Blockchain: Applications, Security Promises and Internals

Cyber Security & Information Systems Information Analysis Center (CSIAC)

Dr. Yuzhe (Richard) Tang

Department of EECS, Syracuse University Dec. 19, 2017

Outline

1. Introduction

- 2. Blockchain applications and interfaces
- 3. Blockchain security promises
- 4. Blockchain internals (a brief)

1. Introduction

- Cryptocurrency:
 - "A cryptocurrency is a digital asset designed to work as a medium of exchange that uses cryptography to secure its transactions, to control the creation of additional units, and to verify the transfer of assets." (wiki)
 - BitCoin, Etheruem, Litcoin, etc.

1. Introduction

 How to compare the concept of BitCoin with fiat currency (e.g. US dollar)?

What's Similar about Bitcoin to US Dollar

Review of gov-issued (fiat) currency

- Workflow
 - Money created by a mint
 - Money circulated among owners thru. transactions.
 - BitCoin supports the same workflow

What's Similar about Bitcoin to US Dollar

Review of gov-issued (fiat) currency

- Threat 1: Print fake money
 - Dollar bills are secured by anti-counterfeit
 - US. mint is safeguarded
 - Bitcoin has to defend this threat

- Threat 2: Double spending (digital currency)
 - Visa's ledger database validates transactions
 - BitCoin has to prevent double-spending

Ledger to prevent double spending

Transaction	Amount
Joe->John	X\$
Joe->Jane	X\$

What's Similar about Bitcoin to US Dollar

Review of gov-issued (fiat) currency

- Threat 1: Print fake money
 - Dollar bills are secured by anti-counterfeit
 - US. mint is safeguarded
 - Bitcoin has to defend this threat

- Threat 2: Double spending (digital currency)
 - Visa's ledger database validates transactions
 - BitCoin has to prevent double-spending

Ledger to prevent double spending

Transaction	Amount	Status
Joe->John	X\$	Accepted
Joe->Jane	X\$	Rejected

Issues with US Dollar

- Using dollar bills, you implicitly trust
 - Government, mint, credit-card org. (Visa)
 - These are trusted central authorities
- Are they trustworthy?
 - You may not want gov. to withdraw a tx after it's settled.
 - You may not want gov. to freeze your account
 - You may not want gov. to inflate the currency and depreciate your savings:
 Zimbabwe

8

Motivating BitCoin (What's unique about BitCoin)

- Get rid of central authorities by **decentralization**
 - No need to trust government and Visa
 - Instead trust the entire population on the planet
- Make transaction history public (Transparency)
 - Transparency invites trust
- Automate the process with incentive-compatibility
 - Automation lowers cost (transaction fee)

BitCoin and Blockchain

Bitcoin tx history is recorded in Blockchain
 Blockchain is the ledger for Bitcoin

Outline

1. Introduction

2. Blockchain applications and interfaces

- 3. Blockchain security promises
- 4. Blockchain internals (a brief)

Scenario 1: Doing Transactions

- Get your first BitCoin
 - Exchange services: Coinbase, Coindesk, etc.
 - COINDASE CoinDesk
- Using BitCoin to sell and buy stuff (transaction)
- Or sell it till the price grows higher

^{1 Bitcoin equals} 18290.03 US Dollar

1	Bitcoin	\$	30000 — 20000 —				
18290.03	US Dollar	¢	10000				
			2013	2014	2015	2016	2017

Scenario 2: Mining

- Another way to get BitCoin: Mining
 - Get the money anonymously
- You can purchase hardware to do some (nonsense) computations
 - With some probability, your computation will be rewarded in BitCoin
 - The probability depends on how powerful your hardware is

Scenario 2: Mining

- Interested in mining?
 - How much is your budget?
 - Constant capital: buy machines, Variable capital: electricity consumption
 - Who you are up against (in winning the reward)?
 - State-level miners, bitcoin farm, data centers

Yuzhe Tang, Syracuse Univ.

Scenario 3: Develop Applications

- Distributed app over Blockchain (Dapp)
 - FinTech: Insurance, trade, risk management, accounting, etc.
 - Examples: ERP, micro-payments, wallet, currency exchange, etc.
 - Other domains: Legal, medical/healthcare, IT, science/research, etc.
- "Blockchain is set to disrupt many industries"

Scenario 3: Develop Applications

- Dapp architecture: On-chain/off-chain
 - On-chain data : "Transactions" or meta-data
 - Off-chain data: some private data (e.g. keys)
- Interacting Blockchain thru. transaction API:
 - send_tx(sender, receiver, money#, memo)
 - Like writing a personal check

Scenario 3: Develop Applications

- Design issues
 - Partitioning application logic to suit on-/off-chain
 - Designing incentive schemes (what to reward mining?)
 - Dealing with the limitation of Blockchain (e.g. deferred finality)
- Building a BitCoin wallet Dapp
 - Developer working for CoinBase

Outline

- 1. Introduction
- 2. Blockchain applications and interfaces

3. Blockchain security promises

4. Blockchain internals (a brief)

Security: Immutable Storage

- Blockchain abstraction as tx storage
 - Readable to the public (transparency)
 - Appendable by honest miners
 - Cannot be modified (immutability)
- Building a trusted timestamp service for legal documents (signing contract, applying patent etc)

Security: No Double Spending

- No double-spending (Anti-counterfeit)
- Smart property
 - Smart ticket: Use BitCoin to represent baseball tickets.

Security: Unstoppable Execution

- Programming lang. on Blockchain: Smart contract
 - Smart-contract program is an obj. running on Blockchain
 - Solidity in Ethereum
- Security properties:
 - Autonomously executed, unstoppable
 - Transaction fairness:
 - If I paid you, to be fair, I need to receive your goods.

Security: Unstoppable Execution

- Smart-contract applications:
 - Implement IFTTT logic that decides how to send tx
- A stock-exchange application
 - Alice will trade 10 shares
 for \$10,000 when the
 stock price is below \$1000.

Virtual trusted third-party (with public state)

Outline

- 1. Introduction
- 2. Blockchain applications and interfaces
- 3. Blockchain security promises
- 4. Blockchain internals (a brief)

Blockchain internals

- 1. Blockchain: Immutable tx storage
- 2. Blockchain consensus:
 - How to add transaction to
 Blockchain in a
 decentralized way?

Blockchain: Immutable Tx Storage

- Create money
 - coinX = mint.CreateCoin()
 by bkc_as_mint.sign_{mint_skey}("CoinX is created")
- Circulate money by transactions
 - alice.PayCoin(bob,coinX)
 by tx = alice.sign_{alice_skey}("CoinX is paid to Bob_{bob_pkey}")
 bkc_as_visa.validate(tx)
 - Tx representation
 - How to represent coins, owner identity, ownership (binding btwn coin and identity)?

Blockchain: Immutable Tx Storage

- Hash pointer: Representing coins in a tx
 - Bob's coin spent in a tx is the tx's hash pointer pointing to a prior tx where Bob receives the coin.
- Hash chain of transactions
- Block chain of transactions

Consensus

Yuzhe Tang, Syracuse Univ.

 Transaction-add workflow – Validation, Append Consensus mechanisms - Randomization – PoW mining – As mint: Incentive-compatibility Bootstrap the trust

Q/A

Thank you!

Contact:

Yuzhe (Richard) Tang Assistant Professor Dept. of EECS Syracuse University <u>ytang100@syr.edu</u> ecs.syr.edu/faculty/yuzhe