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Abstract

DHT is a widely-used building block in P2P systems,
and complex queries are gaining popularity in P2P appli-
cations. To support efficient query processing over DHTs,
effective indexing structures are essential. Recently, a num-
ber of indexing schemes have been proposed. However,
these schemes have focused on improving query efficiency,
and as a trade-off, sacrificed maintenance efficiency — an
important performance measure in the P2P context, where
frequent data updating and high peer dynamism are typi-
cally incurred. In this paper, we propose LHT, a Low main-
tenance Hash Tree, for efficient data indexing over DHTs.
LHT employs a novel naming function and a tree summa-
rization strategy to gracefully distribute its index structure.
It is adaptable to any DHT substrates, and is easy to be
implemented and deployed. Experiments show that in com-
parison with the state-of-the-art indexing technique, LHT
saves up to 75% (at least 50%) maintenance cost, and
achieves better performance for exact-match queries and
range queries.

1 Introduction

Distributed Hash Table (DHT) is a widely-used building
block in Peer-to-Peer (P2P) systems. DHTs employ con-
sistent hashes [14] to map both data and peers to an iden-
tifier space, on which the overlay is established. Based
on different overlays, various DHT substrates have been
proposed, such as Chord [22], CAN [17], Pastry [20] and
Tapestry [23]. DHTs have several outstanding advantages:
1) Scalability and efficiency. In a typical DHT of N peers,
the lookup latency is O(log N) hops with each peer main-
taining only O(log N) “neighbors”; 2) Robustness. DHTs
are resistant to node failures that are common in large-scale
P2P networks; 3) Load balance. Due to uniform hashes,
storage load balance in DHTs can be easily achieved.

But we may have too much of a good thing — basic

DHTs do not support complex query processing. Because
complex queries typically require preservation of data lo-
cality, which however is destroyed by the uniform hashes
in DHTs. As a result, semantically proximate data may not
be stored closely, and various complex queries, like range
queries can not be efficiently supported. However, complex
queries are highly desired and actually gaining popularity
in many P2P applications. For example, users of a P2P file
sharing system may want to “find all MP3 files published
between Jan. 1, 2007 and now”, which actually demands a
range query. So, the popularity of complex queries poses an
urgent need for DHT-based indexing schemes.

Generally speaking, to design an indexing structure,
query efficiency comes as the first priority. But in P2P net-
works, maintenance efficiency also turns out to be a critical
factor. Because peers frequently join/leave the networks,
which incurs a large amount of data insertion/deletion. As
a result, P2P systems have to invest a lot maintenance cost
for adjusting their index structures. This problem, however,
has not be effectively resolved in the existing P2P indexing
schemes. Instead, they focused on improving query effi-
ciency, and as a trade-off, sacrificed maintenance efficiency.
More specifically, in a P2P network, each peer maintains
a local view of global index structure. To achieve better
query performance, a possible way is to augment the local
view and let each peer know more about the global indexing
tree. For example, in Prefix Hash Trie (PHT) [16, 4], each
leaf knows its neighboring leaves. In Distributed Segment
Tree (DST) [24], each tree node knows how many items
are indexed by its left/right child. The Range Search Tree
(RST) [9] goes to extreme, which gives each tree node the
entire knowledge of global index tree. When updating the
global tree, a node splitting can cause a broadcasting to all
tree nodes, incurring extremely high bandwidth cost. An-
other reason for maintenance inefficiency of existing index-
ing schemes is that their index structures are not gracefully
distributed over DHTs. As a result, although better query
performance is achieved, the holistic performance (with re-
spect to both query processing and indices maintenance)
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gets no improvement.
Based on this observation, in this paper we propose LHT,

a Low maintenance Hash Tree for data indexing in DHT
based P2P systems. LHT requires no modification of the
underlying DHTs and can be easily adapted to any DHT
substrate. There are two novelties in LHT: a naming func-
tion that gracefully distributes the index structure over the
underlying DHT, and a local tree summarization strategy
that offers each peer a local view of the index tree, and
requires no extra maintenance. LHT can efficiently sup-
port different complex queries, including range queries and
min/max queries etc.

In summary, contributions of this paper are as follows.

• LHT — A low maintenance indexing scheme over
DHTs is proposed. To best of our knowledge, this
is the first work explicitly addressing the need of low
maintenance cost in over-DHT indexing schemes.

• Algorithms for exact-match queries, range queries and
min/max queries on LHT are developed.

• A cost model for quantifying indexing maintenance
cost is given, which is applicable to LHT and other
over-DHT indexing schemes.

• Extensive experiments are conducted to evaluate LHT
performance. In comparison with PHT, a state-of-the-
art indexing scheme with respect to maintenance effi-
ciency, LHT can save up to 75% (and at least 50%)
overhead, and achieve better query performance.

The rest of the paper is organized as follows. Section 2
surveys the related work. Section 3 presents the LHT index
structure. Section 4 describes how LHT distributedly grows
with data insertion. Section 5, 6, 7 respectively present
the algorithms of LHT operations of lookup, range query
and min/max query. Section 8 analyzes LHT maintenance
cost. Section 9 describes experimental results. Section 10
concludes this paper.

2 Related Work

In recent years, a number of P2P indexing schemes have
been proposed, which largely fall into two categories: DHT
based and non-DHT based.

DHT-based indexing schemes, termed over-DHT
paradigm, are built as an incremental module over DHTs.
These schemes rely only on the “put/get” interface of
generic DHTs, and can be easily adapted to various DHT
substrates. As a typical DHT-based indexing structure,
PHT [16, 4] uses a trie structure to index one dimen-
sional discrete data. For efficient query processing, PHT
maintains B+ tree links between neighboring leaves.

Distributed Segment Tree (DST) [24] supports efficient
range queries and cover queries. It replicates data keys
across all ancestors of a leaf, and leverages parallel lookups
to reduce query latency. Due to replication, data insertion
in DST is inefficient. RST [9] follows a similar philosophy:
it replicates data to all ancestors, and the tree structural
information to all tree nodes. With index tree globally
known, RST achieves one-hop exact-match query and effi-
cient range query, but at the expense of high maintenance
cost. A single leaf splitting could lead to a broadcasting
to all nodes, which is quite inefficient and unscalable in
P2P networks. With a similar tree maintenance to RST,
DKDT [10] embeds the k-d tree to support similarity
search over DHTs. PRISM [21] employs reference vectors
to generate DHT keys for multi-dimensional objects and
supports similarity search over DHTs. Chen et al. [5]
presented a framework for range indexing and discussed
various strategies for mapping tree-based index structures
onto DHTs.

An alternative of data indexing with DHTs is to replace
the uniform hash with LSH, the Locality Sensitive Hash.
Thanks to LSH’s locality preservation, some DHTs can di-
rectly index data on overlays and support efficient range
query processing [8, 15]. Unlike over-DHT schemes, these
schemes usually rely on a specific overlay and can not en-
joy a wide deployment. Gupta et al. [11] applied LSH to
mapping ranges to a DHT, which provides approximate an-
swers to range queries. LSH-Forest [2] eliminates LSH’s
data-dependent parameters and is applied to P2P systems.
In contrast to traditional DHTs, DHTs with LSH have to
sacrifice their load balance.

The non-DHT based indexing schemes, termed
substrate-dependent paradigm, make no use of DHTs and
design their own substrates based on various data structures.
Skip graph [1] is a distributed range queryable structure
based on skip lists. BATON [12] is an overlay organized
as a balanced binary tree. VBI-Tree [13] is a framework
that aims at mapping any existing index tree onto BATON.
It indexes multi-dimensional data and supports range
queries and KNN queries. PTree [6] and PRing [7] are
distributed B-trees on P2P networks. Mercury [3] uses a
hierarchical ring structure to index multi-dimensional data.
The substrate-dependant schemes provide efficient query
processing, but rely on specific substrates, which weakens
their adaptability. And designing such indexing schemes
should deal with some low level issues, which complicates
the design and implementation process. For example, they
need a non-trivial extension for peer load balance.

3 The LHT Index Structure

In this section, we describe the LHT index structure and
the method of mapping LHT to the underlying DHT.
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Figure 1: LHT Indexing Architecture

3.1 Data Model and System Architecture

In LHT, a data unit is called a record and each record
is identified by a distinct value, called data key δ. For ex-
ample, in a P2P database, a tuple can be seen as a record,
and any candidate key could be its data key. Basic LHT
deals with one dimensional data1, i.e., the data key δ is a
numerical value in an interval. Without loss of generality,
we assume that δ is a real value falling in [0, 1].

To assign records to the underlying DHT, each data
record has an additional key, named DHT key κ. Given a
DHT key κ, the corresponding record is mapped to a DHT
peer whose identifier is closest to but smaller than hash(κ),
i.e., the one responsible for hash(κ). In the raw DHT
(where no indexing scheme is deployed), κ simply equals
δ; while in LHT, for preserving data locality, there exists a
data-to-DHT transform from δ to κ. In Fig. 1, the LHT in-
dexing architecture illustrates how the data-to-DHT trans-
form works. First, LHT employs a space partition tree to
index data. Then, with this tree distributed and summarized
in a data structure called leaf bucket, LHT leverages a novel
naming function to map leaf buckets to the underlying DHT.

3.2 Space Partition Tree

We start from a centralized viewpoint: LHT has an in-
dex structure, called space partition tree (or partition tree
for short). Fig. 2 illustrates how the space partition tree in-
dexes data. The bottom histogram represents data distribu-
tion, and the shape of partition is well adapted to it. Essen-
tially, the space partition tree is a binary tree with following
structural properties:

1One dimensional index structure can serve as an infrastructure for
multi dimensional indexing (e.g., by using SFC [4]).
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Figure 2: An example of space partition tree

• (Double-root) Space partition tree has two roots. The
additional root, termed virtual root, is a virtual node
above the regular one.

• (Fullness) Each tree node, except the virtual root, has
0 or 2 children, i.e., all internal nodes have 2 chil-
dren. This property and the double-root feature to-
gether guarantee that the number of leaf nodes equals
the number of internal nodes.

• (Record storage) Data records are stored only in leaf
nodes, and each leaf can store at most θsplit records.
θsplit is a pre-set threshold for leaf splitting: when the
number of records in one leaf exceeds θsplit, the leaf
splits; and whenever an internal node’s subtree con-
tains less than θsplit records, all leaves in this subtree
are merged into one node.

• (Space partition strategy) To index data, the tree parti-
tions data space continuously. Specifically, each leaf
indexes an interval. When splitting a leaf, the par-
tition point is the interval’s median, which is unre-
lated to data distribution. For example, in Fig. 2 the
partition point of the root is always 1

2 (the median of
[0, 1]), even when data keys are not evenly distributed
between [0, 1

2 ) and [12 , 1). This space partition strategy
makes each tree node’s interval globally known, which
is essential in distributed system.

Each node in the tree is given a unique label. The virtual
root is labeled with a special character, say “#” in this pa-
per. Each edge is labeled with a binary number, 0 for the
edge connecting to the left child, and 1 otherwise. As a spe-
cial case, the edge between the virtual root and the regular
root is labeled with 0. And for any tree node, its label is
the concatenation of binary numbers in the path from the
node to the virtual root. We proceed to define the notation
for describing the partition tree: λ denotes the label of a leaf
node, and ω denotes the label of an internal node; Λ denotes
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the set of all leaves’ labels, i.e., Λ = {λ}; and similarly Ω
denotes the set of all internal nodes’ labels, i.e., Ω = {ω}.

3.3 Local Tree Summarization

To materialize the partition tree, we need only to map
leaf nodes to the underlying DHT. Note that all internal
nodes are empty and only leaf nodes store data; and the raw
leaf nodes lack the knowledge of the tree structure, which as
we will see, is critical to distributed query processing. We
propose a distributed data structure, termed leaf bucket, to
store data records and summarize the partition tree’s struc-
tural information.

Each leaf bucket corresponds to a distinct leaf node. As
illustrated in Fig. 3a, one bucket consists of two fields: leaf
label that maintains its label λ, and record store that con-
tains all related data records. For each bucket, the label λ
provides a local view of the partition tree, which is called
local tree. As shown in Fig. 3b, the local tree of leaf #0100
consists of all of its ancestors and the related branch nodes
around these ancestors. The label of any node in the local
tree can be inferred directly from λ, because each ancestor’s
label is a prefix of λ; and each branch node has its label con-
sisting of two parts: a prefix of λ and a “0” (or “1”) as its
final bit. Due to the tree’s fullness, every branch node must
exist, and holds a subtree called neighboring tree, as rep-
resented by the dotted triangles in Fig. 3b. The depth of a
neighboring tree is unknown from the current local tree, but
it may be inferred from some other leaf’s local tree.

In a global viewpoint, the union of all local trees guar-
antees the partition tree’s integrity. In other words, the leaf
labels (buckets) together summarize the tree’s structural in-
formation. Since leaf buckets cover the knowledge of par-
tition tree, we map each bucket as an atomic unit into the
underlying DHT.
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#0000 #0001

#001

#01010

#0100

#01100
#01101

n
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Figure 4: Naming function in LHT

3.4 Naming Function

For a bucket with label λ, the naming function fn gener-
ates its DHT key, i.e., κ = fn(λ). fn is defined as below.

Definition 1. For any leaf label λ ∈ Λ, the naming func-
tion is

fn(λ) =




p0 if λ = p011∗,

p1 if λ = p100∗,

# if λ = #00∗.

where p = #0[0|1]∗ or #2. That is, if λ ends up with 0,
the naming function fn truncates all consecutive 0s from
λ’s end. Otherwise, it truncates the consecutive 1s. For
example, fn(#01100) = #011, fn(#01011) = #010.

From a tree’s perspective, each λ represents a leaf node,
and interestingly, each fn(λ) represents a distinct internal
node. Fig. 4 depicts such a mechanism, in which each leaf
bucket λ is “named” to an internal node fn(λ) by a dot-
ted arrow, like fn(#01111) = #0. This nice property is
originated from the double-root and fullness of the partition
tree. Recall that Λ and Ω represent the sets of labels of in-
ternal nodes and leaves, respectively, we have the following
theorem.

Theorem 1. fn is a bijective mapping from Λ to Ω.

Proof. We first prove that fn is indeed a mapping from Λ
to Ω, and then prove that fn is bijective.

For ∀λ ∈ Λ, fn(λ) is a prefix of λ. By the labeling strat-
egy, λ’s any prefix represents an ancestor of the correspond-
ing leaf, and thus represents an internal node. Therefore, fn

is a mapping from Λ to Ω.
As for the bijection, we prove a more concrete proposi-

tion that “for ∀ω ∈ Ω, there is one and only one λ mapped
to it”. For ∀ω ∈ Ω, there are two cases: ω ends up with 0
(i.e., ω = ω′0), or with 0̂ (i.e. ω = ω′1 or ω = #). For the

2Here we use the regular expression: [0|1] means 0 or 1, and * means
repeating any time (including 0 time).
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first case, the leaf that is mapped to ω must have a label as
ω11∗, because fn(ω11∗) = fn(ω′011∗) = ω′0 = ω. By
the labeling strategy, for a specific ω, there is one and only
one leaf in Λ labeled as ω11∗, i.e., the rightmost leaf in the
subtree rooted at ω. Therefore, the proposition holds true
for the first case. For the second case, it is the leaf as ω00∗
that is mapped to ω, because fn(ω00∗) = fn(ω′0̂11∗) =
ω′0̂ = ω. Here, the special case of the virtual root, i.e.,
ω = # is considered. Since there is one and only one leaf
in Λ labeled as ω00∗ (i.e., the leftmost leaf in the subtree
rooted at ω), the proposition holds true for the second case.
Altogether, fn is a bijective mapping from Λ to Ω.

Note that fn(λ) serves as the DHT key, Theorem 1 im-
plies that the naming function actually organizes the inter-
nal structure of partition tree in the DHT key space.

4 Incremental Tree Growth

In the previous section, we describe the static mapping of
LHT over DHTs. In this section, we introduce how LHT dy-
namically grows with data insertion. After data is inserted
into LHT (the process of data insertion will be elaborated
in Section 5), some leaf buckets may get saturated and then
split. Each splitting produces two new leaf buckets. Among
them, one stays on the current peer, denoted as local leaf,
while the other, denoted as remote leaf is pushed out to an-
other peer. We call this process incremental tree growth.
Some part of a splitted leaf remains unchanged during tree
growth. This is due to a nice property of the naming func-
tion, described in the following theorem.

Theorem 2. If a leaf λ is splitted into two nodes, λ0 and
λ1, the naming function will maps one node to fn(λ), and
the other to λ.

Proof. First consider the case that λ ends with 1. That is,
λ = p011∗. The naming function maps it to fn(λ) =
fn(p011∗) = p0. Now, the leaf λ splits into two nodes,
λ0 and λ1. And the naming function maps them to,{

fn(λ0) = fn(p011 ∗ 0) = p011∗ = λ

fn(λ1) = fn(p011 ∗ 1) = p0 = fn(λ)

For the second case, λ ends up with 0. We have λ =
p100∗ or λ = #00∗, for short, λ = p0̂00∗. The naming
function maps it to fn(λ) = fn(p0̂00∗) = p0̂. After λ’s
split, the naming function maps new leaf buckets to,{

fn(λ0) = fn(p0̂00 ∗ 0) = p0̂ = fn(λ)
fn(λ1) = fn(p0̂00 ∗ 1) = p0̂0∗ = λ

Theorem 2 directly leads to incremental tree growth. By
LHT’s mapping strategy, the original leaf bucket λ is as-
signed to the DHT peer with regard to hash(fn(λ)). After
splitting, one leaf bucket is still named to fn(λ), and thus
remains on the same peer. This bucket is the local leaf. The
other leaf bucket that is named to λ, is the remote leaf.

Algorithm 1 Leaf split(leaf bucket b)
1: λ← b.leaflabel
2: if λ = p011∗ then
3: rb.leaflabel← λ0
4: /*rb is the remote leaf bucket*/
5: b.leaflabel← λ1
6: else
7: rb.leaflabel← λ1
8: b.leaflabel← λ0
9: Assign corresponding records to rb and delete them in b.

10: Write b back to the local disk.
11: DHT-put(λ, rb)

Algorithm 1 describes how the leaf bucket λ splits in a
distributed fashion. The function leafsplit(b) is triggered
whenever a bucket b contains more than θsplit records. It
checks the value of current leaf label λ, and accordingly
updates the labels, for b and the remote leaf bucket rb (lines
1–8). It then reassigns records between b and rb (line 9).
After updating b in the local disk, the algorithm conducts
a DHT-put to put rb to other peer (line 11). During the
whole process, the algorithm uses only local knowledge and
consumes one DHT-lookup (in DHT-put). Updating the leaf
label and thus the local tree, requires no extra DHT-lookup.

5 LHT Lookup

For a data key δ, LHT lookup3 returns the leaf bucket
with label λ(δ), i.e., the bucket which covers δ. As a real
number, the key δ can be converted into a binary string, long
enough that any possible λ(δ) must be a prefix of it. For ex-
ample, if we know in advance4, that the possible maximum
length of λ is 6, λ(0.4) must be a prefix of the binary string
#00110 (with length 6). Here, #0 is the root prefix, and
0110 is the binary number of 0.4. In Fig. 2, λ(0.4) = #001.
Note that λ’s maximum length equals the LHT maximum
depth plus 1. We denote this depth as D, the binary string
as µ(δ,D), and the set of all µ(δ,D)’s prefixes as Γ(δ,D)
or shortly Γ(µ). So we have,

λ(δ) ∈ Γ(δ,D)

Note that Γ(δ,D) consists of prefixes of lengths from 2 to
D + 1.

3In this paper, we may refer to LHT lookup as “lookup” for short, and
for clarity the DHT-lookup always remains its full name.

4As in PHT, this priori knowledge can be obtained by estimating the
size and the distribution of the data set indexed.
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In order to find λ(δ) in Γ(δ,D), LHT conducts a binary
search, as illustrated in Algorithm 2. It initiates an interval
for candidate prefix length between 2 and D + 1 (line 2).
In each loop, it tries the median of the interval(line 4), and
conducts a DHT-get for the corresponding name (line 6). If
the DHT-get is failed, meaning that current prefix x is too
long, it shortens the longer bound (line 9). Note that all pre-
fixes between fn(x) and x are named to fn(x). There is
no need to try any of these prefixes again, and the longer
bound is set to fn(x). If the returned bucket covers δ, the
algorithm returns the bucket name fn(x) (line 12). Other-
wise (line 15), x itself represents an internal node in LHT
and the shorter bound is reset to fnn(x, µ), as defined blow.

Definition 2. For ∀x ∈ Γ(µ), the nextnaming function
fnn(x, µ) is,

fnn(x, µ) =

{
q1 if x = p0 ∗ 0, q = x0∗ and µ = q1[0|1]∗,

q0 if x = p1 ∗ 1, q = x1∗ and µ = q0[0|1]∗.

Note that x must be a prefix of µ. The next naming function
finds the first bit that lies right of x and is not x’s ending bit.
For example, fnn(#0011,#0011100) = #001110.

The prefixes between x and fnn(x, µ) share the same
name, fn(x). For example, fnn(#0011,#0011100) =
#001110, and fn(#00111) = #00 = fn(#0011). They
must be named to the same DHT key, and thus there is no
need to try them twice.

Algorithm 2 LHT-lookup(data key δ)
1: µ←binary-convert(δ)
2: shorter← 2, longer←D + 1
3: while shorter ≤ longer do
4: mid←(shorter+longer)/2
5: x← µ.prefix(mid)
6: bucket← DHT-get(fn(x))
7: if bucket=NULL then
8: /*a failed DHT-get*/
9: longer←fn(x).length

10: else if bucket contains δ then
11: /*the target leaf bucket*/
12: return fn(x)
13: else
14: /*an internal node*/
15: shorter← fnn(x,µ).length
16: return NULL

An example Consider a lookup of 0.9 with D = 14.
Suppose LHT is as in Fig. 2 and the target bucket is leaf
#01110. Note that µ(0.9, 14) = #01110011001100. LHT
first tries the the prefix of middle length, i.e., #0111001,
and conducts a DHT-lookup for fn(#0111001) =
#011100. It returns failure and next try is fn(#011) = #0.
The returned bucket is #01111 which does not contain 0.9.
In this case, the shorter bound is reset to the length of

...
k

k

2

2

(l) 1

1

Lower
bound l

Upper
bound u

(a) Local tree of λ and the recursive
forwarding

(b) An example

Figure 5: Range query processing

fnn(#011,#01110011001100) = #01110. (note that the
#0111 is also named to #0 and need not try again.) The
next try is #01110, which reaches the target.

Complexity We measure the number of DHT-lookups as
the complexity, and here DHT-lookup is only incurred in
DHT-get. Note that each DHT-get (in line 6) corresponds
to a distinct fn(x), that is an element in fn(Γ). Since the
cardinality of fn(Γ) is approximately D

2 , the complexity of
an LHT lookup operation is log(‖fn(Γ(δ,D))‖) ≈ log(D

2 )
DHT lookups. Frankly speaking, our binary search strategy
is largely inspired by PHT. However PHT’s binary search
is simply on Γ and the complexity can be as high as log D.
The saving ratio of LHT lookup is 1

log D .

Data Insertion and Exact-match Queries LHT lookup
can be directly applied to the data insertion and exact-match
queries in LHT. The insertion operation involves a LHT
lookup of the given data key δ, and after obtaining bucket
name κ, a DHT-put towards κ. An LHT insertion may fur-
ther cause the leaf split. To avoid the cascading split, each
insertion in LHT is restricted to cause at most one split. As
for the exact-match queries, it is almost equal to an LHT
lookup, except that it returns the data record associated with
queried δ, rather than the bucket itself.

6 Range Queries

Given two bounds, l and u, a range query returns all
records whose keys δ fall between these two bounds, i.e.,
δ ∈ [l, u). Thanks to the local tree, LHT supports near-
optimal range query processing. In order to illustrate how it
runs, we start from a simple case.
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6.1 A Simple Case

In this case, the query initiator happens to be the leaf
bucket containing one of the range bound. Without loss of
generality, we assume the lower bound l. As mentioned
above, the leaf bucket can construct a local tree, as depicted
in Fig. 5a. This figure shows all right neighboring trees,
denoted as τ1, τ2, etc., and neglects the left ones. The τi

covers the interval [pvi, pvi+1), where partition value pvi is
the lower bound of interval covered by τi. The right branch
nodes are denoted in the figure as β1, β2, etc. In order to
show how to precisely infer the right branch node βi based
on the sole knowledge of λ(l), we define the right neighbor
function frn(x).

Definition 3. For a tree node labeled with x, the right
neighbor function frn(x) returns the label of its nearest
right branch node. For example in Fig. 5a, frn(λ) = β1,
frn(βi) = βi+1.

frn(x) =

{
p1 if x=p01∗ and p�= #,

x if x=#01∗.

In the case that x = #01∗, the tree node x already lies
the rightmost in LHT and frn(x) maps it to itself. We can
similarly define the left neighbor function fln(x).

fln(x) =

{
p0 if x=p10∗,

x if x=#00∗.

Using frn(x), the leaf bucket λ(l) can locally infer all
βis, like we will see in the query algorithm. The queried
range [l, u) bounds the rightmost branch node βk, whose
neighboring tree τk covers the upper bound u, as depicted
in Fig. 5a. In order to traverse all leaves in [l, u), leaf bucket
λ(l) forwards it to the rightmost leaf in βi for i = 1, 2...k−1
and the leftmost leaf in βk. The process is demonstrated by
the arrows in Fig. 5a. As a matter of fact, the forwarding to
the rightmost leaf in βi is done by a DHT-lookup of fn(βi),
because the rightmost leaf in τi is named to fn(βi); and
the forwarding to the leftmost leaf in βk is done by a DHT-
lookup of βk, because the leftmost leaf in τk is named to
βk. Current range [l, u) is decomposed into disjoint sub-
ranges for the next-hop leaves, specifically, [pvi, pvi+1) for
the rightmost leaf in βi (i = 1, 2...k − 1); and [pvk, u), for
the leftmost leaf in βk. By this means, the next leaves still
contain one bound of their subrange, i.e., the simple case re-
cursively holds true, and thus the same forwarding strategy
applies. This procedure may involve the leaf forwarding
from right to left, which is done by similarly applying the
fln to local tree.

For complexity analysis, one point noteworthy here is
that during the whole recursive procedure, atmost one DHT-
lookup could possibly fail. That is, on the forwarding to the

leftmost leaf in τk, the βk may be a leaf node, which leads
to a failed DHT-lookup. If that happens, the query is for-
warded to fn(βk) and with no further forwarding needed,
the whole procedure is terminated.

Algorithm 3 formally describes the recursive forwarding
strategy for the simple case. We brief the flow: It firstly
check the direction of the forwarding and infer correspond-
ing branch nodes with the neighbor function (line 1–7); In
a loop, it forwards query to fn(βi) with i = 1, 2...k − 1
(line 10) and finally to βk (line 13). As explained, the for-
warding to βk may be failed and is further adjusted towards
fn(βk) (line 17).

Algorithm 3 recursive-forward(bucket b, range R)
1: leftwards← (b.leaflabel = p011∗)
2: β ← b.leaflabel
3: loop
4: if leftwards = true then
5: β ← fln(β)
6: else
7: β ← frn(β)
8: inv ← interval(β)
9: /*compute the interval covered by branch node β*/

10: if inv ⊆R then
11: nextbucket← DHT-lookup(fn(β))
12: recursive-forward(nextbucket, inv)
13: else
14: nextbucket← DHT-lookup(β)
15: if nextbucket = NULL then
16: /*a failed DHT-lookup*/
17: nextbucket← DHT-lookup(fn(β))
18: recursive-forward(nextbucket, inv∩R)
19: return

Algorithm 4 general-forward(range R)
1: LCA← computeLCA(R).
2: bucket← DHT-lookup(fn(LCA))
3: if bucket = NULL then
4: /*a failed DHT-lookup*/
5: return LHT-lookup(R.lowerbound)
6: else
7: if bucket overlaps R then
8: /*turn into the simple case*/
9: return recursive-forward(R, bucket)

10: else
11: bucket← DHT-lookup(LCA0)
12: result0← recursive-forward(R∩bucket.range, bucket)
13: bucket← DHT-lookup(LCA1)
14: result1← recursive-forward(R∩bucket.range, bucket)
15: return result0 ∪ result1

6.2 General Case

In the general case, the query initiator can be any leaf
bucket. The pseudocode is shown in Algorithm 4. After
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receiving the range query R = [l, u), it locally computes
the lowest common ancestor, abbreviated as LCA. It then
forwards the query by a DHT-lookup of fn(LCA): Case 1)
The DHT-lookup is failed (line 3), implying that the range
[l, u) is completely covered by a single leaf. In this case,
range processing turns into an exact-match query; Case 2)
The returned leaf bucket overlaps the range (line 7), imply-
ing one range bound must be in this leaf bucket. So this is
the simple case we discussed above. Case 3) The returned
leaf bucket doesn’t overlap the range (line 10). In this case,
LHT further forwards the query via DHT-lookups of LCA0
and LCA1, which must both turn into the case 2).

An example Consider processing the range query
[0.2, 0.6) in the tree of Fig. 5b. Any leaf bucket receiving
the query locally calculates the LCA to be #0, and con-
ducts a DHT-lookup of fn(#0) = #. The returned leaf
bucket is #000 which contains the range lower bound. The
recursive forwarding strategy can then apply: it forwards
the query to #00 (= fn(#001) = fn(frn(#000))) and
#01 (= frn(#001)), to which the leaf buckets #0011 and
#0100 are respectively named. The bucket #0011 further
forwards it to #001 (= fn(fln(#0011))) which is the name
of bucket #0010. After that, all leaf buckets in the range
[0.2, 0.6) are found.

6.3 Complexity

Suppose the range query is distributed on B leaf buckets.
We here only consider B >= 2 (i.e., the Case 2 and 3). In
general forwarding, there is atmost one DHT-lookup which
returns a leaf bucket not overlapping the range (i.e., Case
3). As explained, in the procedure of each recursive for-
warding, there is atmost one failed DHT-lookup. Therefore,
atmost 3 extra DHT-lookups can possibly occur, that is, an
LHT range query consumes atmost B + 3 DHT-lookups.
Noticing that B DHT-lookups are required in the optimal
case, we claim the LHT range query algorithm is near-
optimal.

7 Min/Max Queries

The min(max) query returns the smallest(largest) data
key in a data set. This query type is widely used in vari-
ous database system. Interestingly, LHT supports efficient
processing of a min/max query. Due to the naming function,
the complexity is only one DHT-lookup.

Theorem 3. In LHT, a DHT-lookup of # returns the result
of a min query. Similarly, a DHT-lookup of #0 returns the
result of a max query.

Proof. The leaf bucket containing the smallest data key in
LHT should be of the label #00∗. By the naming function,

this bucket #00∗ is mapped to #. Similarly, the largest data
key should be stored in leaf bucket #01∗, which is named
to #0.

8 Analysis of Tree Maintenance Cost

In this section, we focus on analyzing LHT maintenance
cost. Prior to it, we present our cost model which is reason-
able for over-DHT indexing schemes.

8.1 Cost Model

Typical P2P network is featured by its abundant re-
sources at the net edges, like local disk storage and CPU
computing power. By contrast, the inter-network resource,
i.e., the bandwidth is relatively rare, and thus critical. To
capture P2P network cost, a simple yet effective way is to
consider only bandwidth consumption. For an over-DHT
indexing scheme, there are two basic operations that are
bandwidth-consuming: the DHT-lookup and direct data-
movement (i.e., transferring data from one peer to any other
peer via a physical connection, like TCP or UDP). In this
context, we propose a linear cost model, in which moving
each data record costs ı units and each DHT-lookup costs
 units. The value of ı is determined by the size of a data
record—for a data record with bigger size, transferring one
incurs more bandwidth, yielding a bigger ı. The value of
 is determined by the scale of underlying P2P network—
for P2P network with more peers, each DHT-lookup incurs
more physical hops (typically, at complexity of O(log N)),
which leads to a larger .

8.2 Maintenance Cost

Unlike substrate-dependant schemes, LHT has no need
of periodical maintenance for index integrality and con-
sistency, for this piece of work is left to and well done
by underlying DHT. LHT’s maintenance cost is only paid
for its tree structure adjustment, incurred by data inser-
tion/deletion. This structural adjustment involves leaf split
and merge. Note that they are dual to each other, and for
brevity, only leaf split is discussed.

For each leaf split in LHT, only one DHT-lookup is in-
curred, yielding the DHT-lookup cost of ; And the data-
movement cost equals the size of remote leaf bucket. Note
that for a pair of remote and local buckets, their sizes sum
to θsplit. Therefore, the remote bucket has its size as a frac-
tion of θsplit, denoted as α · θsplit, where α is a normalized
factor in [0, 1]. The local bucket’s size is thus (1−α)·θsplit.
The very value of α is determined by the local data distribu-
tion. For example, with a uniform data distribution, remote
bucket equals the local one in size, yielding α = 1

2 . The
local data distribution is sensitive to the splitting node, and
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thus is elusive. However, as we will see in experiments, for
the tree large enough, the averaged α (average by all split
times in tree growth) approaches 1

2 . Thus, the average data-
movement cost per split is 1

2θsplit ·ı. Altogether, the average
cost for a leaf split in LHT, denoted as ΨLHT , is

ΨLHT =
1
2
θsplit · ı + 1 ·  (1)

In PHT, an index tree similar to space partition tree is
maintained, and its mapping to underlying DHT is quite
straightforward — All the tree nodes (including the inter-
nal nodes) are mapped directly by its label. As a result,
one split produces two leaves of changed labels, which are
mapped to other peers. These two remote leaf buckets incur
data-movement cost of θsplit and 2 DHT-lookups. Besides,
a split incurs 2 extra DHT-lookups to update its B+ tree leaf
links. Altogether, the bandwidth for a PHT split is,

ΨPHT = θsplit · ı + 4 ·  (2)

In comparison with PHT, LHT’s saving ratio of mainte-
nance cost is,

1 − ΨLHT

ΨPHT
=

1
2 · γ + 3
γ + 4

(3)

where γ = θsplit·ı
 . This saving ratio can be up to 75% and

at least 50%.

9 Experimental Results

This section presents performance evaluation results of
LHT in terms of maintenance cost and query efficiency (in-
cluding lookup and range query). We compare LHT with
PHT, mainly because that PHT is the state-of-the-art index-
ing scheme with respect to maintenance efficiency.

9.1 Experiment Setup

We implemented LHT in java with only 1700 code lines,
which demonstrates the great ease of implementation. For
comparison, we also implemented PHT. LHT and PHT
were both deployed over Bamboo DHT [18], a ring-like
DHT that has good robustness and is now widely deployed
in the OpenDHT project [19]. Experiments were conducted
in a LAN environment consisting of more than 20 comput-
ers (or peers)5.

Both uniform and gaussian datasets were used. For uni-
form datasets, the key value is uniformly distributed in
[0, 1]; and for gaussian datasets, the key value has a gaussian

5The measurements we used in experiment, like number of DHT-
lookups are independent of underlying network scale.

distribution with its mean being 1
2 and its standard devia-

tion being 1
6 , which guarantees that about 97% key values

fall in [0, 1]. In each experiment, 100 datasets of each dis-
tribution were independently generated, and the averaged
results were reported. The size of dataset we used, shortly
the data size, depends on the value of θsplit, which can be
as large as 220. We evaluated both LHT and PHT from three
aspects: maintenance cost, LHT lookups performance and
range query performance.

9.2 Maintenance Cost

This set of experiments first evaluates the value of aver-
age α, and then the maintenance cost.

Average α The average α, as mentioned, is the one av-
eraged by the split times during the whole tree growth. To
evaluate it, we continuously inserted data into LHT, and cal-
culated the average α of different data size. Fig. 6a plots the
results with the splitting threshold θsplit of 40 and 160, re-
spectively. LHT’s θsplit is then varied, and corresponding
results shown in Fig. 6b. Generally, the average α quite ap-
proaches 1

2 . Their difference is sensitive to θsplit, and for
gaussian data, to data size. This is due to that with a small
θsplit, average α is remarkably affected by extra storage of
leaf label. Specifically, in each bucket, like in Fig. 3a, a leaf
label occupies one record storage. And a split averagely
halves the θsplit − 1 “real” records, and assigns one leaf la-
bel for each newly produced bucket. Considering this, the
average α is,

α =
θ−1
2 + 1

θ
=

1
2

+
1

2 · θ
which perfectly matches the plot of uniform data.

Maintenance cost During this experiment, progressively
larger dataset is inserted into LHT (as well as PHT), and
the cumulative maintenance cost is recorded. In accordance
with our cost model, two measurements are used here, i.e.,
the number of moved records and DHT-lookup numbers.
Results of these two measurements are respectively shown
in Fig. 7a and Fig. 7b. In Fig. 7a, the θsplit is fixed at 1006,
and cumulative data-movement cost basically goes linearly
with data size. For uniform data, the curve is fluctuant,
and it is owing to the characteristic of binary tree structure.
LHT’s cost remains half of that of PHT, which is consistent
with the value of average α. For DHT-lookups cost, Fig. 7b
reveals a similar result, except that LHT’s cost is even lower,
about 25% of that of PHT.

6θsplit is set to 100 in following experiments, if no explicit announce-
ment is made.
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(a) Varying data size (b) Varying θsplit

Figure 6: Average α

(a) Data-movement cost (b) DHT-lookup cost

Figure 7: Maintenance cost

(a) With uniform data (b) With gaussian data

Figure 8: Lookup performance

9.3 Lookup Performance

This experiment evaluates lookup efficiency in LHT (and
in PHT). Note that the lookup operation has a priori parame-
ter, the maximum possible depth, D, and here it is set to 20.
We varied data size, and on each data size, repetitively con-
ducted 1000 lookups for keys that are uniformly distributed
in [0, 1]. The average DHT-lookup number per lookup op-
eration is reported in Fig. 8. For uniform data in Fig. 8a,
two curves are in a peculiar shape, especially for the PHT
curve. They both fluctuate with increasing data size, and
simultaneously reach some “valley points”, like on the data
sizes of 212, 216 and 220. In these situations, interestingly,
the DHT-lookup numbers respectively equal 2, 3, 1. Here is
the explanation: when data size equals 220, leading to a tree
of depth of log 220

100 � 14 = D
2 (note that data is uniformly

distributed), the binary search thus can be resolved in the
first try, with only 1 DHT-lookup. For valley points of 212

(216), similar explanation applies, that the tree depth is D
4

( 3
8D), and binary search resolved in 2 (3) steps. LHT’s cost

remains lower than PHT’s, (except for some valley points),
and leads to an average saving ratio of approximate 20%.
For gaussian data in Fig. 8b, these two curves are more flat
and LHT’s saving ratio is roughly 30%.

9.4 Range Query Performance

This set of experiments evaluates LHT’s range query
performance. Two measurements are considered, that is,
bandwidth consumption and time latency. To capture the
former, the number of DHT lookups is used, and the data
movement cost is here neglected, for each query incurs the
same size of data movement (in returning query result). The
latter, time latency, is captured by the paralleled steps of
DHT lookups, which, unlike the absolute time, is insen-
sitive to the underlying network scale and thus more suit-
able. During experiments, the query range [l, u) is gener-
ated by randomly picking its lower bound l in the interval
[0, 1 − span], where the span denotes the value of u − l.
Note that PHT has two range query algorithms, respectively
named PHT(sequential) [16], and PHT(parallel) [4]. LHT
is here compared to both of them.

The results of bandwidth and latency of range query are
shown in Fig. 9 and Fig. 10, respectively. In Fig. 9, for both
varied data size and range span, PHT(parallel) incurs the
highest bandwidth, while LHT and PHT(sequential) con-
sumes roughly the same bandwidth, which as mentioned,
quite approaches the optimal. (Actually, LHT requires
slightly less bandwidth, but this difference may not be vis-
ible in the figure.) As for time latency, PHT(sequential)
is extremely consuming. Note that there are axis breaks
in Fig. 10a and Fig. 10b, and in contrast of other two,
PHT(sequential) typically requires more time by an order
of magnitude. LHT is the most time-efficient, no matter
which data type is used. The saving ratio of LHT’s latency
to PHT(parallel) is approximately 18%. Fig. 10b reveals
that LHT’s superiority falls down when span goes large with
uniform data.

PHT(sequential)’s near-optimal bandwidth consumption
is owing to the presence of B+ tree-like leaf link, which
on the other hand, incurs extra maintenance cost. Thanks
to parallelism, PHT(parallel) can achieve competitive time
latency, which however deteriorates when data distribution
tends to be skewed (like in gaussian data). Due to nice
property of naming function and tree summarization, LHT’s
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(a) Varying data size (b) Varying range span

Figure 9: Range query performance (Bandwidth)

(a) Varying data size (b) Varying range span

Figure 10: Range query performance (Latency)

range query algorithm exceeds in terms of both bandwidth
and latency, yet at no expense of maintenance.

10 Conclusion

This paper proposes LHT, a low maintenance hash tree
for data indexing over DHTs. As compared with the state-
of-the-art indexing structure PHT, LHT can save up to 75%
(at least 50%) maintenance cost, and achieves better per-
formance in exact-match and range query processing. This
advantage is due to its novel naming function and local tree
summarization strategy. LHT is adaptable to any generic
DHT, and is easy to be implemented and deployed.
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