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Abstract

In this paper, we study the problem of indexing multi-
dimensional data in the P2P networks based on distributed
hash tables (DHTs). We identify several design issues and
propose a novel over-DHT indexing scheme called m-
LIGHT. To preserve data locality, m-LIGHT employs a
clever naming mechanism that gracefully maps the index
tree into the underlying DHT so that it achieves efficient
index maintenance and query processing. Moreover, m-
LIGHT leverages a new data-aware index splitting strategy
to achieve optimal load balance among peer nodes. We
conduct an extensive performance evaluation for m-LIGHT.
Compared to the state-of-the-art indexing schemes, m-
LIGHT substantially saves the index maintenance overhead,
achieves a more balanced load distribution, and improves
the range query performance in both bandwidth consump-
tion and response latency.

1. Introduction

Distributed Hash Table (DHT) provides a scalable,
load balanced, and robust substrate in building large-scale
distributed applications. Several DHT overlays, such as
Chord [1], CAN [2], and Pastry [3], have been proposed.
Although these DHTs employ different overlay topologies,
they share a generic put/get/lookup interface. Specifically,
given a key, the DHT-lookup locates the peer storing the
key, and the DHT-put/DHT-get transfers the associated data
item to/from the peer located by the DHT-lookup.

Whereas simple lookup operations can be efficiently ex-
ecuted over DHTs, they lack support for complex queries
such as range queries and similarity queries, which are
however popular in many P2P applications (e.g., “finding
the songs that are rated above 4 and published during 2007
and 2008”). The reason is that data locality, which is crucial
to processing such complex queries, is destroyed by uniform
hashing employed in DHTs.

In the literature, there are two indexing approaches to
support complex queries in P2P systems: 1) over-DHT
indexing paradigm which builds an add-on index module
over generic DHTs (e.g., PHT [4] and DST [5]); 2) DHT-
dependent indexing paradigm which modifies the internal
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structures of underlying DHTs or develops novel locality-
preserved overlays (e.g., Skip graphs [6] and BATON [7]).
Although the over-DHT indexing approach is generally less
efficient in query performance than the DHT-dependent
indexing approach, it excels in many other aspects such as
simplicity of deployment/implementation/maintenance and
inherited load balancing [4], [8], [9], [5]. These issues
could be particularly important in practice, for example, if
one wants to deploy P2P applications in the world-wide
OpenDHT project [10].

In the paper, we study the problem of how to efficiently
support multi-dimensional range queries in existing DHT-
based P2P systems and thus advocate the over-DHT indexing
paradigm. We propose a novel over-DHT index called m-
LIGHT (multi-dimensional Lightweight Hash Tree over a
DHT). Particularly, we investigate the following problems:
1) how to map a tree-based index into the underlying DHT
to better support distributed query processing; and 2) how
to perform index maintenance to better balance the loads of
peer nodes. We consider multi-dimensional data and employ
a space-partition based kd-tree to index data [8], [4], [11].
To distribute the kd-tree over a DHT, we propose a tree-
decomposition strategy that enlarges the local view on each
peer yet requires no extra maintenance overhead. We further
propose a novel multi-dimensional naming mechanism to
gracefully map the decomposed tree into the DHT. The
naming mechanism possesses several nice properties that
lead to high efficiency in both index maintenance and query
processing. The contributions of our study are summarized
as follows.

« We propose m-LIGHT, a multi-dimensional data index-

ing scheme over DHTs, to address both query efficiency
and maintenance efficiency. Specifically, we propose a
tree-decomposition strategy and a novel naming mech-
anism to map the kd-tree into the DHT.

« We propose a data-aware splitting strategy for generic
over-DHT indexing schemes, which achieves the opti-
mal balance of data storage on peer nodes.

« We develop several efficient algorithms for lookup
operations and range queries over DHTs.

« We conduct extensive experiments to evaluate m-
LIGHT. Compared with the state-of-the-art over-DHT
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indexing schemes, including PHT [4] and DST [5],
m-LIGHT substantially saves maintenance overhead,
achieves more balanced load distribution, and improves
range query performance in both bandwidth and re-
sponse latency.

The rest of this paper proceeds as follows. Section 2
surveys related work. Section 3 presents the m-LIGHT index
structure. How to update the m-LIGHT index is explained in
Section 4, followed by a description of its lookup operation
in Section 5. Section 6 presents the algorithms for processing
range queries based on the m-LIGHT index. Section 7 exper-
imentally evaluates the performance of m-LIGHT. Finally,
Section 8 concludes this paper.

2. Related Work

Efficient processing of multi-dimensional queries in DHT-
based P2P system has been an important yet challeng-
ing problem. In this section, we first survey the existing
over-DHT indexing schemes, and then review the multi-
dimensional indexing techniques, both in a P2P context.

2.1. Over-DHT Indexing

A variety of over-DHT indexing schemes have recently
been proposed to support complex queries in P2P systems.
Most of them focus on range queries. Prefix Hash Trie
(PHT) [4] is the first over-DHT indexing scheme. To perform
an exact-match query (or the lookup operation), PHT starts
the search from an internal node of the index tree and thus
avoids the single-root bottleneck. Internal nodes in PHT
do not hold data and serve as routing nodes only. Thus,
processing range queries in PHT always needs to traverse
down to leaf nodes. An observation here is that if one can fill
internal nodes with data, there is no need to traverse down to
leaf nodes, thereby accelerating query processing. Following
this observation, Distributed Segment Tree (DST) [5] and
Range Search Tree (RST) [9] have been proposed. To fill
internal nodes, they both replicate the data records of a leaf
node at all its ancestors. To process a range query, they
decompose the range into several disjoint subranges, each
maintained by an internal node. Since each such internal
node can be located by a single DHT-lookup, the query can
be efficiently resolved in O(1) time. However, the replication
strategy could harm the index maintenance efficiency, that is,
the insert/delete/update overhead is significantly increased.
In contrast, our previous work, LHT [12], fills internal
nodes with data by an elegant mapping mechanism and
achieves high query efficiency without compromising the
index maintenance efficiency. Nevertheless, LHT can deal
with one-dimensional data only. Also, the load balancing
issue is not well addressed in LHT. As a non-trivial exten-
sion, m-LIGHT employs a novel multi-dimensional naming
mechanism to index multi-dimensional data. Moreover, a
data-aware index splitting strategy is proposed in m-LIGHT
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to address the load imbalance problem aggravated by multi-
dimensional space partitioning.

2.2. Multi-dimensional Query Processing

In the presence of various one-dimensional P2P indexes,
there are generally three solutions to processing multi-
dimensional queries. The first is to employ multiple inde-
pendent indexes with each indexing one attribute/dimension.
Mercury [13] uses a multiple-ring structure (equivalently,
multi-Chord), and processes range queries across the mul-
tiple indexes in parallel. This solution typically amplifies
the index maintenance overhead and query bandwidth. The
second solution is SFC indexing, which uses the Space
Filling Curve to reduce dimensionality and indexes data
by one-dimensional P2P indexes [4], [14], [15]. Specifi-
cally, PHT [4] applies SFC indexing over generic DHTs,
while SCRAP [15] and Squid [14] apply SFC indexing
to Skip graphs and Chord overlay, respectively. But the
problem in SFC indexing is that the neighborhood in a
multi-dimensional space is not well preserved in the one-
dimensional SFC space, thus deteriorating query efficiency.
The last solution is to directly develop multi-dimensional
indexes, which conventional multi-dimensional indexes (e.g.,
kd-tree) are used to index data and mapped into P2P net-
works. MURK [15] and SkipIndex [16] both extend the one-
dimensional Skip graphs by incorporating the kd-tree index.
VBI-Tree [17] is a general framework that aims to map any
tree-based multidimensional index into BATON. However,
these two schemes are only applicable to some specific P2P
networks. Distributed Quad-Tree [18] and DST [19] super-
impose the quad-tree over DHTs and respectively support
spatial queries and multi-dimensional range/cover queries.
Instead of employing the quad-tree, our proposed m-LIGHT
superimposes the kd-tree over DHTs. Compared to the
quad-tree, the kd-tree is more flexible in space partitioning
and attains better load balance. Furthermore, the kd-tree is
essentially a binary tree, which, as will be seen, is suitable
for incremental maintenance of m-LIGHT.

3. m-LIGHT Indexing Scheme

In this section, we describe the m-LIGHT index structure
and its mapping strategy to the underlying DHT.

3.1. Overview

Consider a set of data records. Each record has a data key
(denoted by ¢), which is represented by a multi-dimensional
vector § =<1, 09, -+ , 0, >. Without loss of generality, we
assume that each 0; (1 < ¢ < m) is a real number in interval
[0, 1].

To assign data records in the underlying DHT space, each
record needs a DHT key (denoted by x). Given a DHT key
K, the record is mapped to the peer whose identifier is less
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than but closest to hash(k). One can simply set the data
key as the DHT key, which however destroys data locality
and impedes effective range query processing. Instead, m-
LIGHT uses a novel method to generate DHT keys that
preserve data locality. First, data keys are clustered in a
space kd-tree, which is then decomposed into a set of
distributed data structures, called leaf buckets. After that, a
DHT key is generated for each leaf bucket by an innovative
m-dimensional naming function such that neighboring index
nodes can be easily located in distributed query processing
and minimal maintenance is required for data updates. In
what follows, we detail each of these procedures.

3.2. Indexing in Space Kd-Tree

YA o110 101111

10101

1110 | 1111

10100 | 10110

100 110

001

000

#10101

#1011101#101111

(b) Space kd-tree decomposition

0 1 X
(a) Space partitioning

Figure 1: Space kd-tree

In order to index multi-dimensional data, we recursively
partition the data space into cells along different dimensions
in an alternative fashion. As shown in Fig. 1a, the 2D space
is recursively halved along the = and y axes, alternatively,
until a cell contains no more than 6,,;;; data records. Space
partitioning is used here, that is, a data space is always
equally partitioned, regardless of the data distribution. This
space partitioning approach renders the local space indexed
by each node to be known globally, which is essential to
support distributed query processing. The index is called
space kd-tree, as shown in Fig. 1b; every internal node has
two children and the tree has two roots. The additional root,
termed as virtual root, is a virtual node above the ordinary
one. Thus, the number of leaf nodes equals the number
of non-leaf nodes. As will be discussed later, this property
enables us to name each leaf node with a distinct internal
node.

Every tree node is tagged with a label. In particular,
the virtual root is labelled with 0...0 (m consecutive 0’s,
where m is the data dimensionality) and the ordinary root
is labelled with 0...01, denoted by # (i.e., # = 0...01).
Every tree edge is also tagged — if the edge goes left, it
is labelled with 0; otherwise, 1. Then, the label of each
internal node or leaf node can be obtained by concatenating
all labels on the path from the virtual root to the node itself,
as illustrated in Fig. 1b.
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3.3. Index Decomposition

To materialize the tree in a distributed setting, we de-
compose the space kd-tree and store each piece in a leaf
bucket. Conceptually, we decompose the global index tree
into local trees, each of which is associated with a distinct
leaf. The local tree of a leaf consists of all its ancestors. For
example, Fig. 1b illustrates two local trees of leaves #01
and #101111. With our node labelling strategy, each local
tree can be encoded in the corresponding leaf label \: the
label of each ancestor is a prefix of A, and the sibling of an
ancestor (called branch node) can be found by a modified
prefix of A with the ending bit inverted (i.e., 0 to 1, or 1
to 0). Thus, in a leaf bucket, we store two components: the
label store which maintains label A and summaries the local
tree information, and record store which keeps all related
data records. Now that the space kd-tree is decomposed into
leaf buckets, the remaining issue is how to map them to the
peers, which is achieved by an innovative naming function.

3.4. m-Dimensional Naming Function

For a leaf bucket labelled as ), the m-dimensional naming
function f,,q(-) generates its DHT key &, i.e., K = fina()).
The bucket is then stored in the DHT peer that is responsible
for hash(fma(A)). In this section, we first present the
naming function for 2D indexing, and then extend it to m-
dimensional indexing.

#101 .

#1011 R :
fa(#101111) 4900 4001 #100_ 5
=#101 A
410111 ; #1111
S 00
Jq #10101
#101111 #101110#101111

(a) Naming function (b) Bijective mapping from leaves to internal

nodes

Figure 2: Naming the space kd-tree in m-LIGHT

3.4.1. Naming for 2D Indexing.

Definition 1 (2D-naming function): In a 2D space kd-
tree, for the binary label of any leaf, A = by - --b;_2b;_1b;,
where b; = [0[1],7 = 1,--- ,i, the 2D-naming function is
recursively defined as follows:

faa(by -+ -bi—2bi—1)
by - -bi—abiq

if bj_o = by,
otherwise.

Jaa(b1 -+ -bi—2bi—1b;) = {

Specifically, given a binary string A = by -+ - b;_2b;_1b;,
f2a(+) checks its last bit b; and the third last bit b;,_o. If
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they are the same, the last bit is truncated and this pro-
cedure is repeated. Otherwise, the procedure is terminated
after truncating the last bit. Thus, fa4(A\) always produces
a prefix of \. For example, foq(#0101111) = #0101,
f2a(#0011111) = #001, and foq(#101111) = #101. In
particular, faq(#) = f24(001) = 00. Intuitively, this naming
function maps a leaf node to the lowest ancestor that is not
aligned with the leaf node in terms of the quadrant position.
For example, as shown in Fig. 2a, leaf node #101111
lies in the top-right quadrant of its grandparent. The direct
parent, node #10111, also lies in the top-right quadrant
of its own grandparent, so does node #1011. Thus, the
naming function passes all these ancestors, until the ancestor
#101 is found, which is in the top-left quadrant of its own
grandparent.

The naming function f24(-) has several interesting prop-
erties, which are described in the following theorems.'

Theorem 1 (Corner preservation): Given an internal
node w whose corresponding data region has four corner
cells, these cells are named to foq(w),w,w0 and wl, re-
spectively.

Theorem 1 implies that given w, the names of its four
corner cells can be directly inferred, which is especially
useful for processing of distributed range queries (since it
helps to quickly locate the range boundaries).

Theorem 2 (Bijective mapping): fo4(-) is a Dbijective
mapping from A to €, where A and Q2 denote the leaf node
set and the internal node set, respectively.

Fig. 2b shows the intuition for Theorem 2. This theorem
guarantees that for each DHT key (i.e., the label of an
internal node), there is one and only one leaf named to it,
implying the storage load is balanced.

3.4.2. Scale up to m-dimensional Indexing.
Definition 2 (m-dimensional naming function): Given

a space kd-tree, for any leaf label A = by - - b;_p, - - - b;—1b;,
where b; = [0[1],7 = 1,--- , i, the m-dimensional naming
function is recursively defined by
fma(N) = fma(br - bi—m - bi_1b;)
J fma(br by biy) A by = by,
bbb otherwise.

Theorem 3 (m-dimensional corner preservation): In
the m-dimensional index tree, given any internal node w
whose corresponding data cube has 2" corner cells, these
cells are named to fpq4(w),w,w0,wl, w00,w01,---, and
wll-- -1, respectively.

Theorem 4 (m-dimensional bijective mapping):
fma(:) is a bijective mapping from A to 2, where A
and ) denote the leaf node set and the internal node set,
respectively.

1. Due to space limitations, all theorem proofs are omitted in this paper,
and can be found in our technical report [20].
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In the rest of this paper, for simplicity our discussions
are based on a 2D space. Nevertheless, all the algorithms
presented can be extended to an m-dimensional space in a
natural way.

4. Index Tree Maintenance

In this section, we discuss how m-LIGHT adjusts its
structure along with data insertions and deletions.We first
consider the conventional threshold-based splitting strategy
and show that m-LIGHT can achieve incremental tree main-
tenance. After that, we propose a data-aware index splitting
strategy which offers optimal load balance among peers.

4.1. Incremental Tree Maintenance

In the conventional threshold-based splitting strategy, two
thresholds, namely 0,pi5¢ and 0,epge, are predefined for leaf
split and merge. After a data insertion, if the number of
records stored in the leaf bucket gets higher than 0y, a
split process is triggered. Similarly, after a data deletion,
if a pair of sibling leaf buckets is found containing less
than 60,,crg. data records, a leaf merge is then triggered.
For split/merge consistency, Op,erge is set smaller than 04
(€.8., Omerge = Ospiit/2). Before introducing the split/merge
process, we present a property of our 2D-naming function.

Theorem 5 (Incremental split): Consider a leaf bucket A
that is split into two child nodes, A0 and Al. The naming
function fo,4(-) maps one child to fo4(A), and the other to
A

The split process proceeds as follows. The splitting bucket
A is first divided into two buckets locally. Then, it conducts
a DHT-put operation to re-assign the bucket named to A in
the underlying DHT space. For the one named to foq()), it
is mapped to the same peer as does bucket A and incurs no
transfer. Similarly, to merge a pair of leaf buckets, only one
bucket needs to be transferred across the DHT. This nice
property, termed as incremental tree maintenance, typically
reduces the cost by half for both the number of DHT-lookups
and the amount of transferred data.

4.2. Data-aware Splitting Strategy

We observe that the threshold-based splitting strategy may
generate empty leaf buckets, since the space-based partition
employed the kd-tree does not take into account the local
data distribution. In this section, we propose a data-aware
index splitting strategy which achieves optimal load balance
among peer nodes.

The data-aware splitting strategy requires a predefined
parameter e, which indicates the expected load (rather than
the upper/lower bound) in terms of the number of data
records stored on each bucket. Generally, this strategy aims
at minimizing the difference between the real load and the
expected load (i.e., €). When a bucket receives a new data
record, it locally computes a virtual subtree rooted at this
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bucket, called optimal split subtree, which minimizes the to-
tal difference for all leaves. Specifically, for a leaf bucket, the
difference is (I — €)2, where [ is the number of data records
stored on the bucket. For example, in Fig. 3a, each point
represents a data record (or a data key) in the data space, and
€ = 2. The optimal split subtree (shown in the bottom part)
contains three leaves (or data cells), and the total difference
is (2—¢€)%2+(2—¢€)?+(0—¢)? = 4. This value is minimized;
for instance, if the upper-left cell is further split into two
leaves (respectively containing one data point), the total
difference would be (1—¢)?+(1—€)?+(2—€)?+(0—¢)? = 6,
which is larger than the previous one, 4. To find out the
minimized total difference, a naive solution is to apply the
brutal-force search to try all possibilities, which is time-
consuming. Instead, we use a divide-and-conquer approach,
as shown in Algorithm 1 — it first computes the minimized
total difference for the left child, and then for the right child.
The process is recursively invoked until the cell containing
no more than e data points is reached (line 2). When the
computation is done, we compare the minimized value with
the current difference (i.e., the one for the current bucket
without splitting). If the minimized value is smaller, the
current bucket is split according to the optimal split subtree;
otherwise, it stays unchanged. Note that the algorithm runs
locally and is invoked whenever the bucket load changes
(due to data insertions/deletions).

Algorithm 1 local-split(leaf bucket \)

i Siocal — (M.load — 6)2

2: if A.load < € then

3: return Sjocqi.

4: else

5:  Sieft < local-split(A.leftChild())

6 Sright <— local-split(A.rightChild())
7 Snon_local < Sleft + Sright

8: if si0cal < Snon_local then
9.

0

1

return Sj;ocqi.
else

10:
1 return Syon_iocal-

o n o [
[] n L] »
- 2
(4-5)"=4 (5-5°=9
Local Local
@calculation calculation
[] " = []
L] " [] n
(2-°+ (2-g)*+
(2-6)+ " (2-6)+
(0-2)°=4 To spliti (I-g)°=1
. o split into
® Not to split 3 buckets

(a) Before insertion (b) After insertion
Figure 3: An example for data-aware splitting (¢ = 2).

An example. As shown in Fig. 3a, the leaf bucket initially
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contains 4 data points. Given € = 2, the initial difference
value is (4 — €)? = 4. It then locally computes the optimal
split subtree, which partitions the space into 3 cells, which
contain 2, 2, and 0 data points, respectively. The minimized
difference becomes (2 —¢€)? 4 (2— €)% + (0 —€)? = 4. Since
this difference value actually equals the initial one, the split
process would not be triggered. Now suppose that a new
data point (0.2, 0.2) is inserted (see Fig. 3b). In this case,
the initial difference value will be updated to (5 — €)% = 9,
and the minimized difference value will be (2 —€)? + (2 —
€)2 + (1 — €)? = 1. Therefore, the minimized difference is
smaller and, hence, the leaf bucket is split into 3 buckets,
corresponding to the 3 cells shown in the bottom part of
Figure 3b.

The following theorem shows that the proposed data-
aware splitting strategy can achieve optimal peer load bal-
ance.

Theorem 6 (Optimal balance): For a given data set and
an expected number of buckets, the data-aware index split-
ting strategy minimizes the variance of expected load on all
DHT peers.

5. Lookup Operation

Given a data key &, the m-LIGHT lookup operation”
returns the label of the leaf bucket that covers §, namely
A(6). The lookup operation is fundamental for supporting
many other m-LIGHT operations, including exact-match
queries, data insertions/deletions and range queries.

To conduct a lookup operation for §, a peer first locally
calculates the set of all possible values of A(J), called the
candidate set. For example, given § =<0.2,0.4>, the binary
representations of 0.2 and 0.4 are 001--- and 011---,
respectively. These two binary numbers are then interleaved
as 001011---, and the target label A\(<0.2,0.4>) must
be a prefix of #001011.--. For example, in Fig. la,
A(<0.2,0.4>) = #001. Furthermore, we assume that the
maximum possible height of the index tree is known in
advance, denoted by D, which can can be estimated by
apriori knowledge or by probing certain values before query
processing [8], [11]. Thus, the target label A(J) has a length
in the range from 3 to D + 3 (recall that root label # has
3 bits). As such, the lookup problem becomes how to find
the target label from a candidate set of D + 1 labels, each
being a distinct prefix of the longest label.

To efficiently resolve the lookup problem, m-LIGHT
employs a binary search procedure. Specifically, in each loop
iteration, the algorithm first obtains a label with length being
the middle value of a binary-search interval, and then applies
the naming function to this label to get a DHT key and
probe the corresponding peer/bucket. The lookup process is
illustrated by the following example.

2. In this paper, we refer to “m-LIGHT lookup” as “lookup” for short,
and as a distinction, “DHT-lookup” retains its full name.
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An example. Consider a lookup of <0.3,0.9> with D =
20. As shown in Fig. 1, the target bucket is cell #101110.
Note that the longest candidate label of <0.3,0.9> is
#10111000011110000111. The m-LIGHT lookup algo-
rithm first probes the prefix of half length, #1011100001,
and performs a DHT-lookup for foq(#1011100001) =
#101110000. It returns a NU L L value and the upper search
bound is decreased to #101110000. The next probe is
f2a(#10111) = #101. The returned bucket is #101111,
which does not contain <0.3,0.9>. Note that this probe has
also examined candidate label #1011, since it is also named
to #101. The next probe is foq(#101110) = #0111, which
reaches the target #101110.

6. Range Queries

In a multi-dimensional space, a range query specifies a
multi-dimensional region and returns all data keys falling
in that region. In this section, we present the range query
algorithm over the m-LIGHT index, where the queried
region can be of an arbitrary shape.

Consider a queried range R issued by some user. The
peer node where the query is received from the user, called
the query initiator, first locally figures out the lowest internal
node that fully covers R (a.k.a., the lowest common ancestor
(LCA) of R). The algorithm then proceeds to forward the
range query to the LCA. Specifically, the query initiator
carries out a DHT-lookup of foq(LC A), which must reach
one corner cell of the region associated with the LCA, as
shown in Theorem 1. Upon receiving the range query, the
corner cell constructs a local tree based on its leaf label.
Among all branch nodes in the local tree, there exist one
or more whose regions overlap the queried range. Denote
these branch nodes by (i, 32, -+ and [y, respectively. For
each (3;, the range query is decomposed into the subrange
R;, which is the overlapped region between 3; and R, that
is, R; = 3; N R. Then, R; is forwarded to (3; via a DHT-
lookup of foq4(/3;). Note that there is no overlap between R;
and R; due to the space partitioning approach employed in
m-LIGHT. Hence, the subqueries R; (i = 1,2,--- ,k) can
be processed in parallel and there is no redundant bucket
visit. For further forwarding in each f3;, a similar process
is recursively applied until the current R is fully covered
in one cell. Algorithms 2 and 3 formally describe the range
query processing.

Algorithm 2 range-query(range R)

1: wgr < lowest-common-ancestor(R)
2: A «— DHT-lookup(fma(wr))
3: if A== NULL then
4:  return lookup(R.top_left corner)
5: else if R C A then
6:  return \

7. else

8 return recursive-forward(R, wgr)

Algorithm 3 recursive-forward(range R, region [3)

1: A < DHT-lookup(fma(53))

2: for all 3; € {branch nodes between A and 3} do
3: R, — 06:NR

4 if Ry # NULL then

5 recursive-forward(R;, (3;)

7] Accessed bucket

o ]

f2a(#10)
- - Queried range

N
- f4#10100)  f59(#1011)

1110 1111
10100 10110

110 | I |

10101  |tot110|

f2q(#100)

100

001 ( i
01
000 =

(#10110)

(a) Exemplar queried range (b) Query processing

Figure 4: Range query processing

An example. Suppose that the queried range is a rectangle
R bounded by [0.1,0.3] in the 2 dimension and [0.6,0.8] in
the y dimension, and that the indexed space in the current
m-LIGHT is as shown in Fig. 4a. The peer receiving R
computes the LCA being #10 and forwards the query to
the DHT key foq(#10) = #1. It is the cell with label
#10101 that is named to #1, so is the one forwarded
to. Based on the local tree of #10101, the queried range
is decomposed into three subranges, which are forwarded
to foq(#10100), foq(#1011) and fo4(#100), respectively,
as illustrated in Fig. 4b. The subranges in #10100 and
#100 are fully covered in the next peers. For the sub-
range in #1011, the next peer is the cell #101111 (note
f2a(#101111) = foq(#1011)), which does not cover the
subrange. The query is then forwarded to foq(#10110),
which covers the subrange and the process is terminated.
The whole querying process consumes four DHT-lookups (in
bandwidth) and three rounds of DHT-lookups (in latency).

We further develop a parallel version of range query
processing. The idea is to forward h subqueries (h >= 2)
within a branch node in each step (if h = 1, the parallel
query processing will be degraded to the basic algorithm
as previously described). By query parallelization, this pro-
cessing strategy reduces latency by a factor of i + 1, while
incurring more bandwidth as a trade-off. In practice, the user
can tune the parameter of h based on his/her performance
preference.

7. Performance Evaluation

This section presents the results of performance evalua-
tion. Note that m-LIGHT is a multi-dimensional over-DHT
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index. Thus, we compare it with the state-of-the-art schemes
in the same category, i.e., PHT [4] and DST [5], [19]. The
performance metrics of our interest are index maintenance
overhead, load balance and query cost.

7.1. Experiment Setup

We have implemented the m-LIGHT index in Java. The
total number of code lines is about 2500 (including m-
LIGHT, DST and PHT), which demonstrates the simplicity
of developing an over-DHT indexing scheme. In the experi-
ments, m-LIGHT, DST, and PHT were run over the Bamboo
DHT [21], a ring-like DHT that has good robustness and is
now deployed in a real-life project, OpenDHT [10]. Our
experiments were conducted on a system built in a LAN
environment which runs more than one hundred logical
peers.

We used a real dataset® that contains 123,593 postal
addresses (points) in three metropolitan areas of New York,
Philadelphia and Boston. Along each dimension, we normal-
ized the data points into the range [0, 1]. In the experiments,
we inserted these data points progressively into the index,
and tested the performance under different dataset sizes.

7.2. Maintenance Performance

The first experiment evaluates the index maintenance
performance when data are progressively inserted. Recall
that data insertion in m-LIGHT involves two operations: a
lookup and a possible leaf bucket split. Both of these two
operations incur system costs, and in this experiment, we
report these costs as a whole. We take two measures, i.e., the
DHT-lookup cost and the data-movement cost. The results
are shown in Figs. 5a and 5b. For all three indexing schemes
under comparison, the cumulative maintenance costs go up
linearly as data are inserted. We also vary the threshold
Ospis¢ and report the evaluation results in Figs. 5c and 5d. In
general, both of the DHT-lookup cost and data-movement
cost are insensitive to the value of 65y, except that DST
incurs less data-movement cost when 6y,;; is smaller. This
is because in this case, the internal nodes in DST easily get
saturated, and many data records are not replicated at these
nodes, thereby decreasing the data-movement cost. Compar-
ing the three indexing schemes, due to data replication, DST
is worse than the other two by an order of magnitude; m-
LIGHT achieves the best performance in all cases tested and
saves about 40% maintenance cost against PHT.

7.3. Effect of Data-aware Splitting

We now evaluate the effect of the data-aware splitting
strategy in terms of load balance. We use two measures,
i.e., the variance of storage on each peer and the percentage

3. http://www.rtreeportal.org/datasets/spatial/US/NE.zip
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of the empty buckets. We compare it with the threshold-
based splitting, which is commonly used in many existing
P2P indexes. We set € and 0,,;; respectively at 70 and 100,
in which case the two trees under comparison are of the
same size. The results are shown in Fig. 6. It can be seen
that by the data-aware splitting strategy, the load variance is
decreased by 15%, and empty buckets are reduced by 35%.

7.4. Range Query Performance
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We evaluate the range query performance in terms of
bandwidth cost and response latency. The two measures used
are the number of DHT-lookups and the rounds of DHT-
lookups. In evaluation, we include both the basic algorithm
and the parallel algorithm for range query processing in m-
LIGHT. For the parallel algorithm, we test two versions, with
the parameter of lookahead steps being 2 and 4, respectively.
We compare the three m-LIGHT query algorithms together
with PHT and DST. In the experiments, the queried ranges
are rectangles uniformly distributed in the data space of
[0...1,0...1]. We first vary the range span (i.e., the area
of the rectangle) and report the results in Figs. 7a and
7b. In terms of bandwidth cost (Fig. 7a), DST consumes
much more than any other scheme, typically by an order of
magnitude. This is partly because in our setting, D=28; this
is larger than the real tree depth, rendering the queried range
to be decomposed into many small subranges in DST. In
contrast, m-LIGHT (basic) is most bandwidth-efficient. The
m-LIGHT (parallel-2) and m-LIGHT (parallel-4) consume
more in bandwidth, but as a trade-off, they achieve a
significant saving in query latency (see Fig. 7b). DST is
time-efficient when the query range is small. However, as
the query range increases, the latency of DST dramatically
increases, whereas the other schemes are more stable.

In summary, the proposed m-LIGHT is more flexible
and outperforms PHT and DST in terms of both index
maintenance and query processing. Moreover, m-LIGHT
(parallel) trades bandwidth efficiency for significant saving
in query latency.

8. Conclusion

This paper has proposed m-LIGHT, a low-maintenance
yet query-efficient multi-dimensional index structure over
DHTs. Three core techniques contribute to the efficiency
of m-LIGHT: a tree-decomposition strategy, a novel nam-
ing mechanism and a data-aware index splitting strategy.
Experimental results based on a real dataset show that m-
LIGHT outperforms the state-of-the-art schemes in various
aspects, including maintenance efficiency, load balance and
range query performance. As an over-DHT indexing scheme,
m-LIGHT is adaptable to any DHT substrate, and is easy
to implement and deploy.
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