

)

(12)

We can have the following theorem to hold, with the

proof in our technical report [21].

Theorem 4.2: If publishing two terms t0 and t1 satisfies

conditions in Inequality set 12, then the actual false positive

rates of phrase t0t1 is statistically larger than those of t0
and t1, that is, fp(0,1) ≥ max (fp0, fp1).

With this property and Equation 15, we can have the per-

phrase false positive rate (e.g. fp(0,1)) to be statistically

larger than max ǫkk ≥ which is further larger than user-

configured per-phrase degree ǫ(0,1).

4.1.3 ENLP: A NLP-based Approach

The MaxE approach and its extension, essentially based

on heuristic, may blindly increase ǫ′j and excessively incur

additional search overhead, leading to sub-optimized per-

formance. We propose a second approach for single term-

oriented publication, ENLP. The idea is to rigorously model

the problem as an optimization problem and solve it to

minimize the additional search overhead under the privacy

constraints.

4. In ǫ-MPPI, the term frequency refers to the number of matching
providers in the network.
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t0

t1

True 

positives

Positives

Negatives

ε01-ε0

ε1

1-ε1

Fig. 4: True positives in

single term-oriented publi-

cations

To model the problem, we

start with a simple two-term

case. Consider two terms

t1, t0 are published sepa-

rately with ǫ′0 and ǫ′1. When

publishing term t0, it is ex-

pected that an ǫ′0 portion

of positive owners in the

published M ′ is false posi-

tive. Likewise when publish-

ing term t1, among all pos-

itive owners on term t1, an

ǫ′1 portion is false positive.

Because the true positive owners regarding two-term phrase

t1t0 are those that possess both terms. Thus the true positive

rate after publishing two terms t1t0 (assuming terms are

distributed independently) is (1− ǫ′0)(1− ǫ′1). We illustrate

the intuition in Figure 4, in which the gray area indicates

the (1− ǫ′0)(1− ǫ′1) portion. Given a two-term phrase, say

r3 = t1t0, we can formulate the following equation.

1− ǫ3 = (1− ǫ′0)(1 − ǫ′1) (13)

By generalizing Equation 13 to the multi-term case (with
more than 2 terms), one can naturally derive the following,

1− ǫ0 ≤ (1− ǫ
′

0)
a0,0 · (1− ǫ

′

1)
a0,1 . . . (1− ǫ

′

n−1)
a0,n−1 (14)

. . .

1− ǫk ≤ (1− ǫ
′

0)
ak,0 · (1− ǫ

′

1)
ak,1 . . . (1− ǫ

′

n−1)
ak,n−1

. . .

1− ǫl−1 ≤ (1− ǫ
′

0)
al−1,0 · (1− ǫ

′

1)
al−1,1 . . . (1− ǫ

′

n−1)
al−1,n−1

Here, recall that ak,j is either 0 or 1; when phrase rk does

not have term tj , ak,j = 0 and item (1−ǫ′k,j)
a
k,j = 1 which

does not contribute to 1− ǫk.

Given a number of multi-term searches, we model the

additional search cost approximately as below.

q0 · ǫ
′
0 + q1 · ǫ

′
1 + · · ·+ qn−1 · ǫ

′
n−1 (15)

Here, qj for term tj is the accumulated frequency that

term tj is involved in a search. For instance, if there are 2
searches on phrase t1t0 and 3 searches on phrase t0, then

q0 = 2+3 = 5. There are approximately qj ·ǫ
′
0 false positive

owners contacted for all the searches involving term tj .

Note that in Equation 15, we deliberately omit the potential

impact from phrase frequencies since they are sensitive and

entails expensive secure computations, as will be discussed

(§ 5). In this sense, our goal is to minimized Equation 15

under the privacy constraints as in Inequality set 14.
We formulate an optimization problem by using notations

yk = − ln (1− ǫk) and xj = − ln (1− ǫ′j). The problem is
stated as below.

Maximize q0 · e−x0 + q1 · e−x1 + · · · + qn−1 · e−xn−1 (16)

Subject to a0,0 · x0 + a0,1 · x1 + . . . + a0,n−1 · xn−1 ≤ y0

a1,0 · x0 + a1,1 · x1 + . . . + a1,n−1 · xn−1 ≤ y1

. . .

al−1,0 · x0 + al−1,1 · x1 + . . . + al−1,n−1 · xn−1 ≤ yl−1

∀k, j, ak,j = {0, 1}

The problem is a non-linear programming problem

(NLP), with linear constraints and a non-linear objective

function. Solving this problem can be based on existing

solvers (e.g. ILOG’s CPLEX or Mathematica). In our im-

plementation, we choose Mathematica’s primitive NMAX-

IMIZE to solve the problem. Note that in our design, the

problem does not involve any sensitive variables (e.g. ǫ is

non-private by itself) and can be realized by non-secure

computations.

4.2 Phrase-wise Publication

The single term-oriented publication may cause a sub-

optimized level of privacy preservation due to the igno-

rance of innate correlations between terms. We consider

another general approach, named phrase-wise publication,

in which the randomized publication is directly applied

at the granularity of multi-term phrases. To be specific,

β’s are calculated for all private phrases. For phrase rk
with preferred privacy degree ǫk, we can calculate the per-

phrase β′(rk) in a similar way to the single-term case. The

same three policies can apply; for example, if the basic

policy is used, the per-phrase βb(rk) can be calculated using

Equation 3.

(1− σ′
k)β

′(rk) = σ′
k

ǫk

1− ǫk
(17)

⇒ β′(rk) = [(σ′
k

−1
− 1)(ǫk

−1 − 1)]−1

Note that σ′
k denotes the frequency for phrase rk.

While the β computation can be similar to that in the

single-term case, the randomized publication process must

be changed; because unlike the single-term publication,

there could be overlaps between the publishing phrases

(different phrases could contain the same term). We propose

an iterative approach, named IBeta, for the randomized

publication of multi-term phrases.

4.2.1 IBeta: An Iterative Approach

We first formalize the problem that an owner publishes

a multi-term phrase (e.g. rk) with a single probability

(i.e. β′(rk)). Given phrase rk, the β′(rk) indicates the

probability at which a non-positive owner publishes data

as a positive owner. In a multi-term context, an owner

is positive when it possesses all terms of the phrase;

otherwise, it is non-positive. The publication process first

distinguishes between the positive and non-positive cases

for an owner, and then applies only for the non-positive

owners. For example, consider three phrases in a three-

term vocabulary, r0 = t0, r1 = t1t0 and r2 = t2t1. We

can have three per-phrase probabilities, β′(r0), β
′(r1) and

β′(r2). The intended publication process can be formalized

as below.

β′(r0) : · · 1 → · · 1

β′(r1) : ·11 → ·11

β′(r2) : 11· → 11·
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Here, each β′(rk) is associated with two states: a starting

state and an end state. We use the starting state to indicate

all possible non-positive cases for a publication. For exam-

ple, the starting state of the publication with β′(r1) is ·11,

which means any owners who do not possess term t1 and

t0 at the same time. Here · means either 0 or 1, and the line

above text means negation. For example, 11 = {00, 01, 10}.

To publish data with multiple probabilities for overlap-

ping phrases, we propose to use the IBeta approach.

Algorithm 1 illustrates how the index publication approach

iteratively runs, phrase by phrase. Given a series of private

phrases {rk}, the personal server would retrieve phrase

rk and its corresponding β′(rk) in a topologically sorted

order. To be specific, all the private phrases {rk|∀k} can

conceptually form a DAG (directed acyclic graph), in which

a node represents a phrase and a directed edge from node ra
to node rb represents the case that phrase rb has exactly one

term more than phrase ra. For example, phrase t2t1 points

to phrase t2t1t0. The DAG is topologically sorted and

outputs all the nodes rk’s with the corresponding β′(rk)’s
in order. For phrase rk and probability β′(rk), the owner

checks whether its current local vector matches with the

β′(rk)’s starting state. If matched, it proceeds to publish

the current local vector accordingly. This process completes

until it goes through all the β′(rk)’s.

Algorithm 1 iterative-publish(owner pi, set {β′(rk)})

1: for all k ∈ [0, l − 1] do ⊲ β′(rk) is topologically sorted
2: if match(cur memvec, getStartingState(rk)) then ⊲

cur memvec is the current membership vector
3: cur memvec←publish(cur memvec, β′(rk))
4: end if
5: end for

Example: We follow the previous example to il-

lustrate the iterative process. The three phrases, that is,

r0 = t0, r1 = t1t0, r2 = t2t1, can be represented by a

membership vector {a(0), a(1), a(2)} = {001, 011, 110}.

Topologically sorting the three phrases results in a possible

ordering, r0, r1, r2 or 001, 011, 110. Consider an owner

who possesses only term t1 needs to publish its local vector,

010. After receiving the term vector {r0 : β′(r0), r1 :
β′(r1), r2 : β′(r2)}, the owner considers each publishing

probability β′ in the topological order. In the first iteration,

it considers phrase r0 and probability β′(r0); since the

owner’s vector 010 matches the starting state of r0, that

is, · · 1, it then attempts to flip the value 0 at t0’s position

to 1 with probability β′(r0). Assume it has the luck and

successfully flips the value, which results in the vector

changed to 011 (from 010). The second iteration considers

β′(r1) whose starting state is ·11. It does not match the

current vector, 011. Then it moves on to the third phrase,

that is, r2 with probability β′(r2). Likewise, owner p1 can

determine that the current vector, 011, matches the starting

state, 11· . It then follows the protocol to flip vector 011
(potentially to 111) based on probability β′(r2). Assume

this time it does not have the luck and the final vector is

011.

Security property: Given the publishing process in

IBeta, multiple iterations could exist there to publish just

one term. For example, two phrases r0 and r1 both have

term t and IBeta will use two iterations for publishing

t. The publishing probabilities to flip the negative incident

binary for the two iterations are β(r0) and β(r1), then the

final publishing probability for term t would be:

β = β(r0) + (1− β(r0)) · β(r1) (18)

= β(r0) + β(r1)− β(r0) · β(r1)

≥ max (β(r0), β(r1))

Note the derivation is based on the fact that the second

iteration is only effective when the first iteration fails to flip

the binary. The property guarantees that the publication of

one term can meet the privacy requirements of all phrases

covering the term.

5 SECURE ǫ-MPPI CONSTRUCTION
The previous two sections describe the computation model

of publishing ǫ-MPPI, and in this section, we discuss

the realization of such computation in a secure way yet

without assuming any mutual trusts between servers. We

first introduce a general secure computation framework

primarily for single-term publication in ǫ-MPPI and then

describe the specific extension and optimization for the

multi-term publication.

The ǫ-MPPI construction takes input of the possession

data (or local vectors) sensitive to each server, and outputs

the obscured possession data (with proper amount of false

positives) to the ǫ-MPPI server. The construction of ǫ-MPPI

is then a three-stage process, as shown in Figure 5; the first

two stages correspond to the multi-source analytical com-

putation described before. The first stage runs a protocol

called AggSharedSum, which computes the sum of all

possession information. The output of AggSharedSum is

frequencies for terms and phrases. Due to the common-term

vulnerability discovered by our previous work [22], it calls

for protection of the frequency information. We thus design

the AggSharedSum protocol to distribute the shares of

sensitive frequency information to c servers which act as c

coordinators for the subsequent stages. These c coordinators

represent c disjoint groups of servers in the entire network,

and are assumed not to collude with each other. The next

stage is a generic MPC (multi-party computation) applied

among those non-colluding c coordinators. By reducing the

expensive MPC to be among c servers, we can achieve ef-

ficiency and make it possible for large-scale computations.

The MPC outputs βk’s and feeds them to the third stage

– the randomized publication. Here, the computed βk’s are

safe to be public and randomized publication is a parallel

computation process which happen independently on all the

servers. The details of this general computing framework

can be found in our previous work [22].

Our ǫ-MPPI construction is implemented as an extension

to the above computation framework. Such an extension

is realized at different stages depending on protocols, as

shown by red rectangles in Figure 5. For the single term-

oriented publication (including MaxE and ENLP), it is
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Fig. 5: Distributed computations in ǫ-MPPI construction

essentially a process to convert the per-phrase privacy

degree (ǫk) to the per-term privacy degree (ǫ′j). Such

conversion is realized as a non-secure computation before

the AggSharedSum. Because the goal of single-term

oriented protocol is to reuse the single-term publication,

AggSharedSum is configured to calculate frequencies

for terms. For phrase-wise publication (i.e. the IBeta

approach) the first two stages are configured for computing

per-phrase frequencies, and the randomized publication

runs the iterative IBeta process to publish the local

vectors.

5.1 Protocol Analysis

Complexity analysis: The complexity of ǫ-MPPI con-

struction is linear to the number of servers m (when the

parameter c is a constant). Because in our construction,

particularly in the AggSharedSum protocol, there are

fixed number of rounds, with each server in each round

sending/receiving constant messages (that is, c messages),

thus O(m ∗ c) messages in total.

Security property: We analyze the security property of

the AggSharedSum protocol. Basically AggSharedSum

is by itself a distributed secret sharing protocol; the output

c shares can protect information secrecy as described in

Theorem 5.1. The proof can be found in our technical

report [21].

Theorem 5.1: The AggSharedSum protocol is a (c, c)
secret sharing scheme of the sum of its inputs. Specifically,

AggSharedSum takes m (m ≫ c) inputs, vi = M(i, j),
and produces c outputs, {sii, ∀ii ∈ [0, c− 1]}. The outputs

are shares of the sum of the inputs with the following

properties.

• Recoverability: Given c output shares, the secret value

(i.e. the sum) can be easily reconstructed.

• Secrecy: Given any c− 1 or fewer output shares, one

can learn nothing about the secret value of the sum,

in the sense that the conditional distribution given

the known shares is identical to the prior distribution.

Formally, we have the equation below.

∀x ∈ Zq, P r(
∑

∀i

vi = x) = Pr(
∑

∀i

vi = x|V ⊂ {sii}))

where V is any proper subset of {sii}.

6 PRIVACY ANALYSIS
We analyze the privacy preservation of our proposed ǫ-

MPPI against attackers of different capabilities as consid-

ered in our threat model.

6.1 A: Knowing the public PPI (M ′)

Knowing the published ǫ-MPPI data M ′, the attacker can

not have a confidence higher than ǫk on a search of phrase

rk. We consider the single-term and multi-term cases. For

phrases of a single term tj , we compute β(tj) in such a

way that the false-positive rate in the published ǫ-MPPI

is larger than ǫj , thus achieving ǫ-PHRASE-PRIVACY. For

multi-term phrase publication, we enforce the property that

the per-phrase false-positive rate is always higher than the

per-term false positive rate as in the extended MaxE and

IBeta; recall Theorem 4.2 and Equation 19. Since we

set per-term false positive rate to be higher than any ǫk
where phrase rk covers the term, we can ensure that the

phrase publication also achieves ǫ-PHRASE-PRIVACY. It is

noteworthy that our ǫ-MPPI is fully resistant to repeated

attacks against the same term or phrase over time, because

our index is static; once published, the index and protection

level stays the same and unchanged.

6.2 B: Knowing some ground truth (M )

We follow our attack model (§ 2.2) and consider both

concrete attack cases, B.1) and B.2).

6.2.1 Case B.1

In this case, an attacker is able to verify accessible part

in the search result from ǫ-MPPI. Specifically, given the

search result on phrase rk, the attacker can see two types

of search results: 1. accessible true positive owners, who

possess accessible documents which are relevant to rk, 2.

uncertain owners, on whom all the documents accessible

to the searcher are irrelevant to rk. There are two actual

situations that could happen under case 2: 2.1, uncertain

true positive owners who actually have documents relevant

to rk, but such documents are not accessible to the searcher,

2.2, uncertain false positive owners, who do not have any

documents relevant to rk. The searcher can not distinguish

the two situations (i.e. 2.1 and 2.2), and this property

allows ǫ-MPPI to achieve even higher level of privacy

preservation, as can be seen in the following example.

Example: Consider a search result includes 3 true

positive servers and 2 false positive servers. We assume

among the 3 true positive servers one is inaccessible to the

owner, that is, case 2.1. If the searcher does not verify the

result from accessible servers (i.e. attack A), all she can

see is 5 servers in the result, leading to the false positive

rate being 2
5 . If the searcher verifies the result by accessible

servers (i.e. attack A and B.1), she can see two accessible

true positives, and the other three being uncertain servers

without distinguishing actual situations (i.e. being case 2.1

or 2.2). Therefore, the only true positive is hidden with the

two false positives, leading to a higher false positive rate
2
3 > 2

5 .
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TABLE 3: An attacker’s view with accessible ground truth

M

p0 p1 p2 p3 p4
Attacker’s view 1 ? 1 ? ?
Ground truth 1 1 1 0 0

6.2.2 Case B.2

In this case, the attacker can collude with server owners,

and thus is able to access all documents on the colluding

server. The attacker can distinguish case 2.1 and 2.2 (as

described above) if a result server is in collusion. Then

ǫ-MPPI loses control of achieving quantitative privacy

degree, which now also depends on the number of colluding

servers.

An effective attack strategy is that for a false positive

phrase rk on server pi, the attacker can target on phrase rk
on owners pj other than pi and with M ′(j, k) = 1. This

strategy improves the attack success ratio because it elimi-

nates false positives through colluding owners. This attack

makes the privacy protection dependent on the attacker’s

ability to form collusion, thus leaving our ǫ-MPPI’s privacy

degree at FIXEDPROTECTION.

Essentially in the attack, we use both M and M ′ infor-

mation, that is, combining attack B.2 and A. The attacker

can further improve the success ratio by exploiting phrase-

frequency information revealed in ǫ-MPPI construction (i.e.

attack A, B.2, C). For instance, the frequency and config-

ured sensitivity ǫ allow one to deduce the total amount of

false positives. If it happens that all the false positives are

on the colluding servers, the attacker can be 100% certain

that the true positives are on the non-colluding servers,

leaving privacy definitely leaked.

Although ǫ-MPPI can not provide a quantitative guar-

antee for the B.2 attack family, in practice the assumed

attack conditions rarely hold – the probability to form col-

lusion decreases exponentially with the number of colluding

servers. To prevent rare phrases with limited false positives

become vulnerable, we bound the minimal number of false

positives, that is, all phrases’ false positives must be larger

than a pre-configured threshold. This policy minimizes the

possibility for a colluding attack to succeed.

6.3 C: Knowing index construction

ǫ-MPPI construction consists of three main stages: the

AggSharedSum, MPC and the non-secure stage for ran-

domized publication. The information involved in the non-

secure computation is fully exposed without any protection.

In the following, we first analyze the first two secure

computation protocols and then the non-secure protocol.

For the secure-sum protocol, we consider the attacker

can collude with servers in the hope of gaining useful

information revealed in the ǫ-MPPI construction process

and exploiting it to her advantage. We use the semi-honest

model for the servers, as used in other MPC protocols [15].

In particular, the AggSharedSum protocol can guarantee:

1) (c− 1)-secrecy of the input: Based on the fact that each

secret input is decomposed to c shares and distributed to

c− 1 peer servers, it is easy to understand the c− 1 input

secrecy. With less than c servers in collusion, none of any

private input can be learned by any servers other than its

owner. 2) c-secrecy of the output: Based on Theorem 5.1,

the phrase/term frequency can only be reconstructed when

all c shares are used. With less than c shares, one can learn

nothing. The generic MPC technique can provide informa-

tion confidentiality against up to c colluding servers [16].

Overall, as long as the attacker does not collude with

more than c − 1 servers in the network, ǫ-MPPI can

protect privacy and guarantee information-theoretic security

in confidentiality.

The non-secure randomized publication takes β and

phrase frequencies as input. Here, β, calculated from the

second stage, does not carry any private information, and is

thus safe to be released to the untrusted servers. In addition,

only frequencies of non-common phrases are released while

those of common phrases which are sensitive are obscured

properly by the second-stage MPC process, thus privacy

preserved.

6.4 Co-occurrence attack

A co-occurrence attack is to exploit the co-occurrence

statistics of multiple terms in order to identify false posi-

tives, and further to identify the vulnerable true positives.

Considering a concrete scenario where 1) two terms are

with zero co-occurrence statistics, and 2) those two terms

do co-appear on one server (observed from public PPI data

M ′). Based on the two facts, the attacker can be sure that

at least one of the two terms is false positive on the server.

This essentially discloses linkage between two published

terms; if one can know (through certain channel) that one

term (e.g. t0) is true positive, then she can be sure that

the other term (e.g. t1) must be false positive too; this

information can be used to further identify the case of t1
on other servers.

Assume t0 has term frequency 1
m

; that is, t0 appears

only once on all servers. This information can be disclosed

through attack C. Also assume M ′ reveals (as in attack

A) that there are two servers where t0 appear to be (true

or false) positive. Given that t0’s co-occurrence with t1 is

zero and they do appear on one server p0, if the attacker

can access and know that t1 is true positive on p0 (e.g. as in

attack B.1), she can then infer that t1 must be true positive

on the other sever p1. By this means, private possession

information of t1 by p1 is disclosed.

In the case of co-occurrence attacks, ǫ-MPPI provides

privacy protection at degree FIXEDPROTECTION. In prac-

tice, it is a corner case for the co-occurrence attack to suc-

ceed, as it requires different information obtained through

combining multiple attack types (that is, Attacks A, B.1
and C) and relies on certain term distribution to happen

(that is, zero co-occurrence and small per-term frequency).

We anticipate the probability for the attack conditions to be

true is low, thus the amount of vulnerable phrases/terms is

small. Notice that the co-occurrence attack works only for

rare term/phrase with small frequency. In our protocol (as



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

mentioned before), we bound the minimal amount of false

positives, so that it essentially eliminates the co-occurrence

vulnerability on rare terms/phrases.

7 EXPERIMENTS
To evaluate the proposed ǫ-MPPI, we conducted two sets

of experiments: The first set evaluates the effectiveness

of ǫ-MPPI in quantitative privacy protection. The second

set evaluates the performance of our ǫ-MPPI construction

protocols. For realistic performance study, we have imple-

mented a functioning prototype for ǫ-MPPI construction.

7.1 Quality of Privacy Preservation

Experimental setup: To simulate the information net-

work, we used a distributed document dataset [23] of 2,500

- 25,000 small digital libraries, which is further derived

from NIST’s publicly available TREC-WT10g dataset [24].

To be specific, this dataset defines two tables, a “collection”

table and a query table. The collection table maintains

the mapping from the documents (each with a unique ID

defined in the TREC-WT10g dataset) to the collections.

Each collection is generated based on the document URLs

in the WT10g dataset and simulates a document set in

a digital library (as in the original work [23]). In our

setting, a collection is used to simulate a personal server.

The query table maintains a list of known item queries;

for each query, it keeps the mapping from a multi-term

phrase to a document. The query table and the collection

table collectively emulate matrix M . Table 4 summarizes

the multi-term queries available from the dataset with their

lengths and frequencies.

TABLE 4: Multi-term query distribution

NumberOfTerms NumberOfQueries Percentage

1 114,404 6.91%

2 658,870 39.79%

3 482,829 29.16%

4 375,201 22.66%

5 20,164 1.22%

6 4,297 0.26%

The dataset does not have privacy metric for the query

phrase. In our experiment, we randomly generate privacy

degrees (ǫ) in interval [0, 1].
To evaluate the effectiveness of privacy preservation,

we use two metrics: the publication success rate (pp) and

extra search cost. Recall that for a phrase, the success

rate measures the likelihood that the published PPI meets

the privacy requirement regarding the phrase. Here, we

consider the average success rate for all the private phrases.

We also use the extra search overhead, which is the number

of false positive owners that are “excessive” for privacy

preservation. For example, if 5 false positive servers suffice

to preserve the privacy and the actual constructed PPI

contains 7 false positives, then the excessive number is

7 − 5 = 2. This amount of false positive owners are

excessive and unnecessary as they do not contribute to

achieving the desired privacy preservation.

7.1.1 Non-grouping and Grouping PPI’s

Most existing PPI work is based on a grouping abstraction;

it clusters owners or personal servers into privacy groups in

resemblance to k-anonymity [25], so that different owners

in the same privacy group can not be distinguished from

each other. In this regards, our ǫ-MPPI is non-grouping

in nature. The experiments compare the non-grouping and

grouping approaches for PPI’s. We still use the metrics of

the success rate and extra search costs. In the experiment,

grouping PPI’s are tested under different group sizes. Given

a network of owners, we use the number of groups to

control the average group size. We test grouping PPI with

the Chernoff and IncExp policies under the default

setting. We set m = 10, 000. We run the experiments 20
times and report the averaged results.

We show the result with changing privacy degrees (ǫ),

which demonstrates that ǫ-MPPI can perform equally well

for both sensitive and non-sensitive terms (i.e. with large

and small values of ǫ). In Figure 6 we report the success rate

and the search costs under different privacy preservation

degrees. It can be clearly seen that the non-grouping ǫ-

MPPI can achieve much better quality of privacy preser-

vation than the grouping PPI. While the grouping PPI’s

with different configurations (in the group number) achieve

constant search costs at the expenses of unstable privacy

preservation levels (as in Figure 6b), the non-grouping

ǫ-MPPI can achieve high success rate that meets the

requirement (i.e. γ), in spite of different values of ǫ or

different frequencies. In particular, when ǫ grows large

in Figure 6a, the success rate of grouping PPI’s quickly

degrades to 0, rendering its privacy preservation quality

unacceptable. This stems from the grouping PPI’s design

that treats different terms and phrases in the same way.

This set of experiments shows that the privacy degree of

non-grouping ǫ-MPPI can be effectively tuned in practice,

implying the ease of configuration and more privacy control

exposed to applications.
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Fig. 6: Comparing non-grouping and grouping PPIs under ǫ

7.1.2 Effectiveness of preserving multi-term privacy

To evaluate the effectiveness of the multi-term privacy

preservation, we conducted experiments based on the pro-

posed publication approaches, including MaxE, ENLP and

IBeta. For comparison, we use a very straightforward

approach as the baseline, since existing PPI’s do not partic-

ularly address the multi-term privacy. In our baseline, we

ignore all the privacy constraints on multi-term phrases but
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Fig. 7: Privacy preservation of multi-term phrases

rather consider only those related to single-term phrases.

For fair comparison, we used the Chernoff policy for all

the multi-term publication approaches.

For each setting, we have run the experiments more

than 30 times and report the average results. Figure 7

summarizes our experimental results. In terms of the suc-

cess rate, Figure 7a shows the result of different ap-

proaches with phrases of different lengths (i.e. number

of terms in a phrase). As the phrase length increases,

the baseline approach’s success rate drops significantly,

which is expected. Because the baseline approach does

not take into account the privacy configuration of multi-

term phrases. By contrast, all our proposed approaches

are more stable with the changing phrase length. The

IBeta approach achieves the best success rate among

all three approaches; it is always close to the ideal case,

100%. This is due to that IBeta considers the case of

correlated terms and accordingly preserves the multi-term

privacy. By comparison, the other two approaches, MaxE

and ENLP, fluctuate and depart from the ideal case. The

main reason behind is that their success rate greatly depends

on the phrase and document distribution as they assume

independent term distribution in the computation models.

If there is not very strong correlation between servers, these

two approaches can achieve relatively high success rates.

Figure 7b shows the result for extra search cost. Despite the

baseline approach which performs worse than others, the

ENLP approach is the best; because it models the search

overhead and optimizes it using our NLP-based technique.

As expected, the extra search costs increase as the phrase

length grows.

7.2 Performance of Index Construction

Experimental setup: We evaluated the performance of

our distributed protocol for secure ǫ-MPPI construction.

We implemented a functioning prototype for a realistic

performance study. The MPC is implemented by Fair-

playMP [16]; the computation is realized in SFDL, a secure

function definition language exposed by FairplayMP, and is

compiled by the FairplayMP runtime to Java code, which

embodies the generated circuit for secure computations.

We implemented the AggSharedSum protocol in Java. In

particular, we use a third-party library named Netty [26] for

network communications and Google’s Protocol Buffer [27]

for object serialization. To solve the NLP problem as in the

ENLP approach we use Mathematica’s function NMAXI-

MIZE. We conducted experiments on a number of machines

in Emulab [28], [29], each equipped with a 2.4 GHz 64-

bit Quad Core Xeon processor and 12 GB RAM. In the

experiment, different numbers of machines are tested, from

3 to 9. For each experiment, the protocol is compiled to and

runs on the same number of parties; each party is mapped

to one dedicated physical machine. In the experiment we

configured c = 3.
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ferent index construction

approaches

We first tested the per-

formance of different index

construction approaches, in-

cluding MaxE, ENLP and

IBeta. We have measured

the execution time of our im-

plemented ǫ-MPPI construc-

tion protocol in a three-node

network. We varied the num-

ber of terms per phrase from

1 to 6 as in Table 4. The

execution time is reported in

Figure 8. Basically, the IBeta approach is the most

consuming and the time increases exponentially with the

number of terms (or linearly with the number of phrases).

This is due to that the IBeta approach makes per-phrase

use of generic MPC, which is more expensive than the per-

term use (there are more phrases than terms). In the ENLP

approach, the execution time also increases exponentially,

largely caused by the NLP computation. However, as the

NLP is carried out by a non-secure computation on a cen-

tralized party, it is much less dominant in the overall com-

putation, which makes the ENLP approach more efficient

than the IBeta approach. The most efficient approach

is MaxE, whose execution time increases slowly with the

number of terms. Because the per-phrase computation is

mainly caused by Equation 4, which is lightweight.
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Fig. 9: Scalability of index construction protocol
To verify our design standpoint that MPC is expen-

sive, we compare our approach with a baseline approach

based on the pure use of MPC. The pure MPC approach

the generic MPC on all servers and for all computa-

tions of β, without the MPC-reduction technique used in

AggSharedSum. In addition to the pure MPC approach,

we implemented MaxE and IBeta. The metric used in

the experiment is an end-to-end execution time, which

measures the time duration from when the protocol starts to

run to when the last machine in our cluster reports to finish.

The result is shown in Figure 9a. It can be seen that the pure
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MPC approach generally incurs longer execution time than

the ǫ-MPPI approach: As the network grows large, while

the execution time of pure MPC approach increases super-

linearly, that of the ǫ-MPPI approaches increases slowly.

This difference is due to that the MPC computation in our

ǫ-MPPI approach is fixed to c parties where c ≪ m so that

the execution time almost does not change with the number

of servers.

For experiments with a larger number of parties or

servers, we use the compiled circuit size of the protocol

as the (emulated) metric. The circuit size determines the

preprocessing time (or the compile time) of the protocol

and its execution time5 in a real run. By this means, we

can show the scalability result of up to 60 parties as in

Figure 9b. The similar performance improvement can be

observed except that the circuit size grows linear with the

number of parties involved.

8 RELATED WORK
8.1 Secure Indexing on Untrusted Servers

PPI is designed to index access controlled contents scattered

across multiple personal servers. Since it is hosted on an

untrusted server, the PPI aims at preserving the content

privacy of all participant servers. Inspired by the privacy

definition of k-anonymity [25], existing PPI work [9], [11],

[10] follows the grouping-based construction; it organizes

servers into disjoint privacy groups, such that servers from

the same group are indistinguishable to the searchers. To

construct such an index, existing approaches [9], [11], [2]

assume servers are willing to disclose their private local in-

dexes, which is unfortunately an unrealistic assumption in a

network lack of mutual trusts between servers. SS-PPI [10]

is proposed with resistance against colluding attacks. While

most existing grouping PPI utilizes a randomized approach

to form groups, its weakness is studied in SS-PPI but

without a viable solution. Though the group size can be

used to configure grouping-based PPI, it lacks per-term

concerns and quantitative privacy guarantees. Moreover,

organizing servers in groups usually leads to query broad-

casting (e.g, with positive servers scattered in all groups),

rendering the search inefficient. By contrast, ǫ-MPPI and

our previous work [22] are based on a brand new PPI

abstraction without the use of grouping; it can provide

quantitative privacy control on a per-phrase basis. Unlike

the PPI scheme, which is designed to be hosted on untrusted

servers, Zerber [30] assumes partial trusts on the hosting

server; Zerber decomposes the index structure along with

authentication keys into shares and stores them on an array

of hosting servers which are assumed not to collude. This

scheme however comes with non-negligible performance

penalty for data and query serving; instead of contacting

one PPI server, Zerber has to contact multiple servers in

order to perform a meaningful search, which deteriorates

the search performance. In addition, Zerber indexes at the

document level and assumes a fixed and small number of

5. Detailed correlation between circuit size and execution time can be
found in the experiment study in FairplayMP [16].

servers in the network, while our ǫ-MPPI indexes at the

provider/server level and assumes a large number of servers

in the network. Our previous work [22] focuses on the

single-term phrase protection.

Another related area is data indexing in P2P net-

works [31], [32], [33]. Those P2P indices are built on

top of Distributed Hash Tables (or DHT) and distributed

to multiple peers/nodes in DHT. While our ǫ-MPPI is

currently assumed to be served on a centralized entity, it

is straightforward to extend ǫ-MPPI’s architecture to P2P

index serving; ǫ-MPPI can be served as a P2P index if a

DHT structure can be imposed on the information network

which achieves better load balancing and scalability.

8.2 Privacy Definitions for Anonymization

Publishing public-use data about individuals without re-

vealing sensitive information has received a lot of re-

search attentions in the last decade. Various privacy def-

initions have been proposed and gained popularity, in-

cluding k-anonymity [25], l-diversity [34], and differential

privacy [35]. In particular, in a k-anonymized dataset, each

record is indistinguishable from at least k−1 other records.

This idea is applied in the PPI setting; most existing PPI

uses the grouping notion to make servers k-anonymized

in the public-use PPI. We propose a non-grouping ǫ-

MPPI which demonstrates the promise for better quality

of privacy preservation. ǫ-MPPI utilizes a new privacy

definition, ǫ-PHRASE-PRIVACY, to particularly address the

privacy with multi-term document searches. The most rel-

evant privacy definition to our ǫ-PHRASE-PRIVACY degree

is r-confidentiality [30] which also addresses the privacy

preservation of a PPI system for public use. However, r-

confidentiality does not particularly consider the case of

multi-term phrases.

9 CONCLUSION

In this paper, we propose ǫ-MPPI for multi-term phrase

publication with quantitative privacy control in emerging

information networks. We propose several practical ap-

proaches for the secure construction of an ǫ-MPPI system

in an environment without mutual trusts, while being able

to provide the multi-term privacy. For practical performance

of secure computations, we propose an MPC-reduction

technique based on the efficient use of secret sharing

schemes. We also discovered a common-term vulnerabil-

ity and proposed a term-mixing solution. Through both

simulation-based and real experiments, we show the ad-

vantage of ǫ-MPPI in terms of privacy preservation quality

and construction efficiency.
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