Blockchain: Applications, Security Promises and Internals

Cyber Security & Information Systems Information Analysis Center (CSIAC)

Dr. Yuzhe (Richard) Tang
Department of EECS,
Syracuse University
Dec. 19, 2017
Outline

1. Introduction

2. Blockchain applications and interfaces

3. Blockchain security promises

4. Blockchain internals (a brief)
1. Introduction

• Cryptocurrency:
 – “A cryptocurrency is a digital asset designed to work as a medium of exchange that uses cryptography to secure its transactions, to control the creation of additional units, and to verify the transfer of assets.” (wiki)
 – BitCoin, Etheruem, Litcoin, etc.
1. Introduction

• How to compare the concept of BitCoin with fiat currency (e.g. US dollar)?
What’s **Similar** about Bitcoin to US Dollar

Review of gov-issued (fiat) currency

• Workflow
 – Money created by a **mint**
 – Money circulated among owners thru. **transactions**.
 – BitCoin supports the same workflow
What’s **Similar** about Bitcoin to US Dollar

Review of gov-issued (fiat) currency

- **Threat 1:** Print fake money
 - Dollar bills are secured by anti-counterfeit
 - US. mint is safeguarded
 - Bitcoin has to defend this threat

- **Threat 2:** Double spending (digital currency)
 - Visa’s **ledger** database validates transactions
 - BitCoin has to prevent double-spending

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe->John</td>
<td>X$</td>
</tr>
<tr>
<td>Joe->Jane</td>
<td>X$</td>
</tr>
</tbody>
</table>
What’s **Similar** about Bitcoin to US Dollar

Review of gov-issued (fiat) currency

• Threat 1: Print fake money
 – Dollar bills are secured by anti-counterfeit
 – US. mint is safeguarded
 – Bitcoin has to defend this threat

• Threat 2: Double spending (digital currency)
 – Visa’s **ledger** database validates transactions
 – BitCoin has to prevent double-spending
Issues with US Dollar

• Using dollar bills, you implicitly trust
 – Government, mint, credit-card org. (Visa)
 – These are trusted central authorities

• Are they trustworthy?
 – You may not want gov. to withdraw a tx after it’s settled.
 – You may not want gov. to freeze your account
 – You may not want gov. to inflate the currency and depreciate your savings:
 Zimbabwe
Motivating BitCoin (*What’s unique about BitCoin*)

- Get rid of central authorities by **decentralization**
 - No need to trust government and Visa
 - Instead trust the entire population on the planet

- Make transaction history public (**Transparency**)
 - Transparency invites trust

- Automate the process with **incentive-compatibility**
 - Automation lowers cost (transaction fee)
BitCoin and Blockchain

- Bitcoin tx history is recorded in **Blockchain**
 - Blockchain is the ledger for Bitcoin

<table>
<thead>
<tr>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>JOURNAL</th>
<th>DEBIT</th>
<th>CREDIT</th>
<th>BALANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/20/2015</td>
<td>Loan From Friend</td>
<td>J1</td>
<td>- $400.00</td>
<td>$500.00</td>
<td>($0.00)</td>
</tr>
<tr>
<td>4/21/2015</td>
<td>Loan From Friend</td>
<td>J2</td>
<td>$200.00</td>
<td>$500.00</td>
<td>($300.00)</td>
</tr>
</tbody>
</table>
Outline

1. Introduction

2. Blockchain applications and interfaces

3. Blockchain security promises

4. Blockchain internals (a brief)
Scenario 1: Doing Transactions

• Get your first BitCoin
 – Exchange services: Coinbase, Coindesk, etc.

• Using BitCoin to sell and buy stuff (transaction)

• Or sell it till the price grows higher

1 Bitcoin equals 18290.03 US Dollar

12/19/17

Yuzhe Tang, Syracuse Univ.
Scenario 2: Mining

• Another way to get BitCoin: Mining
 – Get the money anonymously

• You can purchase hardware to do some (non-sense) computations
 – With some probability, your computation will be rewarded in BitCoin
 – The probability depends on how powerful your hardware is
Scenario 2: Mining

• Interested in mining?
 – How much is your budget?
 • Constant capital: buy machines, Variable capital: electricity consumption
 – Who you are up against (in winning the reward)?
 • State-level miners, bitcoin farm, data centers
Scenario 3: Develop Applications

• Distributed app over Blockchain (Dapp)
 – FinTech: Insurance, trade, risk management, accounting, etc.
 • Examples: ERP, micro-payments, wallet, currency exchange, etc.
 – Other domains: Legal, medical/healthcare, IT, science/research, etc.

• “Blockchain is set to disrupt many industries”
Scenario 3: Develop Applications

• Dapp architecture: On-chain/off-chain
 – On-chain data: “Transactions” or meta-data
 – Off-chain data: some private data (e.g. keys)

• Interacting Blockchain thru. transaction API:
 – `send_tx(sender, receiver, money#, memo)`
 – Like writing a personal check
Scenario 3: Develop Applications

• Design issues
 – Partitioning application logic to suit on-/off-chain
 – Designing incentive schemes (what to reward mining?)
 – Dealing with the limitation of Blockchain (e.g. deferred finality)

• Building a BitCoin wallet Dapp
 – Developer working for CoinBase
Outline

1. Introduction

2. Blockchain applications and interfaces

3. Blockchain security promises

4. Blockchain internals (a brief)
Security: Immutable Storage

• Blockchain abstraction as tx storage
 – Readable to the public (transparency)
 – Appendable by honest miners
 – Cannot be modified (immutability)

• Building a trusted timestamp service for legal documents (signing contract, applying patent etc)
Security: No Double Spending

• No double-spending (Anti-counterfeit)

• Smart property
 – Smart ticket: Use BitCoin to represent baseball tickets.
Security: Unstoppable Execution

• Programming lang. on Blockchain: Smart contract
 – Smart-contract program is an obj. running on Blockchain
 – Solidity in Ethereum

• Security properties:
 – Autonomously executed, unstoppable
 – Transaction fairness:
 • If I paid you, to be fair, I need to receive your goods.
Security: Unstoppable Execution

- Smart-contract applications:
 - Implement IFTTT logic that decides how to send tx
- A stock-exchange application
 - Alice will trade 10 shares for $10,000 when the stock price is below $1000.
Outline

1. Introduction

2. Blockchain applications and interfaces

3. Blockchain security promises

4. Blockchain internals (a brief)
Blockchain internals

1. Blockchain: Immutable tx storage

2. Blockchain consensus:
 - How to add transaction to Blockchain in a decentralized way?
Blockchain: Immutable Tx Storage

• Create money
 – $\text{coinX} = \text{mint.CreateCoin()}$

 \text{by } \text{bkc_as_mint.sign}_{\text{mint_skey}}(\text{"CoinX is created"})

• Circulate money by transactions
 – $\text{alice.PayCoin(bob,coinX)}$

 \text{by } \text{tx} = \text{alice.sign}_{\text{alice_skey}}(\text{"CoinX is paid to Bob}_{\text{bob_pkey}}\text{"")}$

 \text{bkc_as_visa.validate(tx)}$

 – Tx representation

 • How to represent coins, owner identity, ownership (binding btwn coin and identity)?
Blockchain: Immutable Tx Storage

- **Hash pointer**: Representing coins in a tx
 - Bob’s coin spent in a tx is the tx’s hash pointer pointing to a prior tx where Bob receives the coin.

- **Hash chain of transactions**
- **Block chain of transactions**
Consensus

• Transaction-add workflow
 – Validation, Append
• Consensus mechanisms
 – Randomization
 – PoW mining
 – As mint: Incentive-compatibility
 – Bootstrap the trust
Q/A

Thank you!

Contact:
Yuzhe (Richard) Tang
Assistant Professor
Dept. of EECS
Syracuse University
ytang100@syr.edu
ecs.syr.edu/faculty/yuzhe