
DETER: Denial of Ethereum Txpool sERvices

Kai Li
kli111@syr.edu

Syracuse University
Syracuse, NY, USA

Yibo Wang
ywang349@syr.edu
Syracuse University
Syracuse, NY, USA

Yuzhe Tang �
ytang100@syr.edu
Syracuse University
Syracuse, NY, USA

ABSTRACT
On an Ethereum node, txpool (a.k.a. mempool) is a bu�er storing
uncon�rmed transactions and controls what downstream services
can see, such as mining and transaction propagation. This work
presents the �rst security study on Ethereum txpool designs.

We discover �awed transaction handling in all known Ethereum
clients (e.g., Geth), and by exploiting it, design a series of low-cost
denial-of-service attacks named DETER. A DETER attacker can
disable a remote Ethereum node’s txpool and deny the critical
downstream services in mining, transaction propagation, Gas sta-
tion, etc. By design, DETER attacks incur zero or low Ether cost. The
attack can be ampli�ed to cause global disruption to an Ethereum
network by targeting centralized network services there (e.g., min-
ing pools and transaction relay services). By evaluating local nodes,
we verify the e�ectiveness and low cost of DETER attacks on all
known Ethereum clients and in major testnets.

We design non-trivial measurement methods against blackbox
mainnet nodes and conduct light probes to con�rm that popular
mainnet services are exploitable under DETER attacks.

We propose mitigation schemes that reduce a DETER attack’s
success rate down to zero while preserving the miners’ revenue.

CCS CONCEPTS
• Security and privacy→ Denial-of-service attacks; Software
security engineering; Distributed systems security; • Networks →
Peer-to-peer protocols;

KEYWORDS
Blockchains; Ethereum; Mempool/Txpool; Design �aws; Uncon-
�rmed transactions;

ACM Reference Format:
Kai Li, Yibo Wang, and Yuzhe Tang. 2021. DETER: Denial of Ethereum
Txpool sERvices. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’21), November 15–19, 2021,
Virtual Event, Republic of Korea. ACM, New York, NY, USA, 23 pages. https:
//doi.org/10.1145/3460120.3485369

∗ � Yuzhe Tang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3485369

1 INTRODUCTION
Today, operational blockchains have grown into complex ecosys-
tems providing a wide variety of services to decentralized applica-
tion (DApp) users, such as mining pools, transaction relay, DApp-
speci�c services (e.g., Gas station in Ethereum), etc. Denying these
services is a real threat (e.g., the Nov. 2020 incident that disrupts a
popular Ethereum relay service [10], denial of services/DoS attacks
among Bitcoin mining pools [45, 48, 64] and Bitcoin spam cam-
paign [38]). Such a threat is of interest to some actual blockchain
participants, for instance, a service provider competing with the
victim service for the same customer base, or a DApp user racing
to win an auction over peer users.
Related works: In the existing literature, blockchain DoS security
has been examined at di�erent system layers, including P2P net-
works [37, 47, 53, 62], mining-based consensus [6, 55], transaction
processing [19, 24, 38, 60], and application-level extensions such
as smart contracts [26, 40, 57] and DApp (decentralized applica-
tion) services [52]. Despite the extensive research, most existing
works consider powerful institutional attackers, such as the ones
able to control a signi�cant portion (e.g., 51% or 21%) of computing
power in a large blockchain [55], or the ones who can corrupt the
underlying network infrastructure like ISP insiders [37, 62], or the
botnet which has tens of thousands of IP addresses at her disposal
for an eclipse attack [47], or a Bitcoin mogul willing to spend tens
of thousands-USD worth of Bitcoin to launch a spam campaign [38].
Recently proposed are a class of low-cost attacks exploiting miner
extractable value (MEV) in which the attacker send crafted trans-
actions to front-run other transactions [42, 58, 61] and/or to bribe
miners [50, 63, 65]. This class of attacks assume rational miners and
have limited impacts (on few targeted victim transactions, instead
of all transactions submitted in a period). The full related works are
in Appendix 10. It is an open research problem whether an average
user can mount a low-cost attack to disable a large-scale blockchain.

Node
txpool

Services

txpool

Services

Victim
node

Ethereum
network

Attacker
node

Figure 1: Threat Model: DETER a remote txpool
Attack goals: This work aims at low-cost DoS attacks targeting
few blockchain nodes to cause large-scale impacts to the Ethereum-
DApp ecosystem. The observation is that despite the original de-
sign to decentralize control, practical blockchain services, notably
mining pools and transaction relay services, are highly central-
ized [46], a potential single point of failure. For instance, Ethereum
blockchain’s connection to millions of its active DApp users is con-
trolled by a single relay service (infura.io [9]), whose outage in Nov.

2020 [10] (allegedly triggered by a competing service provider [32])
prompts major exchange platforms to halt Ether withdrawal, lead-
ing to a global panic among Ether holders. We thus consider the
threat model depicted as in Figure 1 where an attacker node sends
crafted transactions to a victim node running in a DApp service’s
backend (e.g., a mining pool or a relay service) which propagates
transactions and blocks with the rest of Ethereum network. The
attacker’s goal is to disable the victim node’s service to other nodes
and DApp users at a low Ether cost. A baseline design is for the
attacker account to send a large volume of transactions to occupy
the limited block space and to squeeze out normal transactions
there. However, the spam transactions sent in this baseline have
to be with high Gas prices, burdening the attacker with high cost
(e.g., 12.5 Ether per block as analyzed in § 3). Also, this baseline
bene�ts miners by actually increasing their revenue, while this
work aim to victimize the miners. Note that the attack goal in this
work is to prevent a downstream miner from accessing the content
of a txpool, which is distinct from the goal of MEV-exploiting
attacks [42, 50, 58, 61, 63, 65] where the miner can access a txpool
content and is incentivized tomisbehave on it. Also, MEV-exploiting
attacks make assumption on rational miners, which is not necessary
for this work which aims to victimize any miners.
Attack design: To achieve the threat goals, this work exploits
an understudied subject in the existing security literature, that
is, denying the txpool service. On an Ethereum node, txpool1 is
an essential data structure that bu�ers uncon�rmed transactions
received from other nodes until they are included in the blockchain
by miners. A disabled txpool presenting a false empty view of none
transactions can cripple the victim node’s mining and transaction
propagation, and further lead to a global service disruption as will
be con�rmed by our evaluation.

To disable a txpool, our observation is the following: An
Ethereum client’s decision in whether to admit an incoming trans-
action a�ects the revenue of the miner running the client. Thus,
any Ethereum client developed to attract revenue-hungry miners
and increase adoption needs to maximize miners’ revenue. To do
so, real Ethereum clients are designed to take loose but risky ac-
tions to admit transactions, as we measured. The key idea of this
work is to exploit real Ethereum clients’ risky txpool behavior in
admission control and to design denial-of-service attacks at low
Ether cost, namely Denial of Ethereum’s Txpool sERvice (DETER
attacks). More speci�cally, one can trick a txpool to admit invalid
transactions at zero Ether cost that evict and victimize existing
normal transactions there. In the following, we describe two types
of transactions that we exploit to design DETER attacks.

A future transaction in Ethereum (which is similar to the concept
of orphan transaction in Bitcoin terms) is the one that arrives at
a node earlier than its logical predecessor (i.e., the transaction of
smaller nonces as will be introduced in § 2). On a node, a future
transaction at the time of arrival, say tx2 with nonce n + 2, can
wind up two outcomes when the node’s miner reads it from the
txpool: X1) It remains a future transaction which is invalidated by
the miner and whose transaction fee cannot be collected, or X2) it is
transformed into a valid (or pending) transaction upon the arrival
of a subsequent transaction tx1 of nonce n + 1. In the latter case,

1txpool in Ethereum is the same concept with the mempool in Bitcoin.

tx2’s fee can be collected by the miner. To increase miners’ revenue,
all Ethereum clients, including Geth (Go) [8], Parity (Rust) [13],
Nethermind (.Net) [12], and Besu (Java) [3]2 as we measured, sup-
port admitting future transactions, in the (optimistic) hope that
case X2) will occur along the way and their transaction fees are col-
lectible. In this work, we propose the �rst attack, named DETER-X,
that exploits Ethereum’s falsely optimistic design by deliberately
sending future transactions of case X1) and at high Gas price so
that they are admitted to the txpool and evict normal transactions,
yet without being charged due to transaction invalidity. This attack
victimizes not only the senders of the normal transactions evicted
(by tx1) but also the miners who end up mining no transactions
and get low or even zero revenue. Note that at the time of tx2’s
arrival, which outcome, X1) or X2), will occur fully depends on the
arrival of tx1, which is unpredictable.

The second type of Ethereum transaction exploited is what we
call latent invalid transactions, that is, the transactions that are
valid and admitted at the time of arrival, but are transformed into
invalid transactions later when the miner reads it. Consider a se-
quence of transactions, tx0, tx1, tx2, . . . , sent from the same account
e and each of which spends account e’s full balance. Similar to the
previous attack, this transaction sequence can wind up with two
likely outcomes: Z1) without interference of other transactions,
this transaction sequence will be invalidated by the miner except
for tx0, as txi (8i > 1) overdrafts e’s balance. Z2) upon the arrival
of subsequent transactions to re�ll e’s account, txi (8i > 1) may
be transformed into valid transactions whose fees are collectible
by miners. As we measured, all Ethereum clients deployed on the
mainnet take the risk to admit latent overdraft transactions in their
txpool. We thus propose the second attack, named DETER-Z, to ex-
ploit this risky design by sending overdraft transactions at high Gas
price to evict normal transactions in the txpool, at low Ether cost.
In particular, we propose DETER-Z variant optimized for Geth’s
admission control so that the latent invalid transactions do not
only evict transactions but also occupy the txpool for an extended
period of time. We also propose evasion strategies on other clients
to bypass their limits on the transactions from the same account.

The DETER vulnerabilities are speci�c to several unique designs
in the Ethereum blockchain, which may render their applicability
beyond Ethereum limited. Concretely, the cause of DETER-X vul-
nerability can be attributed to Ethereum’s supports of future trans-
actions, which meet the real DApps’ demands to send transactions
hastily3, as evidenced in measurement studies such as [66]. Like-
wise, the DETER-Z vulnerability has the root cause in Ethereum’s
account model in which account balances can be arbitrarily up-
dated, which is necessary to support smart contracts desirable by
many DApps. By contrast, Bitcoin’s UTXO model features limited
updatability in which a transaction output can transition only from
the unspent state (i.e., UTXO) to the spent, but not the other way
around. The one-way updatability in the UTXO model renders Bit-
coin immune to the DETER-Z attacks, as we investigated. Note that

2In this paper, we discard the cases of Aleth (C++) [2] and Trinity (Python) [21] clients,
because no mainnet nodes run the client and their code maintenance is discontinued
(e.g., as of Apr. 2021 for Aleth).
3Sending a transaction, say tx2 , hastily means sending it without waiting for the
con�rmation of other transactions that tx2 depends on. For instance, such a dependent
transaction, say tx1 , can be such that tx2’s nonce is tx1’s nonce plus one.

P2

the two features exploited by DETER-X/Z attacks, namely future
transactions and updatable accounts, are generic in the Ethereum
protocol and are independent of speci�c client implementations.
Measurements and impacts: We evaluate both DETER attacks’
impacts systematically on an extensive list of victim services in
di�erent settings. First, we evaluate the e�ectiveness and cost of
DETER attacks against four Ethereum clients in a local setting
(Geth/Parity/Nethermind/Besu) that show DETER-X achieves a
100% success rate at zero cost on all four clients except for par-
ity with a success rate of 75.6% and zero cost. DETER-Z is with
100% success rate against all four clients and has a cost as low as
0.021 Ether per block, a three-order-of-magnitude saving from the
baseline [38]’s cost of 12.5 Ether per block (§ 5).

Second, we evaluate the DETER’s e�ectiveness on disabling
blockchain mining: Against a single miner, we propose attack strate-
gies that guide the timing of sending DETER-X payload by predict-
ing the block arrival time based on the Poisson model [49, 59]. The
attack evaluation on a local network shows that mounting DETER-
X/Z attacks at a rate of 4 crafted messages per second against a
single miner node can persistently reduce the block size (i.e., total
Gas of transactions included in a block) by 88.8%/99.2%, at a 0/0.021
Ether per block. In addition, we evaluate DETER’s e�ectiveness on
a number of txpool-based services beyond mining, which includes
transaction propagation, Gas stations [29] and other DApp services.
The results con�rm DETER’s e�ectiveness and low costs, as are
summarized in § 13.5 and described in more details in Appendix 13.

Third, we measure the mainnet and testnets’ exploitability under
DETER attacks. Measuring the mainnet in the presence of testnet
results is necessary as a network’s exploitability, described next,
is speci�c to the network’s deployment. Given each network, we
measure whether critical nodes can be discovered (node discov-
erability) and whether the discovered node can be successfully
attacked (node exploitability). For node discoverability, we propose
two complementary measurement methods to improve the result
accuracy. Measuring node exploitability in a live network poses
challenges, as 1) the target node is a blackbox to us except for a
minimal information-propagation interface, and 2) the measure-
ment is heavily restricted by ethical concerns, esp. in the mainnet.
We tackle these challenges and propose lightweight probe tests by
exploiting Ethereum’s support of transaction replacement. The key
idea is that a node’s internal state, such as a transaction’s presence
in the txpool, can be detected by the success of an attempt to re-
place this transaction with the one at a carefully selected Gas price;
the success/failure of such an attempt is observable.

Our exploitability study shows all the mainnet nodes we dis-
cover are vulnerable under the proposed probes. The result on
Ethereum’s Ropsten [16] and Rinkeby [15] testnets shows that
mounting DETER-X (DETER-Z) attacks on Rinkeby [15]’s top-5
miners can e�ectively reduce the testnet’s number of transactions
included in a block by 1

77⇥ (to zero) (§ 6.2).
Mitigation: DETER vulnerabilities are not by accident, and they are
caused by the fundamental di�culty to design a “perfect” txpool
in the tradeo� between DoS mitigation and miners’ revenue on
Ethereum. Speci�cally, mitigating DETER attacks perfectly with-
out losing any miners’ revenue is hard, because it requires such a
txpool to look into the future just to make an admission decision

at present. For instance, suppose an arriving transaction, say tx ,
is currently a future transaction. A perfect txpool needs to admit
tx if the transaction will turn into a pro�table pending transac-
tion in the future, or otherwise, decline tx . However, whether tx
would turn into a pending transaction depends on the arrival of
subsequent transaction (e.g., another tx 0 from the same sender but
with a smaller nonce), and thus is uncertain. With this uncertainty,
a practical txpool may have to risk admitting a current pending
transaction whose (high) fees may end up being non-collectible
and/or declining a current future transaction whose (high) fees can
become collectible in the end. The former decision is a DoS exploit
while the latter one leads to loss of miner revenue.

Thus, in this work, we propose heuristics for txpool admission
control. In the proposed schemes, we de�ne necessary (but maybe
insu�cient) conditions to describe a DETER transaction and use
them to detect/decline transactions. In other words, the scheme puts
attack mitigation over miner revenue preservation. We evaluate
the proposed mitigation schemes and show that 1) the mitigation
schemes fail all DETER probe tests, resulting in zero attack suc-
cess rates, and 2) the mitigation schemes well preserve and even
increase miners’ revenue under real Ethereum transaction traces.
We conduct the cost evaluation by replaying the transaction traces
collected from the mainnet.
Contributions of this work are listed as follows.
• New attacks: We discover Ethereum clients’ vulnerability in man-
aging uncon�rmed transactions. We design two low-cost attacks,
DETER-X/Z, to disable a remote Ethereum node’s txpool service.
We propose attack strategies targeting various node services in
mining, transaction relay, and Gas station.
• New understanding: We measure and verify DETER-X/Z’s e�ec-
tiveness and low-cost extensively, in the settings of a local node
running di�erent Ethereum clients, testnets and the mainnet. We
propose a non-trivial method to detect exploitability of a blackbox
mainnet node by exploiting Ethereum’s transaction replacement
support. The results show DETER-X/Z vulnerability widely ex-
ist among Ethereum clients, a DETER attack can cause testnets
(Rinkeby and Ropsten) to produce empty blocks at zero Ether cost,
and mainnet nodes underneath critical services can be discovered
and are tested exploitable.
• Mitigation: We propose mitigation schemes that can reduce the
DETER attack success rate to zero while preserving the miners’ rev-
enue. We verify the properties of security and miners pro�tability
under real and synthetic transactions.
Roadmap: § 2 introduces the background of Ethereum transac-
tion processing and txpool. Threat model is presented in § 3. Two
DETER attacks are described in § 4, and strategies to DETER the
mining service are presented in § 5. § 6 presents the measurement
study on the exploitability of real-world Ethereum networks under
DETER attacks. Mitigation schemes are presented in § 7. Respon-
sible disclosure is discussed in § 8 with the conclusion in § 9. In
Appendices are full related works in Appendix 10, attack evaluation
on services beyond mining in Appendix 13, among others.

2 PRELIMINARY
This section presents the background on Ethereum’s transaction
bu�er, namely txpool, which is the foundation of understanding

P3

DETER attacks. To begin with, we �rst describe the transaction
work�ow in Ethereum.

Transaction work�ow: In Ethereum, the life cycle of a trans-
action begins from its owner account signing the transaction and
sending the transaction to an Ethereum node, say N1, typically
through a remote-procedure call (RPC) interface4. Node N1, re-
ceiving the transaction, conducts checks on transaction validity
and priority (as will be elaborated on) before bu�ering it locally
in a data structure called txpool and further propagating it to
N1’s neighbors, say one of which is N2. N2 similarly propagates
the transaction to its neighbors, and the process repeats until the
transaction is propagated to the entire blockchain network. In the
network, each miner node selects a group of uncon�rmed transac-
tions bu�ered from its txpool and runs mining algorithms on the
selected group of transactions. Miners who �nd solutions of the
mining puzzle prepare a block and propagates it to the network. A
node receiving multiple blocks (at the same height) selects the �rst
one and veri�es its mining solution. If it passes, the node removes
the transactions included in this block from its local txpool.

Node N1Txpool

Miner

Admit tx
Evict

Replace

Gas station

Front-run

Read tx

Tx relay
Tx

accelerate

Tx
sender

Dapp services

Node
N2

Node N0

Propagate
tx

Propagate
tx

Propagate
blockRemove tx

RPC query

Ledger

Persist

Figure 2: Ethereum transaction work�ow and the role Node
N1’s txpool plays in it.

Txpool operations: Figure 2 illustrates the work�ow of trans-
action and block propagation described above. It takes a txpool-
centric vantage point on Node N1. The txpool supports three es-
sential operations: 1) An incoming transaction, either directly sent
from the sender account or propagated from a neighbor of N1, is
admitted into txpool (transaction admission). Admitting a transac-
tion tx may trigger two txpool events: 1a) eviction of an existing
transaction tx 0 by tx where tx and tx 0 are of di�erent sender ac-
counts or nonces, and 1b) replacement of an existing transaction
tx 0 by tx where tx and tx 0 are of the same sender and nonce. 2)
An existing transaction in the txpool is read by a downstream
component (transaction read); for instance, a group of transactions
in the txpool may be selected by a miner to include in the next
block. Or transactions in the txpool may be read to determine the
validity of an incoming transaction. Or uncon�rmed transactions
in txpool are read by DApp-speci�c (decentralized application)
services such as Gas stations [7, 29] (to suggest cost-e�ective Gas
prices in real time), DeFi frontrunning bots [43], RPC queries (e.g.,
the RPC API txpool_content [18]), etc. 3) Uncon�rmed transac-
tions in the txpool are emitted to the local miner upon �nding or
receiving a valid block of transactions.

Ethereum transactions: An Ethereum transaction binds a
sender account to a receiver account, where an account is a public

4We will use “RPC service” and “transaction relay”, interchangeably in this paper.

key of an Ether owner.5 Nonce: Ethereum supports “hasty” trans-
action sending, that is, an account can send a transaction, say tx ,
without waiting for the con�rmation of the transaction tx depends
on. To enforce a total-order among hastily sent transactions, each
Ethereum transaction is associated with a nonce, which records a
monotonically increasing counter value per each sender account.
In a txpool, a transaction is of state pending, if its nonce equals
one plus the maximal nonce of the transactions of the same sender
in the txpool (i.e., equal to n+ 1). Otherwise, if the nonce is strictly
larger than n + 1, the transaction is a future transaction. A future
transaction can be a result of the Ethereum network propagating
hasty transactions out-of-order.Gas price: In Ethereum, each trans-
action needs to specify a Gas price, that is, the amount of Ether
the sender is willing to pay to a miner for each unit of “work” it
does for including the transaction into the blockchain. Here, the
work refers to the basic transaction validation workload and that
for executing the smart contract invoked by the transaction. The
work unit is Gas.

RPC services such as infura.io, etherscan.io, quiknode.io have
been the primary means DApp clients use to communicate with the
Ethereum blockchain. For instance, the transactions sent through
infura.io alone accounts for at least 63% of all Ethereum transac-
tions [25]. A RPC service receives from DApp clients JSON data
on its frontend and sends a transaction packing the data to the
blockchain on the backend. Speci�cally, the RPC service runs sev-
eral Ethereum nodes on the backend that propagate transaction-
s/blocks with the blockchain network.

Mining pools. Minimally, a mining pool mines a block by de-
composing a puzzle into several easier versions, sending to miner
participants decomposed puzzles and collecting their solutions (so-
called shares) before paying out rewards to miners. Today, most
blocks on Ethereum aremined bymining pools, and a typical mining
pool is a complex service extended with two frontend capabilities:
an own RPC service that directly accepts its customers’ transactions
and P2P service that propagates transactions and found blocks. For
instance, Sparkpool, the most popular mining pool in Ethereum,
has a RPC-and-P2P frontend service named Taichi network [33]
through which users can receive/send transactions/blocks.

3 THREAT MODEL
The threat model consists of four actors in an Ethereum network.An
attacker controls an external owned account (EOA) and a full node
running Geth client that is connected to an Ethereum network,
such as an Ethereum mainnet. A victim node running the Geth
client contains a victim txpool and a series of downstream services
that read txpool data. The last actor in the threat model is the rest
of the Ethereum P2P network. The nodes in the Ethereum network
run client software such as Geth and Parity, and they conform to
the Ethereum’s protocols for transaction/block propagation. The
threat model is illustrated in Figure 1.

Particularly, we assume the attacker node has been connected
to the victim node as its neighbor and can propagate messages of
crafted transactions. The feasibility of this assumption is practically
evaluated in both Ethereum testnets (§ 5) and mainnet (§ 6.3); Very
brie�y, an attacker can discover the victim node, learn the victim’s
5In this work, we don’t exploit the smart-contract capability of Ethereum and only
consider the basic transaction functionality for Ether transfer.

P4

IP/port/nodeID via measuring the public Ethereum network, and
connect to the victim node via passively waiting for the incoming
connections from or via proactively initiating the handshakes to
the victim node.

The attacker’s goal is to deny the service of txpool to down-
stream components. More speci�cally, when the txpool is read by
these components, a falsely empty snapshot of txpool is read and
legitimate transactions are discarded from the view of the down-
stream services or other nodes. To do so, for instance, the attacker
may purge for once all the transactions currently residing in the
txpool and/or occupy the txpool with her own transactions to
deny the service to other senders’ transactions.

Via a few disabled txpool’es, the attacker wants to eventually
victimize other accounts whose transactions cannot get propagated
to the Ethereum network or included in the blockchain. Also, the
attacker aims to victimize the miners and decrease their revenue
by tricking them to mine on “empty” blocks. The attacker also
aims to disable or manipulate DApp services that depend on un-
con�rmed transactions in txpool, such as manipulating the Gas
price prediction by a real-time Gas station running on txpool.

Besides the attack e�ectiveness, the attacker’s secondary goal
is to lower the cost of her attack. Speci�cally, the cost of a DETER
attack should be lower than the cost of the baseline attack (described
next) by orders of magnitude.

Analyzing a baseline attack: A baseline attack works by the
attacker account sending a �ood of spam transactions to “fron-
trun” other normal transactions and to occupy the limited space
of Ethereum blocks. The attacker can do so by con�guring her
transactions at a higher Gas price than the normal transactions and
thus receiving a higher priority to be processed by miners (i.e., 1000
Gwei). To occupy one Ethereum block without any space for normal
transactions, the baseline attacker needs to send spam transactions
worth Gas of one block limit (i.e., 12.5 million Gas).

We observe the highest Gas price in the recent 200 blocks (from
height 12202391 to 12202591) is consistently below 500 Gwei, based
on the Gas station [31]. We use 1000 Gwei to estimate the highest
Gas price in a block. Thus, the total cost of a baseline attack oc-
cupying a single block is 12.5 · 106 · 1000 = 12.5 Ether. As of this
writing (on Apr. 2021), this cost is equal to 24795 USD.

The baseline spam attack does not achieve the threat goal aimed
in this work: First, the baseline attack incurs high monetary cost
(12.5 Ether for one block). Second, the baseline attack, while vic-
timizing normal transaction accounts, does not deny the service of
Ethereum blockchain itself. Particularly, the miners under the base-
line attack still receive high revenue, actually higher than normal
due to the high Gas price of the spam transactions in the attack.

4 DETER ATTACKS AT A TXPOOL
In this section, we describe the attacks to disable a victim node’s
txpool. The next section describes the broader impacts of a disabled
txpool to the downstream services on the victim node and other
nodes in the Ethereum network.

We �rst describe design motivations based on the observation
of pro�ling txpool in § 4.1. We then present two attack designs,
DETER-X and DETER-Z, respectively in § 4.2 and § 4.3. We propose
attack strategies to victimize a local miner in § 5 and evaluate the
attacks against the local miner in § 5.1.

4.1 Observing txpool’s Eviction Behavior
Table 1: Notations

Notation Meaning
n Max txpool length (e.g., default value 5120)

L/M /H Symbolic value for high/median/low Gas price
V /F /I Valid/future/invalid transactions

Our attack design exploits the eviction (mis)behavior in
Ethereum clients’ txpool. This subsection presents generic test
cases against a remote blackbox txpool to characterize its eviction
behavior.
txpool tests: In a txpool of pre-state S , an eviction takes as input
an incoming transaction tx and produces as output a post-state S 0
and an eviction victim tx 0. We denote an eviction event by state
transition (S, {tx}) ! S 0, {tx 0}. When no transaction is evicted in
a full txpool, it could be (S, {tx}) ! S,ú.

In our model, an Ethereum transaction tx is with two properties:
the transaction state [V IF] and Gas price [HML]. Transaction state
can take values such as valid pending V , invalid pending I and
future transactions F . The property of Gas price can take symbolic
values such as high H , medium M and low L. For instance, VL
denotes a valid pending translation with low Gas price, and an
overdraft pending transaction at high Gas price is denoted by IH .

Given a txpool of capacity n (i.e., storing at most n transactions),
we design two general tests:
t1 Test t1(x1 ·VL + (n � x1) · FM, FH) ! 3|3–|7. The initial state S

contains x1 valid pending transactions at low Gas price (VL) and
n � x1 future transactions at medium price (FM). The incoming
transaction is a future transaction at a high Gas price FH . All
transactions are sent from di�erent accounts.
The partial success of the test, denoted by 3–, indicates that in
the target txpool, a future transaction ({tx} = {FH }) can evict
a valid pending transaction ({tx 0} = {VL}). Additionally, if the
evicting future transaction can persist and is stored in txpool,
the test is a full success, denoted by 3. Otherwise, that is, when
there is no eviction or the eviction victim is FM , the test is a
failure denoted by 7.

t2 Test t2(n · VL,VH + (x2 � 1) · IH) !3|3–|7. The initial state
S contains n valid pending transactions at low Gas price (VL).
The incoming message {tx} contains a valid transaction (VH)
followed by x2�1 overdraft transactions (IH) sent from the same
account. These incoming transactions are at a high Gas price IH .
The partial success of the test, denoted by 3–, indicates that the
overdraft pending transaction ({tx} = VH + (x2 � 1) · IH) can
evict valid pending transaction ({tx 0} = x2 ·VL). Additionally, if
the evicting overdraft transactions of the same sender can persist
in txpool, the test is a full success, denoted by 3. Otherwise (i.e.,
no eviction by any of the x2 � 1 overdraft transactions), the test
is a failure denoted by 7.

Test results of real Ethereum clients: In our study, we set up
1) a measurement node running instrumented Geth and the test
code and 2) a target node running one of the following Ethereum
clients: Geth (Go), OpenEthereum/Parity (Rust), Nethermind (.net),
and Besu (Java). We statically instrument the test Geth node so that
it can bypass local checks and propagate any transactions including
future and invalid transactions to the target node. We consider the
four clients that are deployed on Ethereummainnet. The percentage

P5

of nodes running these four clients on mainnet is illustrated in the
second column of Table 2, from which Geth (83%) and Parity (15%)
are the dominant clients on the mainnet.
Table 2: Pro�ling di�erent Ethereum clients under tests and
DETER attacks. For the twoDETER attacks, success rates are
reported. DETER-Z’s Ether cost is also reported in parenthe-
sis. Note that the baseline attack incurs a cost of 12.5 Ether
per block. The second column refers to the percentage of
mainnet nodes running a speci�c client [27]. Note the Ether
cost is tested under a txpool storing transactions of themax-
imal Gas price 1000 Gwei.
Ethereum
clients

Percentage t1 t2 X Z (Ether)

Geth 83.24% 3 (x1 < 1024) 3 (x2 < 4096) 100% 100% (0.021)
3–(x1 � 1024) 3–(x2 � 4096)

Parity 14.57% 3 (x1 � 2000) 3 (x2 81) 75.6% 100% (2.1)
7 (x1 2000) 7 (x2 > 81)

Nethermind 1.53% 3 3(x2 17) 100% 100% (1.28)
7 (x2 > 17)

Besu 0.52% 3 3 100% 100% (0.021)

We run the two tests against the four Ethereum clients and
evaluate the success of each test. The result is presented in Table 2.
Test t1 fully succeed on all clients except for certain conditions
under Parity and Geth: 1)When x1 2000, Parity does not evict any
pending transaction for an incoming future transaction, rendering
a failed t1. 2) On Geth, when x1 � 1024, the future transactions do
evict existing pending transactions but only 1024 transactions are
admitted to thetxpool, rendering a partially successful t1. Test t2
is successful on all clients excepts for the case that when x2 is larger
than 81 (17), t2 fails on Parity (Nethermind). The failure of these test
cases is due to that these clients enforce the limit of transactions
from the same account. 3) When x2 is larger than 4096, t2 is partially
successful on Geth. That is, sending x2 > 4096 transactions as in
t2 to Geth, the txpool exhibits a behavior that evicts x2 existing
pending transactions and admits only 4096 transactions (the other
x2 � 4096 transactions do evict existing transactions but are not
admitted to the txpool by themselves).

4.2 DETER-X: Exploit Future Transactions
Design motivation: The property tested in t1 can be exploited to
disable a txpool. That is, property t1 implies that a txpool receiv-
ing a future transaction of high price chooses an existing pending
transaction of low price to evict. One can abuse this property by
sending a large number of future transactions to evict all pending
transactions on a txpool. To evade certain clients’ limit of trans-
actions from the same account (recall test results t2), the attacker
prepares multiple accounts to send the future transactions. Because
the future transactions, however high their Gas prices are, do not
charge their sender, the attack that only sends future transactions
incurs zero Ether cost.

Basic attack work�ow: Formally, in our threat model, the at-
tacker initially makes a guess about the value n0 that is larger than
the victim txpool length n, such as n0 = 10 ⇥ 5120 where 5120 is
the default n in Geth.

x1 : The attacker sends a crafted message encoding n0 future
transactions to the victim node. Each of these future transactions
is con�gured with a very high Gas price, much higher than any
existing transactions in txpool (e.g., a practical value is 1000 Gwei).

The success of the attack (DETER-X) is de�ned as that the down-
stream service on the victim node reads a falsely empty set of
transactions from the txpool.

Attack analysis on Nethermind/Besu: Among these clients,
a single step of x1 su�ces to evict all pending and future trans-
actions in the txpool. The crafted future transactions will stay
in the txpool, preventing the transactions subsequently arriving
at the txpool from being admitted. In other words, DETER-X by
conducting a single step of x1 can occupy the txpool forever. Note
that those crafted future transactions cannot be removed upon the
miner �nding the next blocks.

Attack customization on Geth: On Geth, a single step of x1
can evict all pending and future transactions in the txpool. How-
ever, after that, Geth limits the maximal number of future trans-
actions that exist in txpool by nf < n. Thus, only nf (e.g., 1024)
crafted transactions sent in x1 can persist in the txpool. Subse-
quently arriving transactions will be admitted to and repopulate
the txpool.

Thus on Geth nodes, the attacker needs to periodically run step
x1 at a certain frequency. Ideally, assume the attacker can know (or
predict) the next time point, sayTi , when the txpoolwill be read by
the local miner (e.g., upon �nding a block) or another downstream
service. Estimating the next Ti is speci�c to services and will be
described in § 5.

Services
Other
nodes

txpool

Victim node

Attacker
node

x1
Read a falsely
empty txpool

x1 Read a falsely
empty txpool

Period T

Figure 3: Work�ow of a successful DETER-X attack that
purges a victim txpool twice, so that the downstream service
reads a falsely empty txpool twice.

Knowing Ti , the attacker sends her crafted future transaction in
x1 right beforeTi to reduce the number of subsequent transactions
repopulating txpool. After this round, the attacker waits until
the next estimated read time Ti+1. She then repeats the action of
sending future transactions in step x1 . The entire attack work�ow
is illustrated in Figure 3.

4.3 DETER-Z: Exploit Latent Invalid
Transactions

We design adaptive attacks to exploit the behavior tested in t2,
that is, a txpool may admit invalid transactions by evicting valid
transactions. Intuitively, an attacker can send a su�cient number
of invalid transactions at high Gas price to evict existing pending
transactions at a lower price, thus purging the txpool. As the
invalid transactions don’t charge their senders, this attack is of low
cost. We thus propose to construct the basic DETER-Z attack:

P6

Services
Other
nodes

txpool

Victim node

Attacker
node

z1 Purge txpool

Decline incoming txs

z2

Read txpool of
attacker s txs

Figure 4: Work�ow of a successful DETER-Z attack; note
that step z1 applies to all Ethereum clients and step z2 is
required only for Geth.

z1 : In our threat model, the attacker node sends a message of
n0 pending transactions to the victim node. The pending transac-
tions are sent from the same account of balance B, and each of
them spends B Ether minus the transaction fee. The nonces of these
transactions are consecutive. We call these transactions latent in-
valid transactions because each individual transaction is valid but
together all n0 transactions except for the �rst are overdraft trans-
actions. The �rst transaction with the smallest nonce is denoted by
tx0. All n0 transactions are with high Gas price, say pc . pc is slightly
higher than any existing transaction in the txpool.

Attack analysis on Besu: Running z1 on Besu is e�ective, as
Besu does not limit the number of transactions by the same sender.

Attack customization on Geth: Geth allows the eviction of
existing pending transaction by latent overdraft transactions, but
may not admit these overdraft transactions in the txpool. Running
the step z1 would leave empty slots in the txpool, which allows the
subsequent transactions to be admitted. To avoid this and to make
the attack payload occupy the txpool, we propose the following
attack work�ow.

Against a target Geth node, the attacker �rst still runs Step z1
by sending n0 transactions of the same account. She then the second
step as follows.

z2 : The attacker sends a message of n0 future transactions to
the victim Geth node. Each ns future transactions of the n0 ones
are sent from the same account, so there are a total of n0

ns di�erent
accounts. The maximal Gas price of existing transactions in the
txpool is 1000 Gwei, which is higher than 99.9% of transactions
on the mainnet. The future transactions are con�gured with the
Gas price higher than all existing transactions in the txpool but
slightly lower than pc , say pc � 1. The two-step design of DETER-Z
a Geth node is depicted in Figure 4.

Attack analysis on Geth: After the second step z2 , the victim
Geth node stores the maximal number of future transactions al-
lowed by its txpool. As Gas price pc � 1 is lower than the pending
transactions’ price in z1 , these future transactions would not evict
the latent invalid transactions sent in z1 .

After the two steps, consider that the victim node receives a
legitimately propagated transaction tx 0. As a normal transaction,
tx 0’s Gas price would be much lower than pc . Thus, it is declined
and would not be admitted into the txpool.

Now consider that a block that includes tx0 arrives at the victim
node or is found by the node itself. Receiving such a block, the node

would evict tx0 and all other pending transactions sent in Step z1 .
Thus, the txpool is fully occupied by the attack payload between
z2 and when the next block is received.
Attack customization on Parity/Nethermind: These two

clients limit the maximal number of transactions per sender in their
txpool (by ns = 81 and 17, respectively). To evade the limit, the at-
tacker runs a customized Step z1 where she creates n0/ns accounts,
and under each account, sends ns transactions ofVH + (ns � 1) · IH .
Using multiple accounts increases the cost of the attack.

4.4 Evaluation on a Local txpool
This subsection presents the evaluation to answer the following
research question (RQ).

RQ1. How e�ective and costly is a one-shot DETER attack in
disabling a target txpool?

With the same setting (as described in § 4.1), we run the two
DETER attacks. Initially, the target node is loaded with pending
transactions to its capacity, that is, np transactions sent from np
di�erent accounts. During the attack, the test node sends a single
round of DETER payload (i.e., Step x1 in DETER-X and z1 / z2 in
DETER-Z) to the target node running di�erent clients. It then im-
mediately reads the txpool content by issuing a txpool_content
RPC request [18]. We calculate the number of evicted transactions
by subtracting from np the number of original pending transac-
tions found in the RPC result. The number of evicted transactions
over np is reported as the attack’s success rate. For instance, an at-
tack of 90% success rate would evict 90% pending transactions that
would otherwise be accessible by a downstream service. DETER-X
has zero cost by design. For DETER-Z, we then turn on the target
node’s mining for long enough and observe which transactions are
included in the blocks produced. We report the DETER-Z’s cost
by the Ether of the test node’s transactions in all the blocks (i.e., a
transaction’s Ether is the product of its Gas and its Gas price).

The results are presented in Table 2. In general, the success rates
of DETER-X and DETER-Z are 100% and DETER-Z’s cost is 0.021
Ether per block, with the following notable exceptions: 1) DETER-X
against Parity has a 75.6% success rate because Parity disallows
the eviction of pending transactions by future transactions when
there are fewer than 2000 pending transactions in the txpool. 2)
DETER-Z against Parity incurs 2.1 Ether per block, because it limits
up to 81 transactions per sender account. A DETER-Z attack has to
prepare multiple accounts, each sending 81 transactions, in order
to evict all pending transactions. 3) Similarly, DETER-Z against
Nethermind incurs 1.28 Ether, because of the similar reason, that is,
Nethermind limits a maximal 17 transactions of the same sender.

In summary, a DETER-X attack is always of zero cost (in both
Gas and Ether), as future transactions don’t charge fees. A DETER-
Z attack’s cost is due to the �rst transaction, which is always 21000
Gas. In other words, a successful DETER-Z attack can occupy a
block space of 16 · 106 Gas (i.e., the block Gas limit) by abusing only
21000 Gas. In terms of Ether cost, as a successful DETER-Z attack
needs to make its �rst transaction’s Gas price higher than the prices
of all existing transactions in the victim txpool, the DETER-Z’s
Ether cost depends on the txpool content. In our experiment, the
highest Gas price of existing transactions is 1000 Gwei per Gas,
under which DETER-Z attack’s Ether cost is reported as in Table 2.

P7

5 ATTACK STRATEGIES AT MINERS
This section presents the attack strategies (§ 5.1) and evaluation (§ 5)
on disabling an Ethereum node’s mining. There are other Ethereum
services beyondmining that depend on the txpool data.We summa-
rize our evaluation results of DETER-ing the other txpool depen-
dent services in § 13.5 while leaving the full details to Appendix 13.

5.1 Proposed Strategies
Given a successfully disabled txpool, the attacker’s goal is to dis-
able the victim node’s miner, so that the block it �nds will be empty.

Preliminary on miner-txpool interaction: An Ethereum node
follows the work�ow below to mine the transactions in the local
txpool. Upon receiving a block, sayb0, the node evicts from txpool
the transactions in b0 and their dependent ones (e.g., the invalid
pending transactions as in DETER-Z). After the miner appends the
block b0 to the tail of its blockchain, it reads the current content
of txpool to select the batch of transactions, such as based on Gas
prices, to mine for the next block. For instance, a miner reading
the txpool at time t1 may need period dt4 to �nd a block, thus
the block found at time t1 + dt4 only contains the transactions in
txpool before t1.

DETER-Z’s strategy: To attack a co-residing miner, one can apply
DETER-Z in a straightforward way. That is, consider a victim block
found at time t� and its predecessor block propagated at time tp .
A DETER-Z attack can succeed as long as the attacker �nishes the
attack (Steps z1 and z2) after tp and before t� .

DETER-X’s strategy: When attacking a miner, a DETER-X at-
tacker needs to ensure the right timing, that is, the submission time
of the attacker’s request (in sending x1) should be right before
when the miner reads txpool, so that the miner reads an empty
txpool that is just purged. Denote the time when the miner reads
a txpool by tp . If the attack request occurs after tp (or long before
tp), chances are the miner will read a non-empty txpool that is not
yet purged (or that is re�lled by subsequent transactions).

The attack strategy is this: The attacker node watches a local
clock. If time T passes on the clock, it sends the attack request and
resets the clock. It also resets the clock upon the arrival of a block.

Analysis of attack strategy: It is known that the sequence of
block arrivals in a proof-of-work blockchain can be modeled as a
Poisson process, under the assumption of constant di�culty and
hash rate [49, 59]. Based on the classic probability theory [56],
the wait time for the next block is a random variable following
exponential distribution. That is, given the average block time
T0, the block arrival rate is � = 1

T0 . Thus, the wait time for the
next block, denoted by x , follows the exponential distribution with
density function: f (x) = �e��x . The probability that the next block
arrives after time T is the cumulative distribution function of x :

Pr [x > t] = e��t = e�
t
T

Now consider the initial case that a DETER-X attacker resets his
clock.6 The success rate of the attack is the number of transactions

6There are actually two possible initial cases, the attacker node receiving a newly
arrived block or the attacker node having just sent the attack message. As the block
arrival events are independent and the exponential distribution is memoryless, we can
consolidate the two causes in one initial case.

discarded in the miner’s next read of txpool divided by all valid
transactions received until the next txpool read.

T T T

x

Block arrival

Send attack

Figure 5: A process with two block arrivals between which
the attacker sends two requests. Assuming independent
block arrivals, this can be modeled as a Poisson process.

Generally, suppose there are n periods, each lastingT , before the
arrival of the next block, as in Figure 5. In that txpool read, n ·Tx
percentage of the transactions are purged by the n attack requests
and 1 � n ·T

x percentage of transactions are read by the miner. This
leads to the success rate blow:

S(n) = n ·T
x

(1)

The probability this event occurs (i.e., the next block arrives after
the end of n-th period and before the end of (n + 1)-th period) is:

Pr (n,T) = Pr [x > n ·T] � Pr [x > (n + 1) ·T]

= e
� nT
T0 � e

� (n+1)T
T0 (2)

Hence the expected success rate under attack frequency 1
T is:

E[S] =

1’
n=0

Pr (n,T) ·
Ø (n+1)T
x=n ·T S(n)dx

T

=

1’
n=0

n · ln (1 + 1
n
)Pr (n,T) (3)

0 20 40 60 80 100
Block height

0

100

101

102

C
u
m

u
la

ti
v
e
 n

o
.

o
f

in
cl

u
d
e
d
 t

x
s

No attack

DETER-X (0.25 msg/sec.)

DETER-X (2 msg/sec.)

(a) Included txs under DETER-X

0 20 40 60 80 100
Block height

0

100

101

102

103

C
u
m

u
la

ti
v
e
 n

o
.

o
f

in
cl

u
d
e
d
 t

x
s

No attack

DETER-Z (0.1 Gwei)

DETER-Z (10 Gwei)

(b) Included txs under DETER-Z

Figure 6: DETER a miner in a local network

DETER - Success rate Cost
attack rate Measured Theoretical (Eqn. 3) (Ether)
X-
.25msg/sec

65.2±4% 61.33% 0

X-2msg/sec 84.9±3% 91.32% 0
Z⇠ .25tx/sec 99.3±0.1% 100% 0.021/block
Baseline 96.6±0.1% 100% 12.5/block

Table 3: DETER & baseline attacks

P8

5.2 Evaluation on a Local Miner Node
The evaluation answers the following research question (RQ):

RQ2. How e�ective and costly is sending DETER attacks con-
tinuously using the strategies presented in § 5.1 in disabling a
miner with arriving transactions?

We set up a private network of three nodes: A normal node, an
attacker node and a victim miner. The victim is connected to both
the normal and attacker nodes. There is no connection between
the normal and attacker nodes. In each experiment to be described
below, we con�gure the normal node to generate normal transac-
tions and send them to the victim, at a rate of 2 transactions per
second. The process lasts for 500 seconds, and after that, we turn
o� the mining on the victim node. The metric we use for attack
e�ectiveness is the number of normal transactions included by the
victim miner in each block.

In our evaluation of DETER-X, the attacker sends each x1 mes-
sage with n0 = 5120 crafted future transactions to the victim. First,
we �x the rate in which regular transactions are generated at 2
transactions per second and vary the attack rate between 0.25 and
2 messages (x1) per second. For comparison, we also run the ex-
periment without attacks. We run each experiment with mining
100 blocks and report the cumulative number of transactions in-
cluded in the blockchain. For instance, at (relative) block height 45,
we report the total number of transactions included from the �rst
block to the 45-th block. As mining is a non-deterministic process,
we repeat each experiment by three times and report the average
cumulative number with its standard deviation in Figure 6a. The
result shows that as block height grows, the cumulative number
of included transactions increases linearly (note the log scale of
Y axis). At the block height of 100, there are 764 transactions in-
cluded when there are no attacks. By comparison, at the same block
height 100, the number of included transactions under DETER-X of
0.25 messages per second (2 messages per second) is 266 transac-
tions (115 transactions), leading to the attack success rate (de�ned
as the percentage of regular transactions discarded in a block) of
1 � 266

764 = 65.2% (1 � 115
764 = 84.9%). Statistically speaking, it can

be seen over time (at di�erent block heights), there is a consistent
disparity between the result with DETER-X attacks and that with-
out. The disparity clearly shows the e�ectiveness of our DETER-X
attack with varying attack rates – The larger the attack rate is, the
larger the disparity is.

In our evaluation of DETER-Z, the attacker sends a message of
n0 = 5120 pending transactions described in § 5 , as well as another
message ofn0 = 5120 future transactions, to the victim. The attacker
sends these two messages every time it receives a new block from
the victim. Figure 6b reports the same cumulative metric for DETER-
Z, from which one can see DETER-Z is much more e�ective than
DETER-X. Sending approximately 0.25 messages per second, the
DETER-Z attack achieves a success rate of 99.3%.

The table in Figure 3 summarizes the measured success rates
for the two DETER variants from our previous experiment results.
We apply Equation 3 to DETER-X under rates 0.25 and 2 messages
per second. The theoretical results roughly fall within the error
rates of the measured results. DETER-Z is expected to achieve 100%
success rate. In reality, the measured rate is slightly lower than
the perfect 100% rate, which we suspect is due to spurious block

production (e.g., two blocks are mined at very close time). We also
carry out the baseline attack described in the previous subsection
(§ 3). The measured success rate is also lower than the expected
100% success rate due to the same suspected reason. At last, in
this table, we show the Ether cost of the attacks. DETER-X relies
only on future transactions and do not cost the attacker any Ether.
In DETER-Z, the attacker needs to pay the fee of one transaction
(the �rst pending transaction) per block, minimally 21000 Gas at
1000 Gwei (i.e., 0.021 Ether). The cost of the baseline attack is 12.5
Ether as previously described. In summary, DETER-X incurs zero
monetary cost and achieve reasonable success rates at low attack
rate. DETER-Z is very e�ective with almost 100% success rate and
its Ether cost is 1000⇥ cheaper than the baseline attack.

6 MEASURING DEPLOYED NETWORKS’
EXPLOITABILITY

This section presents the measurement studies on the exploitability
of deployed Ethereum networks, including testnets and the mainnet.
We �rst describe the design rationale in § 6.1 and then the two
studies on testnets in § 6.2 and on the mainnet in § 6.3.

6.1 Design Rationale
In the previous sections, our evaluation focuses on the attack ef-
fectiveness on Ethereum clients with the default con�gurations.
And the evaluation is set up on a single Ethereum node under our
control. This section’s goal is to understand a deployed Ethereum
network’s exploitability under DETER attacks. This is necessarily
a di�erent goal (from previous sections), because an attacker who
can successfully DETER a controlled node may be hindered when
attacking a deployed network: First, in a deployed network, the crit-
ical nodes to a network’s operation can be hidden from the attacker,
leaving her unable to discover the attack targets in the �rst place.
This motivates our �rst measurement goal, node discoverability of
an operational network. Second, even the attacker can discover and
connect to a critical node, the node may be con�gured to weaken or
mitigate the DETER attacks, for instance, txpool can be con�gured
to decline future transactions altogether to be resilient to DETER-X.
This motivates our second measurement goal, node exploitability of
an operational network.

We measure two subjects, testnets and the mainnet. These two
types of Ethereum networks serve di�erent purposes in operation
and have di�erent levels of impacts to the real world. Concretely,
the purpose of testnets is for testing DApps pre production, and
they are mainly used by DApp/blockchain developers. The purpose
of mainnet is to serve actual DApps in their business, and it is
accessed by hundreds of millions of Ethereum DApp users.

Our measurement studies on testnets and the mainnet di�er
in their measurement methods. For the testnets, we aim to mount
DETER attacks directly (with parameters tuned down) and expect to
observe some temporary service degradation. By this means, we can
produce de�nitive results regarding exploitability. For the mainnet,
our measurement method is designed with ethical concerns as
the �rst-class citizen and aims at lightweight test probes on some
necessary (but insu�cient) conditions of DETER vulnerabilities.

Particularly, testing the mainnet is necessary, as its exploitability
is speci�c to the client con�gurations, running discovery protocols,
and other deployment-speci�c settings on the mainnet. Another

P9

network’s measurement results cannot be generalized to infer the
mainnet’s exploitability.

6.2 Measuring Testnets’ Exploitability
This subsection presents the measurement study to answer the
following research question (RQ).

RQ3. Can a DETER attacker discover the critical service nodes
in a testnet (node discoverability)? Can these discovered nodes
be e�ectively attacked (node exploitability)?

6.2.1 Measurement Methods. Attack Strategy: With the goal to
disable an Ethereum network, the attacker takes the strategy to
�rst discover critical nodes in the network and then direct her
DETER payloads at the nodes. Recall that operational blockchains’
functionalities are centralized in the hands of “top” services, such
as infura.io for transaction relay and Sparkpool for mining blocks.
A critical node is de�ned as the Ethereum node serving the backend
of the top services.
Methods to measure node exploitability: In testnets, node ex-
ploitability is tested by directly sending DETER payloads (in a short
period) and observing the service interruption, such as the block
size when the attacked service is a mining pool or the slowdown
of transaction propagation when the target is a RPC service. More
challenging is measuring node discoverability as described next.
Methods to measure node discoverability: To discover the crit-
ical nodes, we propose to leverage the client version “codename”
disclosed through the service’s frontend RPC interfaces. Speci�-
cally, given a known “top” service that exposes the RPC interface,
we send web3_clientVersion RPC queries and obtain the results,
from which we select the unique ones or the ones bound to the
speci�c service (e.g., SrvR1’s client codename omnibus is unique).

We then launch a su�cient number of “supernodes” to join the
mainnet. We con�gured these supernodes to stripe away their de-
fault limit of neighbor numbers. We run these nodes long enough
until they are connected the maximal number of nodes in the net-
work (i.e., their neighbor count becomes stable). After that, the
supernodes propagate transactions and blocks with their neighbors.
During this entire process, the supernodes, as they are statically in-
strumented, log all the messages that they receive and send, which
include the peer-discovery messages, propagated blocks, propa-
gated transactions, among others.

On the collected messages, we �nd the peer-discovery messages
that match the known services’ “codenames” (i.e., omnibus). A node
Nx that sends a peer-discovery message with a matching codename
of service S is on the backend of service S .

In addition, when discovering critical nodes behind a mining
pools, we analyze the block-arrival messages. Each block-arrival
message is a triplet: the block hash, the sender (i.e., the supernode’s
neighbor that propagates the block), and the timestamp recording
when the supernode receives the block-arrival message. Here, we
consider both �nalized blocks in the blockchain and uncle blocks
that are “reorganized” out of the permanent blockchain. For each
block, we �nd its “home” node by choosing the neighbor who sends
the block-arrival message at the earliest time. Then, for each given
neighbor, we count the number of blocks whose home nodes match
this neighbor’s nodeID. By this means, we can �nd top miners in

the network as the supernode’s neighbors that have produced most
blocks in an extended period.
6.2.2 Measurement Results. Discovering top mining pools: We
apply the above methods to �rst discover top miners in Ropsten.
Speci�cally, we launch two supernodes joining the testnet and run
them for 24 hours until their neighbor sets become stable (i.e., stop
growing). In this period, the two supernodes are connected to 840
nodes in Ropsten and receive a total of 6200 distinct blocks. We
use the data aggregation described above to plot the distribution of
blocks over their home miners as in Figure 7a.

From the result, we choose to the target of DETER attacks (or
exploitability tests) the top four miner nodes who jointly produce
88.38% of all blocks. We then respectively mount DETER-X and
DETER-Z to attack these selected top miners. Our goal is to under-
stand, by DETER-ing these top miners, how much interrupted the
global mining activity of the testnet is.

We similarly set up two other supernodes in connection with
490 nodes in Rinkeby, discover the top miners there and conduct
node-exploitability tests. Due to the space limit, we only show the
result of attacking Ropsten via DETER-X and leave the results of
other settings to Appendix 13.4.

In the above setting, we con�gure DETER-X by sending n0 =
5120 future transactions with a Gas price of 1000 Gwei at the rate
of 1 message per second. The DETER-X attacks to the selected top
miners are mounted in parallel. To control the service interruption,
we restrict the duration of attack in Ropsten under 60 seconds. After
the attack, we took a screenshot of the monitored block history
from etherscan.io [28].

In the screenshot in Figure 7b, our attack starts at block #9450103
and stops at block #9450106. Before the attack starts (blocks
#9450100-9450102), each block includes at least 46 transactions
and the used Gas in each block varies between 32.3% and 98.9%
(normalized over the Ethereum block Gas limit). During the attack
(blocks #9450103-#9450106), each block includes at most 1 trans-
action and the used Gas per block is below 1.8%. Note that these
four blocks are mined by miners under DETER-X attacks. After the
attack stops (blocks #9450107-#9450109), for blocks #9450107 and
#9450109, each block includes at least 31 transactions and has a
used Gas per block above 99%. These two blocks are found by the
miners not under our DETER-X attacks. Block #9450108 includes
only one transaction and is mined by the miner under attack. Note
that even though the attack stops when Block #9450108 is produced,
it is likely that its home miner 0x4b0c ... reads txpool before the
attack stops, and it reads a purged txpool.

Overall, by comparing the numbers before/during/after the at-
tack, we show the DETER-X attack of 0 Ether cost can reduce the
block size in Ropsten by 31�77⇥ in terms of the number of included
normal transactions, and by 18 � 55⇥ in used Gas per block.

6.3 Measuring Mainnet’s Exploitability
This subsection presents the measurement study to answer the
following research question (RQ).

RQ4. Can a DETER attacker discover the critical service nodes
in the mainnet (node discoverability)? Can these discovered
nodes be e�ectively attacked (node exploitability)?

P10

(a) Top miners in Ropsten

Attack
begins

Attack
stops

(b) Screenshot from etherscan.io: red cross indicates the miners under DETER-X attack.

Figure 7: Evaluation of DETER-X attack on the top-4 miners in the Ropsten testnet.

6.3.1 Measurement Method. Design rational: Our goal is to mea-
sure the DETER exploitability of an identi�ed mainnet node. A
naive approach is to directly run the original test t1/t2 (recall § 4)
against the mainnet node. Unfortunately, this does not work for a
mainnet node which we don’t have control. Speci�cally, measur-
ing DETER vulnerability entails setting up the txpool with certain
initial transactions and observing an eviction by incoming future/in-
valid transactions on the target node. Directly carrying out these
actions requires privilege (e.g., turning on RPC interface as in t1/t2),
which we don’t have if the target is a mainnet node operated by
others. Moreover, the admission of a future transaction (as in t1)
and the eviction by a latent invalid transaction may only change
the internal state and is not externally observable.7 Besides, even if
an eviction can be detected on a mainnet node, attribution to the
right cause can be challenging, as a mainnet node, unlike a local
node in a controlled environment (in § 4.4), needs to also process
normal transactions propagated in the “background.” An eviction
can be attributed to a background transaction or a test transaction.

To address the measurement challenges, our idea is two-fold:
1) Instead of observing the opaque future transaction directly, we
send a pending transaction to be evicted by the future transaction
and observe its behavior instead. As the pending transaction is
propagated, it is observable across nodes. 2) Instead of relying on
RPC service that we cannot con�gure on the mainnet, we exploit
the transaction replacement capability in the standard Ethereum
protocol: An incoming transaction tx2 may replace an existing
transaction tx1 of the same sender and nonce, if tx2’s Gas price is
su�ciently higher than tx1’s (e.g., higher than 110% of tx ’s Gas price
in Geth). The insight here is that when sending a tx2 at price lower
than 110% of tx1’s Gas price, say 105%, observing the propagation of
tx2 on other nodes implies that txpool does not initially contain tx1.

To ensure that 105% is low enough, we pro�led all existing
Ethereum clients. Denote by R the minimal Gas price bump neces-
sary to replace an existing transaction. Table 4 shows the pro�ling
results, in which all clients’ R are above 105%, which is also consis-
tent with existing works [67].

Our design also addresses the new challenges presented by eth-
ical measurement on the mainnet. Instead of purging the entire
txpool and victimizing all residing transactions there, our mainnet

7By contrast, admission of a pending transaction to the txpool is externally observable,
as that results in the admitted pending transaction propagated to other nodes.

Table 4: Gas price bumps in di�erent Ethereum clients.
Geth Parity Nethermind Besu

R 110% 112.5% 110% 110%

test is designed to a�ect only the transactions with too low Gas
price to be included in the blockchain (within the default three-hour
drop deadline).

Figure 8: Running test t1m against a mainnet target node.

Mainnet test t1m : Suppose the target is to measure the DETER-X
exploitability of a mainnet node T . Initially, we set up a measure-
ment node M and an observer node O , separately connecting to
T . We double-check if node M’s txpool is full, and only proceed
upon a fulltxpool. In 1 , Node M sends a pending transaction
tx1 of medium Gas price p such that p is higher than at least s0
(e.g., s0 = 520) existing transactions in NodeM ’s txpool. Note the
txpool’s capability is n = 5120 transactions. Node O checks if tx1
is propagated by nodeT . It proceeds only if this is true. In 2 , Node
M sends to Node T s future transactions, each at price p + 1. The
number of future transactions s > s0 = 520. In our measurement,
Node M runs a statically instrumented Geth client so that it can
propagate future transactions to T . In 3 , immediately after the
previous step, NodeM sends Node T one replacing transaction tx2,
whose price is 1.05 · p + 1. At last, Node O observes if it receives
tx2 from node T . If so, the test is a success , denoted by 3, which
indicates that Node T does evict tx1 by one of those future transac-
tions. We denote this test by t1m (s,p) =3|7. An illustration of the
measurement process is in Figure 8.
Measurement e�ectiveness: Consider the situation right after
Step 3 . If tx1 is evicted by one of the future transactions, tx2 will

P11

arrive as a new transaction which will be admitted to the txpool
and propagated to T ’s neighbors, including Node O . If tx1 is not
evicted, tx2 will arrive as a transaction attempting to replace tx1
which will fail because of its Gas price 1.05 · p + 1 < 1.1 · p. Thus,
in this case, Node O cannot observe the propagation of tx2.

In practice, when there are normal transactions propagated to the
target mainnet node, the normal transactions are assumed to arrive
at a volume much lower than the burst of s future transactions in
the test. Thus, a normal transaction may evict one of the s0 existing
transactions at lower Gas prices but not tx1.
Mainnet test t2m : We propose a mainnet version of test t2, named
t2m . Similar to t1m , the measurement node M �rst propagates to
the target mainnet node x2 transactions tx1,0, tx1,1, . . . tx1,x2 at
price p higher than s other transactions in the txpool, then sends
a message of s latent invalid transactions at price p + 1, and at
last sends x2 replacing transactions tx2,0, tx2,1, . . . tx2,x2 at price
1.05 ·p+1. The observer nodeO observes the replacing transactions
that are propagated to it. If all (or less than) x2 transactions are
propagated, the test is a full (or partial) success, denoted by 3 (or
3–). Otherwise, if none of the x2 transactions are propagated, the
test fails, denoted by 7.
Ethical designs: We take extensive measures to address the ethical
concerns. First, the measurement methods presented above limit
the prices of crafted transactions to be lower than p, thus leaving
the existing pending transactions on the tested node (i.e., node T)
una�ected during and after the test. Recall price p is set s.t. 10% of
existing transactions on Node T have lower prices than p.

Second, to minimize the impacts on the 10% pending transactions
on the tested node T , we sent the these transactions after each test
to “re�ll” the txpool. To do so, in our studies, we increase the length
of the measurement node’s txpool to ensure enough transactions
are bu�ered there.

Third, we check 1) the blocks generated during and right after
each test are full and reach the block Gas limit, and 2) the lowest
Gas price of the transactions in those blocks is higher than p. These
two conditions jointly ensures that the presence of the test, which
a�ects at most 10% of the transactions in the txpool, does not a�ect
the transactions included in the blocks, thus leaving no long-term
e�ect on the blockchain.

6.3.2 Measurement Results. Node discoverability in RPC ser-
vices: To discover the critical nodes in the mainnet, we use the same
method described in § 6.2.1, only with di�erent con�gurations as de-
scribed next. We send web3_clientVersion RPC queries to eight
well-known RPC services (including infura [9], blockdaemon [4],
etherscan [28], quiknode [14], et al), and �nd that SrvR1 and SrvR2
nodes8 bear unique codenames.

We then launch eight “supernodes” to join the mainnet and run
them in a 7-day period until the neighbors of each supernode stop
growing and are stable. Here, launching eight supernodes increases
the node coverage in the mainnet. Using the measurement methods
described in § 6.2.1, we discover 48 nodes serving the backend of
SrvR1 and 1 node of SrvR2, as presented in Table 5.

Node discoverability in mining pools: To discover the top
miners on the mainnet, we reuse the same methods with that of
the testnets as described in § 6.2.1. We reuse the eight mainnet
8We anonymize the names of these services that we conduct tests on.

Table 5: Critical mainnet nodes: Discoverability and ex-
ploitability (We anonymize the two services’ labels by XX).
Service name # of nodes t1m /X t2m /Z Client-codename
Mining pools
SrvM1 59 3 3 Geth-turbo
SrvM2 8 3 3 Geth-ethereumsolo,

Geth-ethereumpplns
SrvM3 6 3 3 Geth-XX
SrvM4 2 3 3 Geth-XX
RPC services
SrvR1 48 3 3 Geth-omnibus
SrvR2 1 3 3 Geth-ethshared

supernodes in the previous experiment. Speci�cally, we �rst check
if a mining pool provides a RPC service by visiting its website. We
did so for all top mining pools listed on the ranking website [11].
If a RPC service is provided, we use the method described previ-
ously to discover the mining pool’s codename. We found mining
pools SrvM1’s [17] nodes run Geth clients with codename turbo,
and SrvM2’ [22] on clients of two codenames, ethereumsolo and
ethereumpplns. Other mining pools’ codenames are strongly sug-
gestive w.r.t. their names. Then, we use the found codename to
match the peer-discovery messages collected through the eight
supernodes and discover the neighbor nodes that serve the back-
end of known mining pools. Additionally, the supernodes monitor
the block-propagation messages and their timings to verify the
discovered top mining-pool nodes.

After searching the codenames in the peer-discovery messages
collected, we found 59 nodes in SrvM1, 8 nodes in SrvM2 and 6
nodes of SrvM3, as listed in Table 5. Note in our experiments, if
waiting for long enough, the measurement node can always be
connected to the nodes of the target mining pool. Particularly, we
have not found mining pools that only connect to a pre�xed set of
nodes.

Node exploitability: For each identi�ed critical node (from
§ 6.3.2), we run the above test t1m and t2m , respectively for measur-
ing DETER-X and DETER-Z exploitability. As all identi�ed nodes
run Geth clients, we use the Geth-default setting in our tests, such
as n = 5120. For each service, we pick two random nodes to the
two tests, and each test is run for three times to ensure the same
result is produced. We report the result in the two columns named
“t1m /X” and “t2m /Z” in Table 5. All tests are success, and all tested
nodes are vulnerable under both DETER-X and DETER-Z attacks.

7 ATTACK MITIGATION
Due to the impossibility result discussed in § 1, we propose heuris-
tics for DETER mitigation and miners’ pro�tability preservation.
We propose two mitigation schemesM0 andM1 that respectively
add restriction to transaction admission and eviction policies. Due
to the space limit, we put M0 in Appendix 14.1. What follows is
mitigation schemeM1.
Mitigation schemeM1: We add three transaction-eviction rules
over the underlying txpool: M1a) It declines an incoming future
transaction if it evicts a valid pending transaction in the txpool.
M1b) It declines an incoming invalid transaction if it evicts a valid
pending transaction in the txpool. M1c) It declines an incoming
transaction if it evicts another pending transaction and leaves a
future transaction in the txpool. For instance, consider two pending

P12

transaction tx1 of nonce n+1 and tx2 of nonce n+2. If tx1 is evicted,
it makes tx2 a future transaction. Such an eviction is prohibited
by M1c). M1d) Other than the above, it optionally enforces the
following eviction priority, that is, VH > VL > [FI]H > [FI]L
(valid transaction preceding future or invalid transactions, even
their Gas prices disagree). Note thatM1 does not restrict transaction
admission on a txpool if it does not trigger eviction.

Security analysis: With M1a), a DETER-X payload will be de-
clined. WithM1b), a DETER-Z payload will be declined.M1a) and
M1b) work for generic initial state of a txpool.M1c) defends against
DETER attacks in the special case where incoming transactions
trigger transforming existing transactions into future transactions.
In addition to security analysis, we evaluateM1’s security by im-
plementing it in our txpool simulator (as will be described) and
measure the success rate of DETER attacks on it.

Schemes Miners’ revenue DETER security
(Ether) t1/X t2/Z

Geth (default) 16.5388 3/3–(Table 2)
M0 (in Appendix 14.1) 15.9506(�3.56%) 7 7

M1 16.5423(+0.002%) 7 7

Table 6: Evaluation of miners’ revenue and security across
mitigation schemes and Ethereum clients: All clients are
con�guredwith the same txpool length of 5120 transactions.

Table 7: Transaction statistics during the evaluations onmit-
igation schemes. “#” is number, “txs” refer to transactions,
and conditions F /I mean future/latent invalid transactions
being declined. Conditions FH ! VL/IH ! VL mean the
declined transactions are future/latent invalid transactions
with highGas prices that, if not declined, would have evicted
pending transactions. Statistics labeled by � are not col-
lected in our experiments due to the lack of usefulness.
Schemes # of declined txs

(F)
of declined txs
(I)

of declined txs
(FH ! V L)

of declined txs
(IH ! V L)

Geth 1395 1589 0 0
M0 9588 1899 � �
M1 288 353 287 322

Evaluation of mitigation schemes: We evaluate mitigation
schemes in terms of miners’ revenue and the success rates of DE-
TER attacks. The two mitigation schemes are implemented on Geth
and are evaluated under real transaction traces. We use Geth’s de-
fault transaction-admission policy as the baseline for comparison.
Due to the space limit, we leave other experiments, such as miners’
revenue with synthetic transactions and on other Ethereum clients,
to the Appendix 14.

For security evaluation, we run tests t1 and t2 with varying pa-
rameters (x1 and x2) and observing the test results on the two
mitigation schemes. As shown in Table 6, all tests under all parame-
ters fail with 7 (i.e., zero success rates), suggesting the e�ectiveness
of mitigating DETER attacks.

For miners’ revenue, we launched a mainnet node and collect
the Ethereum transactions received there. We then replay the trace
against a Geth node on which we build a middleware to simulate an
additional txpool and implement the proposed mitigation schemes
in the middleware. The txpool simulator’s length is set at 5120,
which is the same with Geth’s default txpool length. On di�erent
clients/experiments, we replay the same sequence of interleaved

transactions and mining actions. Each experiment of the same set-
ting is run three times and we verify that the replayed runs produce
the same results deterministically. All produced blocks in the ex-
periments are full and with the same block Gas limits. We report
the total Ether of all transactions included in these blocks. The
details of the experiment setup is in Appendix 14.2.1. During the
experiments, we also collect additional workload statistics to help
explain results. We collect the number of declined future/latent in-
valid transactions (i..e, F /I) and the number of declined future/latent
invalid transactions that, had not declined, would have evicted a
pending transaction at a lower Gas price (i.e., FH ! VL/IH ! VL).
These statistics are obtained on the Geth node under our control.

The results of miners’ revenue are presented in Table 6. M0’s
revenue is 3.56% lower than the baseline of Geth’s default policy,
andM1’s revenue is almost the same with Geth’s (0.0002% higher).
The statistics in Table 7 help understand the revenue results. From
the table,M0 declines much more transactions (both F and I) than
the vanilla Geth, thus failing to collect the potential revenues from
those transactions and resulting in lower revenue than Geth’s.M1
declines fewer transactions than Geth and may bene�t its revenues
from those transactions’ fees. Note that among those declined trans-
actions inM1, majority are the ones exploitable by DETER attacks,
that is, [FI]H ! VL, and are necessary to be declined.

8 RESPONSIBLE DISCLOSURE
We have disclosed the DETER vulnerabilities to the Ethereum de-
veloper community of Geth/Parity/Besu/Nethermind9 (through
their bug bounty programs), as well as tested service providers
(including the RPC services and mining pools). The bugs have been
con�rmed by all clients’ bug-bounty programs with attacks repro-
duced. Particularly, the DETER bugs are assessed to be of “high
impact” by Ethereum Foundation (Geth) and “median impact” by
OpenEthereum (Parity).

9 CONCLUSION
This work presents the DETER attacks that deny a remote Ethereum
node’s service by exploiting �awed transaction handling in txpool.
DETER attacks are of low Ether cost. DETER attacks can be ex-
tended by discovering nodes in critical services and result in a
global impact on an Ethereum network. We evaluate and verify the
e�ectiveness and low cost of DETER attacks on local nodes running
di�erent Ethereum clients and testnets. We also propose non-trivial
methods to detect DETER vulnerability on blackbox mainnet nodes
and con�rm the mainnet nodes’ discoverability and exploitability.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers in ACM CCS’21 and
USENIX Security’21. The authors appreciate the discussion with
Xianghong Liu in the early stage of this work. The authors are par-
tially supported by the National Science Foundation under Grants
CNS1815814 and DGE2104532.

9We also send bug reports to Aleth, but with no response.

P13

REFERENCES
[1] Litecoin cash (lcc) was 51% attacked. https://bit.ly/36EUs7p, .
[2] Aleth – ethereum c++ client, tools and libraries. https://github.com/ethereum/

aleth, .
[3] Hyperledger besu. https://www.hyperledger.org/use/besu, .
[4] Blockdaemon: Institutional grade blockchain infrastructure. https://

blockdaemon.com/, .
[5] Json-rpc in ethereum wiki (eth_call). https://github.com/ethereum/wiki/wiki/

json-rpc#ethcall, .
[6] Irreversible transactions: Finney attack. https://en.bitcoin.it/wiki/

IrreversibleTransactions#Finneyattack, .
[7] Gas now: Eth gasprice forecast system based on sparkpool pending transaction

mempool. https://www.gasnow.org/, .
[8] Geth: the go client for ethereum. https://www.ethereum.org/cli#geth, .
[9] Ethereum & ipfs apis. develop now on web 3.0. https://infura.io/, .
[10] Infura mainnet outage post-mortem 2020-11-11. https://blog.infura.io/infura-

mainnet-outage-post-mortem-2020-11-11/, .
[11] Ethereum directory for mining on etherscan. https://etherscan.io/directory/

Mining, .
[12] Nethermind ethereum client. https://nethermind.io/client, .
[13] Parity ethereum is now openethereum: Fast and feature-rich multi-network

ethereum client. https://www.parity.io/ethereum/, .
[14] Blockchain infrastructure cloud. https://www.quiknode.io/, .
[15] The rinkeby testnet of ethereum. https://rinkeby.etherscan.io, .
[16] The ropsten testnet of ethereum. https://ropsten.etherscan.io, .
[17] Sparkpool: Crypto mining and staking pool. https://www.sparkpool.com/en/, .
[18] Go ethereum’s txpool namespace. https://geth.ethereum.org/docs/rpc/ns-txpool,

.
[19] Memoria 700 million stuck in 115,000 uncon�rmed bitcoin transactions. https://

www.ccn.com/700-million-stuck-115000-uncon�rmed-bitcoin-transactions/, .
[20] Geth nodes under attack again (reddit). https://www.reddit.com/r/ethereum/

comments/55s085/gethnodesunderattackagainweareactively/, .
[21] The Trinity client for ethereum network. no longer maintained or developed.

https://github.com/ethereum/trinity, Retrieved Aug. 20, 2021.
[22] Altcoin mining pool for gpu and asic: 2miners. https://2miners.com/, Retrieved

May, 5, 2021.
[23] Bitcoin gold hack shows 51% attack is real. https://www.investopedia.com/

news/bitcoin-gold-hack-shows-51-attack-real/, Retrieved May, 5, 2021.
[24] Report: Bitcoin (btc) mempool shows backlogged transactions, increased fees if

so? https://goo.gl/LsU6Hq, Retrieved May, 5, 2021.
[25] Dapp survey results 2019. https://medium.com/�uence-network/dapp-survey-

results-2019-a04373db6452, Retrieved May, 5, 2021.
[26] Known attacks - ethereum smart contract best practices. https:

//consensys.github.io/smart-contract-best-practices/knownattacks/#dos-
with-block-gas-limit, Retrieved May, 5, 2021.

[27] Ethereum mainnet statistics. https://www.ethernodes.org/, Retrieved May, 5,
2021.

[28] Etherscan: Ethereum (eth) blockchain explorer. https://etherscan.io/, Retrieved
May, 5, 2021.

[29] Eth gas station: Recommended gas prices in gwei. https://ethgasstation.info/,
Retrieved May, 5, 2021.

[30] ethgasstation:an adaptive gas price oracle for the ethereum blockchain. https:
//github.com/ethgasstation/ethgasstation-backend, Retrieved May, 5, 2021.

[31] Eth gas station: Txpool report. https://ethgasstation.info/txPoolReport.php,
Retrieved May, 5, 2021.

[32] Optimism’s tweet of apology for purposefully triggering the ethereum bug. https:
//twitter.com/jinglanW/status/1326651349912719360, Retrieved May, 5, 2021.

[33] Taichi network. https://taichi.network/, Retrieved May, 5, 2021.
[34] Taichi network’s block propagator. https://github.com/Taichi-Network/docs/

blob/master/deploy.md, Retrieved May, 5, 2021.
[35] Taichi network’s rpc service (asia paci�c). https://api.taichi.network:10001,

Retrieved May, 5, 2021.
[36] Transaction spam attack: Next steps. https://blog.ethereum.org/2016/09/22/

transaction-spam-attack-next-steps/, Retrieved May, 5, 2021.
[37] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking bitcoin: Routing

attacks on cryptocurrencies. In IEEE Symposium on SP 2017, pages 375–392,
2017. doi: 10.1109/SP.2017.29. URL https://doi.org/10.1109/SP.2017.29.

[38] Khaled Baqer, Danny Yuxing Huang, Damon McCoy, and Nicholas Weaver.
Stressing out: Bitcoin "stress testing". In Jeremy Clark, Sarah Meiklejohn, Pe-
ter Y. A. Ryan, Dan S. Wallach, Michael Brenner, and Kurt Rohlo�, editors,
Financial Cryptography and Data Security - FC 2016 International Workshops,
BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016,
Revised Selected Papers, volume 9604 of Lecture Notes in Computer Science,
pages 3–18. Springer, 2016. doi: 10.1007/978-3-662-53357-4\1 . URL https:
//doi.org/10.1007/978-3-662-53357-41 .

[39] Joseph Bonneau. Why buy when you can rent? - bribery attacks on bitcoin-style
consensus. In Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach,

Michael Brenner, and Kurt Rohlo�, editors, Financial Cryptography and Data
Security - FC 2016 International Workshops, BITCOIN, VOTING, and WAHC,
Christ Church, Barbados, February 26, 2016, Revised Selected Papers, volume
9604 of Lecture Notes in Computer Science, pages 19–26. Springer, 2016. doi:
10.1007/978-3-662-53357-4\2 . URL https://doi.org/10.1007/978-3-662-53357-42 .

[40] Vitalik Buterin. Eip150: Gas cost changes for io-heavy operations. URL https:
//github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md.

[41] Zhen Cheng, Xinrui Hou, Runhuai Li, Yajin Zhou, Xiapu Luo, Jinku Li, and Kui
Ren. Towards a �rst step to understand the cryptocurrency stealing attack on
ethereum. In RAID 2019, pages 47–60, 2019. URL https://www.usenix.org/
conference/raid2019/presentation/cheng.

[42] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Ben-
tov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning, transac-
tion reordering, and consensus instability in decentralized exchanges. CoRR,
abs/1904.05234, 2019. URL http://arxiv.org/abs/1904.05234.

[43] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Ben-
tov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decen-
tralized exchanges, miner extractable value, and consensus instability. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,May
18-21, 2020, pages 910–927. IEEE, 2020. doi: 10.1109/SP40000.2020.00040. URL
https://doi.org/10.1109/SP40000.2020.00040.

[44] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulner-
able. In FC 2014, Christ Church, Barbados, pages 436–454, 2014. doi: 10.1007/
978-3-662-45472-528. URL https://doi.org/10.1007/978-3-662-45472-528.

[45] Amir Feder, Neil Gandal, J. T. Hamrick, and Tyler Moore. The impact of ddos
and other security shocks on bitcoin currency exchanges: evidence from mt.
gox. J. Cybersecur., 3(2):137–144, 2017. doi: 10.1093/cybsec/tyx012. URL https:
//doi.org/10.1093/cybsec/tyx012.

[46] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün
Sirer. Decentralization in bitcoin and ethereum networks. CoRR, abs/1801.03998,
2018. URL http://arxiv.org/abs/1801.03998.

[47] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse
attacks on bitcoin’s peer-to-peer network. In Jaeyeon Jung and Thorsten Holz,
editors, USENIX Security 2015, Washington, D.C., USA, pages 129–144. USENIX
Association, 2015. URL https://www.usenix.org/conference/usenixsecurity15.

[48] Benjamin Johnson, Aron Laszka, Jens Grossklags, Marie Vasek, and Tyler Moore.
Game-theoretic analysis of ddos attacks against bitcoin mining pools. In Financial
Cryptography and Data Security - FC 2014 Workshops, BITCOIN and WAHC
2014, Christ Church, Barbados, March 7, 2014, Revised Selected Papers, pages
72–86, 2014. doi: 10.1007/978-3-662-44774-1\6 . URL https://doi.org/10.1007/
978-3-662-44774-16 .

[49] Harry A. Kalodner, Malte Möser, Kevin Lee, Steven Goldfeder, Martin Plattner,
Alishah Chator, and Arvind Narayanan. Blocksci: Design and applications of a
blockchain analysis platform. In Srdjan Capkun and Franziska Roesner, editors,
29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020,
pages 2721–2738. USENIX Association, 2020. URL https://www.usenix.org/
conference/usenixsecurity20/presentation/kalodner.

[50] Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer. Timelocked bribes.
IACR Cryptol. ePrint Arch., 2020:774, 2020. URL https://eprint.iacr.org/2020/774.

[51] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew Miller,
and Michael Bailey. Measuring ethereum network peers. In Proceedings of IMC
2018, pages 91–104, 2018. URL https://dl.acm.org/citation.cfm?id=3278542.

[52] Kai Li, Jiaqi Chen, Xianghong Liu, Yuzhe Richard Tang, XiaoFeng Wang, and
Xiapu Luo. As strong as its weakest link: How to break blockchain dapps
at RPC service. In 28th Annual Network and Distributed System Security
Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet Society,
2021. URL https://www.ndss-symposium.org/ndss-paper/as-strong-as-its-
weakest-link-how-to-break-blockchain-dapps-at-rpc-service/.

[53] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource eclipse
attacks on ethereum’s peer-to-peer network. IACR Cryptology ePrint Archive,
2018:236, 2018. URL http://eprint.iacr.org/2018/236.

[54] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart contracts
for bribing miners. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark,
Andrea Bracciali, Federico Pintore, and Massimiliano Sala, editors, Financial
Cryptography and Data Security - FC 2018 International Workshops, BITCOIN,
VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised Selected
Papers, volume 10958 of Lecture Notes in Computer Science, pages 3–18.
Springer, 2018. doi: 10.1007/978-3-662-58820-8\1 . URL https://doi.org/10.1007/
978-3-662-58820-81 .

[55] Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay Eyal, and Ari
Juels. Bdos: Blockchain denial of service, 2019.

[56] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. ISBN
978-0-521-83540-4. doi: 10.1017/CBO9780511813603. URL https://doi.org/
10.1017/CBO9780511813603.

[57] Daniel Pérez and Benjamin Livshits. Broken metre: Attacking resource metering
in EVM. In 27th Annual Network and Distributed System Security Symposium,

P14

NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet So-
ciety, 2020. URL https://www.ndss-symposium.org/ndss-paper/broken-metre-
attacking-resource-metering-in-evm/.

[58] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable
value: How dark is the forest? CoRR, abs/2101.05511, 2021. URL https://arxiv.org/
abs/2101.05511.

[59] Meni Rosenfeld. Analysis of hashrate-based double spending. CoRR,
abs/1402.2009, 2014. URL http://arxiv.org/abs/1402.2009.

[60] Muhammad Saad, Laurent Njilla, Charles A. Kamhoua, Joongheon Kim, DaeHun
Nyang, and Aziz Mohaisen. Mempool optimization for defending against ddos
attacks in pow-based blockchain systems. In IEEE International Conference on
Blockchain and Cryptocurrency, ICBC 2019, Seoul, Korea (South), May 14-17,
2019, pages 285–292. IEEE, 2019. doi: 10.1109/BLOC.2019.8751476. URL https:
//doi.org/10.1109/BLOC.2019.8751476.

[61] Christof Ferreira Torres, Ramiro Camino, and Radu State. Frontrunner jones and
the raiders of the dark forest: An empirical study of frontrunning on the ethereum
blockchain. CoRR, abs/2102.03347, 2021. URL https://arxiv.org/abs/2102.03347.

[62] Muoi Tran, Inho Choi, Gi Jun Moon, Anh V. Vu, and Min Suk Kang. A Stealth-
ier Partitioning Attack against Bitcoin Peer-to-Peer Network. In To appear in
Proceedings of IEEE Symposium on Security and Privacy (IEEE S&P), 2020.

[63] Itay Tsabary, Matan Yechieli, and Ittay Eyal. MAD-HTLC: because HTLC is
crazy-cheap to attack. CoRR, abs/2006.12031, 2020. URL https://arxiv.org/abs/
2006.12031.

[64] Marie Vasek, Micah Thornton, and Tyler Moore. Empirical analysis of denial-
of-service attacks in the bitcoin ecosystem. In Financial Cryptography and
Data Security - FC 2014 Workshops, BITCOIN and WAHC 2014, Christ Church,
Barbados, March 7, 2014, Revised Selected Papers, pages 57–71, 2014. doi:
10.1007/978-3-662-44774-1\5 . URL https://doi.org/10.1007/978-3-662-44774-15 .

[65] Fredrik Winzer, Benjamin Herd, and Sebastian Faust. Temporary censor-
ship attacks in the presence of rational miners. In 2019 IEEE European
Symposium on Security and Privacy Workshops, EuroS&P Workshops 2019,
Stockholm, Sweden, June 17-19, 2019, pages 357–366. IEEE, 2019. doi: 10.1109/
EuroSPW.2019.00046. URL https://doi.org/10.1109/EuroSPW.2019.00046.

[66] Wuqi Zhang, Lili Wei, Shuqing Li, Yepang Liu, and Shing-Chi Cheung. Ðarcher:
Detecting on-chain-o�-chain synchronization bugs in decentralized applications.
CoRR, abs/2106.09440, 2021. URL https://arxiv.org/abs/2106.09440.

[67] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V. Le, and Arthur Ger-
vais. High-frequency trading on decentralized on-chain exchanges. CoRR,
abs/2009.14021, 2020. URL https://arxiv.org/abs/2009.14021.

Appendices

10 RELATEDWORKS
Blockchain DoS security: In the existing literature, there is a
body of research work on examining the blockchains’ security un-
der DoS attacks. These DoS attacks exploit the vulnerabilities at
a blockchain’s di�erent system layers, such as exploiting under-
priced smart-contract execution [26, 40], misusing mining incen-
tives [6, 55], abusing transaction processing [6, 55], as well as parti-
tioning the underlying P2P networks [37, 47, 53, 62]. Speci�cally, 1)
On the mining layer, classic mining algorithms are designed under
the assumption that majority of miner nodes are honest, which
may not hold in the case of small-scale blockchains. In practice,
51% attacks have been successful on smaller blockchains [1, 23], re-
sulting in damages ranging from hard forks to the demise of entire
blockchain. A block-withholding attack works by a miner withhold-
ing the block she �nds and revealing it later, in a strategic way that
wastes the e�orts of other miners or mining pools [6]. BDoS [55]
exploits sel�sh mining [44] to incentivize miners to stop mining al-
together. In general, the existing mining-based DoS attacks assume
institutional attackers who control a signi�cant portion of comput-
ing power in a blockchain (e.g., the early-day 51% and the 21% in the
very recent BDoS [55]), which may not be practical in targeting a
large-scale blockchain network. In practice, there are no successful
instances of mining-based DoSes on large blockchains [55]. 2) On
the P2P network layer, an eclipse attack [47, 53] aims to isolate a

DoS-victim peer from the network. A routing attack [37, 62] as-
sumes corrupted institutional attackers controlling ISP and employs
BGP hijacking to intercept network tra�c towards partitioning it.
3) On the smart-contract and DApp layer, one can exploit under-
priced EVM instructions (e.g., EXCODESIZE [36], SUICIDE [20] or
instruction runtime variation as in BrokenMetre [57]) as well as
zero-priced Ethereum operations (e.g., eth_call [5] as in the Do-
ERS attack [52]) to cause a large volume of computations on victim
EVM instances at low costs to the attacker. In addition, contract
execution can be failed by over�owing the call stack [40] or over-
�owing the block gas limit [26]. Failing a contract call is of interest
to, for instance, a malicious auction leader who wants to fail a
refund call to the previous leader.

Of particular relevance is the small body of research on 4) the
attacks to deny pre-blockchain transaction handling, by sending
Bitcoin spams. Bitcoin “stress testing” [38] is a measurement study
on the impacts of the 2015 Bitcoin spam campaign. In this cam-
paign, a �ood of “spam” transactions (each at a low cryptocurrency
value) is broadcast to the Bitcoin network and saturate the limited
blockchain transaction throughput [19]. The impact of the cam-
paign includes the transaction-inclusion backlog (victimizing other
concurrent transactions and causing delays), enlarged memory pool
(which psychologically causes subsequent transaction senders to
pay a higher fee than they should [24, 60]), the increased UTXO
set (victimizing the miners who need to maintain the full set of
UTXO for transaction validation), As the spam transactions are at
a low fee and have a low priority for blockchain inclusion, they
incur low monetary costs to the attacker. Unlike the Bitcoin spam
attacks, DETER is the �rst work to deny Ethereum network ser-
vices by exploiting previously unknown design �aws in Ethereum’s
transaction handling. It also presents a measurement study on the
DETER’s impacts on real Ethereum clients/networks.

Blockchain RPC attacks: There are research works exploiting
or aiming at modern blockchains’ RPC services. The work [41]
measures the prevalence of cryptocurrency stealing attacks exploit-
ing Ethereum’s RPC to unlock accounts, via deploying honeypots.
DoERS [52] exploits the free-of-charge RPC interface (eth_call)
to cripple the Ethereum nodes run by a RPC service. DETER can
break a RPC service but exploit the Geth design �aws which are
di�erent from the vulnerabilities in the existing RPC attacks.
In-band bribery attacks [39, 50, 54, 63, 65] refers to the attack
in which an average attacker account sets up a smart contract
with deposit to reward any miner who delays the inclusion of the
transactions that modify a victim account’ state after a pre�xed
timeout. In this attack, the miner is assumed to be rational and can
choose which arriving transactions to include in order to maximize
her revenue, eventually.

In-band bribery attack can be low-cost and be mounted by the
average user, instead of an institutional user [50, 63, 65]. This is
similar to the DETER attacks. Other than that, the two attacks are
di�erent: First, their attack methods are di�erent. While in-band
bribery attack allows miners to see the victim transactions (but mis-
use rational miners’ incentive to exclude them temporally), DETER
prevents the miners from seeing victim transactions in the �rst
place. Thus, DETER does not require miners to be rational. Second,
the consequences of these two attacks are di�erent. While in-band
bribery temporally censors the inclusion of selected transactions

P15

sent from few victim accounts (the number of victim accounts can
not be big to keep the bribe or attacker’s cost low), DETER attacks
are to evict all transactions submitted during the attack period and
cause them to be permanently excluded from the blockchain.

11 DETER-Z CUSTOMIZATION ON ALETH
We design the following test t4 to check if a txpool admits active
(non-latent) invalid transactions, and we test all �ve Ethereum
clients.

t4 Test t4(x2 ·VL+(n�x2)·IM, IH) !3|7. The initial state S contains
x2 valid pending transactions at low Gas price (VL) and n � x2
invalid pending transactions at medium Gas price (IM). Each of
the IM’es is an overdraft transaction (i.e., spending exceeds the
balance) sent from a distinct account. The incoming transaction
tx is an overdraft transaction at a high Gas price IH . The success
of the test, denoted by 3 indicates that the overdraft pending
transaction ({tx} = {IH }) can evict a valid pending transaction
({tx 0} = {VL}). Otherwise, the test result is failure denoted by 7.

Table 8: Pro�ling di�erent Ethereum clients under tests and
DETER attacks. For the twoDETER attacks, success rates are
reported. DETER-Z’s Ether cost is also reported in parenthe-
sis. Note that the baseline attack incurs a cost of 12.5 Ether
per block. The second column refers to the percentage of
mainnet nodes running a speci�c client [27].
Ethereum
clients

Percentage t1 t4 t2 X Z (Ether)

Geth 83.24% 3 (x1 < 1024) 7 3 (x3 < 4096) 100% 100% (0.021)
3–(x1 � 1024) 3–(x3 � 4096)

Parity 14.57% 3 (x1 � 2000) 7 3 (x3 81) 75.6% 100% (2.1)
7 (x1 2000) 7 (x3 > 81)

Nethermind 1.53% 3 7 3(x3 17) 100% 100% (1.28)
7 (x3 > 17)

Besu 0.52% 3 7 3 100% 100% (0.021)
Aleth 0% 3 3 7 (x3 > 1) 100% 100% (0)

Test t4 succeed on Aleth but fail on other clients. We believe
Aleth enables successful t4 tests because admitting invalid high-
priced transactions is pro�table, under certain workloads, to miners.

DETER-Z variant on Aleth: As can be seen, test t2 does not
succeed on Aleth, as it enforces a very restrictive limit: only one
transaction per sender is allowed on a full txpool. In this case, the
attacker can exploit the test result t4, as described below.

z1’ : The DETER-Z attacker sends the target Aleth node n0 over-
draft transactions from n0 distinct accounts and at a much higher
Gas price than any transactions in the txpool. Due to the positive
test result of t4, Aleth’s txpool would evict all transactions. In
addition, the overdraft transactions are admitted and occupy the
txpool until the locally found blocks consume them all.

12 DETER-Y: EXPLOIT FUTURE TXS AND
RPC

12.1 Attack Design
Design motivation: As mentioned above, future transactions are
free and incur no costs to the attacker. However, the challenge
in designing low-cost attacks is how to make future transaction
a�ect the pending queue in the txpool. We observe that if a future
transaction is a local one (i.e., received on the victim node by RPC
requests), the presence of a future local transaction would resize the

txpool. Thus, we propose the second attack with zero cost, named
DETER-Y. DETER-Y relies on the presence of RPC interface open
on the victim node. In the following, we �rst describe the extended
threat model in DETER-Y.

Extended threatmodel: We consider an extended threat model
(based on § 3) where the victim node runs an RPCweb service which
accepts JSON requests and sends transactions on behalf of the EOA.
Here, we assume that the attacker knows the victim RPC node; in
§ 13.2, we describe how the attacker can discover the victim RPC
nodes in an operational Ethereum network.

Attack work�ow: In the extended threat model, the attacker
conducts the following steps:

Initially, the attacker obtained a conservatively guessed value of
victim’s txpool length n0, say n0 = 10 · 5120.

y1 The attacker sends n0 future transactions, at any Gas price,10

through the RPC interface to the victim node. Note that here, the
attacker only needs to send these n0 local transactions for once.

y2 Before the next txpool read, the attacker node propagates
to the victim node a future (non-local) transaction at an arbitrarily
Gas price.

Services
Other
nodes

txpool

Victim RPC node

Attacker
node

Read a falsely
empty txpool

Read a falsely
empty txpool

y1

y2

y2

Figure 9: Work�ow of a successful DETER-Y attack that
sends one payload and resizes a victim txpool forever, so
that the subsequent reads of the txpool, how many times
it is, would return empty.

Attack analysis: In Step y1 , the victim txpool receiving the n0

future transactions would mark them local transactions. By default,
the local transactions have priority in a txpool and can preempt
other non-local transactions (i.e., propagated from other nodes),
even when the local transactions have lower Gas prices than the
non-local ones. In the case of n local transactions or more, the Geth
txpool would maintain a single spot for non-local transactions,
and allocate all other spots for local transactions. Note that local
transactions are never dropped or evicted by the receiving RPC
node, even there are more than n local transactions.

Thus, after Step y1 , the txpool reduces its capacity to serve at
most a single non-local transaction. As local future transactions
cannot be executed by the miner, this reduces the capability of
txpool to maintaining at most one executable transaction. Besides
a miner, the txpool attacked by DETER-Y can a�ect other ser-
vices. For instance, it can a�ect a RPC service and prevent a DApp

10These transactions are treated as local on the victim node. And a local transaction
can always evict other types of transactions in the txpool, no matter what Gas price
it is with.

P16

client from viewing the pending transactions propagated from other
nodes/client.

Note that the local future transactions are not evicted by the
miner so they will occupy most slots in the txpool. Also, note that
DETER-Y is extremely low cost, as the attacker EOA only needs
to send n0 transactions once. It does not need to repeatedly send
transactions as the exploit of DETER-X does.

The single spot in the resized txpool is an FIFO queue. Thus,
as long as the non-local future transaction in y2 is sent close in
time to when the txpool is read, the txpool would read the future
transaction.

12.2 Local evaluation of DETER-Y
In our evaluation of DETER-Y, the attacker �rst invokes n0 = 5120
sendTransaction() RPC calls (y1) and then propagates one fu-
ture transaction for each y2 message. We tested two rates, namely
0 future transactions per second (which means the single slot in
the reduced txpool stores normal transactions) and 2 future trans-
actions per second. During the 100-block period, the cumulative
number of transactions included in the blockchain is reported in
Figure 10b. This �gure shows the disparity of the included trans-
actions with and without DETER-Y. Compared with the DETER-X
result of the same attack rate, DETER-Y causes lower number of
transactions included, imply higher e�ectiveness/success rates. For
instance, when the attack rate is 2 future transactions per second,
DETER-Y results in a lower number of included normal transactions
or a higher attack success rate at 93% than DETER-Y’s success rate
at 84.9%. When there is no y2 transaction sent (at a zero rate), the
attack success rate is 88.6%.

13 VICTIMIZE MORE TXPOOL SERVICES:
STRATEGIES AND EVALUATION

Beyond miners and mining pools, DETER victims include other
critical Ethereum services that depend on a txpool, including trans-
action propagation, RPC services, Gas station and other DApp ser-
vices. In each victim, we descibe the attack strategies and evaluation
results (on testnets).

13.1 Victimize Transaction Propagation
13.1.1 A�ack Strategy. Preliminary on transaction propagation: An
Ethereum node decides to propagate an incoming transaction only
when the transaction passes precheck and is classi�ed as a pending
transaction. More speci�cally, in the Geth implementation, if the
precheck emits a valid pending transaction, the node raises an event
handler by a separate thread that scans the txpool to discover
other propagate-able transactions that recently become pending.
The thread then propagates all of them to the node’s neighbors.

Analysis of DETER-X/Y/Z on propagation: The transaction-
propagation thread is triggered upon the arrival of each valid pend-
ing transaction. In practice, if this arrival rate is high, it may render
the existing attacks, DETER-X and DETER-Y, impractical – both
attacks need sending attack messages at a high enough rate to fron-
trun the victim service’s action of reading txpool. In this case, the
attack rate needs to be higher than the arrival of incoming normal
transactions.

By contrast, DETER-Z’s crafted transactions can occupy the
txpool which further fail the precheck of subsequent incoming
transactions, thus able to deny the propagation of these subsequent
transactions.

Strategy: An attacker interested in disabling the transaction prop-
agation of a victim node mounts the DETER-Z attack.

13.1.2 A�ack Evaluation in a Private Network. This experiment
evaluates the e�ectiveness of the three DETER attacks on disabling
the transaction propagation. The experiment runs in a private net-
work of four nodes: A victim node, an attacker node that sends
crafted transactions to the victim, an observer node that receives
the transactions propagated from the victim as the target metric,
and a normal node that sends normal transactions to the victim
node. Thus, in this private network, the victim node is connected to
the other three nodes, and there are no other connections. During
each experiment, the normal node sends 2 transactions per second
to the victim, and the process lasts for 250 seconds. We report the
number of normal transactions received by the observer as the
metric of attack e�ectiveness.

When evaluating DETER-X, the attacker sends each x1 message
with n0 = 5120 crafted future transactions at a rate of 1message per
second. When evaluating DETER-Y, the attacker �rst invokes n0 =
5120 sendTransaction() RPC calls (y1) and then propagates one
future transaction (y2) per second to the victim. When evaluating
DETER-Z, the attacker, upon receiving a new block, sends amessage
of n0 = 5120 pending transactions (z1) and a message of n0 = 5120
future transactions (z2), to the victim.

In each experiment, we report the cumulative number of prop-
agated transactions from the 0th to 250th second. We run experi-
ments for three times and report the average cumulative number
with standard deviation in Figure 12a. The result shows that without
attacks, there are 500 transactions successfully propagated by the
victim at the end of experiment (the 250-th second). With DETER-X
(DETER-Y), the number is 479 (490) transactions propagated, lead-
ing to an attack success rate of 1 � 479

500 = 4.2% (1 � 490
500 = 0.5%).

Neither DETER-X nor DETER-Y is e�ective in disabling the transac-
tion propagation of the victim. By comparison, with DETER-Z, the
number is 62 transactions propagated, leading to an attack-success
rate of 1 � 62

500 = 87.6%. DETER-Z is much more e�ective than the
other variants in terms of attacking the transaction propagation,
which validates our attack strategy.

For DETER-Z, we further vary the rates from 1 to 8 normal trans-
actions per second and report the rate of propagated transactions
(the inverse of success rate) in Figure 12b. The result shows that
the propagation rate is insensitive and independent to the normal
transaction rate (11.5% � 12.3%).

13.2 Victimize RPC Service
13.2.1 A�ack Strategy. Preliminary: A RPC service is an o�-chain
service that facilitates a sender account to send transactions to the
Ethereum blockchain. In practice, RPC services are widely used;
it is estimated that the transactions sent through one RPC service
alone (i.e., infura.io) accounts for at least 63% of all transactions on
Ethereum [25].

P17

0 20 40 60 80 100
Block height

0

100

101

102

C
u
m

u
la

ti
v
e
 n

o
.

o
f

in
cl

u
d
e
d
 t

x
s

No attack

DETER-X (0.25 msg/sec.)

DETER-X (2 msg/sec.)

(a) Included txs under DETER-X

0 20 40 60 80 100
Block height

0

100

101

102

103

C
u
m

u
la

ti
v
e
 n

o
.

o
f

in
cl

u
d
e
d
 t

x
s

No attack

DETER-Y (0 tx/sec.)

DETER-Y (2 tx/sec.)

(b) Included txs under DETER-Y

0 20 40 60 80 100
Block height

0

100

101

102

103

C
u
m

u
la

ti
v
e
 n

o
.

o
f

in
cl

u
d
e
d
 t

x
s

No attack

DETER-Z (0.1 Gwei)

DETER-Z (10 Gwei)

(c) Included txs under DETER-Z

Figure 10: DETER a miner in a local network

DETER - Success rate Cost
attack rate Measured Theoretical (Ether)
X-.25msg/sec 65.2±4% 61.33% 0
X-2msg/sec 84.9±3% 91.32% 0
Y-.25tx/sec 89.1±0.3% N/A 0
Y-2tx/sec 93±0.7% N/A 0
Z⇠ .25tx/sec 99.3±0.1% 100% 0.021/block
Baseline 96.6±0.1% 100% 12.5/block

Figure 11: DETER & baseline attacks

0 50 100 150 200 250
Timeline (second)

0

100

101

102

C
u
m

u
la

ti
v
e
 N

o
.

o
f

p
ro

p
a
g
a
te

d
 t

x
s

No attack

DETER-X

DETER-Y

DETER-Z

(a) Number of propagated transactions

1 2 4 8
Transaction sending rate (per second)

10

11

12

13

14

Tr
a
n
sa

ct
io

n
 p

ro
p
g
a
ti

o
n
 r

a
te

 (
%

)

(b) DETER-Z w. varying normal tx rate

Figure 12: DETER transaction propagation

Ethereum

network

Tx/block sync.EOA

Web user

Tx data

RPC query F
ro

n
te

n
d

RPC service

RPC

nodes B
a
c
k

e
n
d

Figure 13:Model of anRPC service: It internally runs several
RPC nodes in sync. with a remote Ethereum network. It sup-
ports two work�ows: relaying transactions and processing
RPC queries.

A RPC service receives a JSON-RPC request encoding a raw
transaction from a sender account, wraps it in a transaction, and
sends the transaction to the Ethereum nodes the service privately
runs, which further propagate the transaction to the rest of the
Ethereum network. In addition to this work�ow of relaying transac-
tions, a RPC service may also support querying the blockchain state
(e.g., the set of transactions and smart-contract states like token bal-
ances). In particular, a RPC query eth_getTransaction() allows
a web user to access both con�rmed and uncon�rmed transactions
on the service nodes. The two work�ows are depicted in Figure 13,
where the service frontend is web servers receiving RPC requests
and the service backend consists of a subset of Ethereum nodes
under the service provider’s control that are connected to the nodes
in the rest of Ethereum network.

Threat model: An attacker has the capability of connecting to
the nodes on the service backend and sending crafted messages to
deny the RPC service in one of two work�ows, that is, 1) to block
or introduce signi�cant delays to the con�rmation of transactions
sent through a RPC service, and 2) to cause a RPC service to return
incorrect results on stale blockchain states. In this work, we focus

DETER attacker’s strategy on threat 1). There are alternative attack
vectors for threat 2) [52].

Strategy to DETER RPC services: Given a victim RPC service, the
attacker �rst identi�es the nodes running on the service backend. In
practice, this can be done in two steps: First, it discovers the client
version of the RPC service (via eth_clientVersion) and the client
version of any connected Ethereum node (via the handshaking with
an Ethereum neighbor to be). Second, it matches the service client
version with a node’s version; the match implies that the node is
run by the service provider.

Then, the attacker gets connected to the service-backend nodes,
in a similar approach as in attacking top miners (described in § 6.2).

After that, the attacker is ready to mount the DETER attacks
to the victim nodes. Here, because the attacker aims to delay the
transaction propagation of backend nodes, he chooses DETER-Z
(recall the strategy in § 13.1). Thus, the attacker’s strategy is this:
Upon each block received on the Ethereum network, the attacker
sends two DETER-Z messages (z1 and z2) to all identi�ed service-
backend nodes in parallel.

13.2.2 A�ack Evaluation with Testnets. DETER-X on in-
fura: We choose the infura.io RPC service on the Goerli testnet as
the evaluation subject. This choice is mainly due to that infura.io
(on the mainnet) is the largest RPC service and Goerli is one of the
top Ethereum testnets. In our experiment, we set up two Geth nodes
in Goerli: An attacker node that connects only to the identi�ed 11
service-backend nodes and a monitor node that randomly connects
to 50 nodes in the testnet. We use the method described above to
discover the service-backend node, by discovering infura’s Geth
version (code name omnibus) through sending eth_clientVersion
RPC queries to the service frontend and conducting a one-day-long
study to collect as many Goerli nodes’ client version revealed in
the handshaking subprotocol. During the one-day measurement
study, we launch a Geth node statically instrumented to log all peer-
discovery messages it received from the neighbor it does handshake
with.

The target metric is the transaction propagation delay between
when the transaction (more precisely the RPC request encoding
the raw transaction data) is sent to the RPC service and when the
transaction is observed by all nodes in the network. In the exper-
iment, we use an account to send a pending transaction through
the Goerli-infura’s service frontend. We measure the time when
the raw transaction is sent and the time when the transaction is
received on the monitor node (which is statically instrumented to
record the timing of all incoming transactions/messages).

P18

Table 9: Transaction delay on infura RPC service in Goerli
(w. DETER-Z)

Gas price of nor-
mal tx (Gwei)

Delay w.o. attacks
(seconds)

Delay w. DETER-
Z (seconds)

0.1 0.167 ±0.005 > 10, 800
1 0.153 ±0.06 > 10, 800
10 0.126 ±0.03 > 10, 800
100 0.119 ±0.05 > 10, 800
1000 0.128 ±0.04 0.155 ±0.07
2000 0.141 ±0.003 0.136 ±0.06

Following the abovemethod, we conduct experiments tomeasure
the delay without the attack: The experiments run ten times and we
report the average delay with its standard deviation in Table 9. We
then conduct experiments under DETER-Z attacks. In the attack,
the crafted pending transactions’ Gas price is con�gured at 1000
Gwei. With a �xed Gas price of the normal transaction, we run
experiments for ten times and report the average delay and its
standard deviation. We vary the Gas price of the normal transaction
from 0.1 Gwei to 2000 Gwei, and report the result in Table 9.

The result shows that if the Gas price of the normal transaction
sent via a RPC service is higher than the Gas price of the DETER-Z
attack, there is not much delay introduced by the attack. Otherwise,
that is, with DETER-Z’s Gas price higher than the normal trans-
action’s, the delay of the normal transaction grows to be at least
longer than 3 hours (10800 seconds as we did in the experiment)11.
This result is particularly interesting, and implies that applying
DETER-Z to a RPC service cannot only delay but also block the
propagation of a transaction. The reason is that with all service-
backend nodes being DETER-Z attacked, the normal transaction
does not have alternative paths to reach the rest of the Ethereum
network. At the time when the DETER-Z transactions are evicted
after the next block is received, the Ethereum nodes inside the RPC
service are done their attempts to propagate the normal transaction,
thus leaving it discarded in the blockchain forever. Note that the
result di�ers from the previous case of DETER-Z attacking a single
node’s propagation in a network, in which the normal transaction
can still be propagated through alternative paths bypass the victim
node to reach the entire network.

DETER-Y on blockdeamon:We evaluate the impact of DETER-
Y on the RPC services that support local transactions. Although
Infura does not support local transactions, there are other RPC
services that support it, Blockdeamon is one of them. We measured
that the txpool size of Blockdeamon’s RPC node is 5120 in the
Goerli testnet. Therefore, we send 5120 local future transactions
through Blockdeamon’s front-end in the Goerli testnet. We then
use an EOA to send a pending transaction from our local node that
connected to Goerli testnet. After sending the transaction, we keep
retrieving it through Blockdeamon’s front-end. We vary the Gas
price when send the pending transaction and report the result in
table 10. The result shows that when the EOA bids a Gas price that
equals to or lower than 0.2 Gwei in the pending transaction, this
transaction can never be retrieved from Blockdeamon’s front-end
(we investigated the observation and found that the Goerli testnet
miners only include transactions that bid a Gas price higher than

113 hours is the longest time that an uncon�rmed transaction is stored on Geth’s
txpool before it is forced to be evicted.

0.2 Gwei), when the EOA bids a Gas price higher than 0.2 Gwei
(from 0.4 Gwei to 6.4 Gwei), the retrieval delay is smaller (from 44
seconds to 5.4 second).
Table 10: DETER-Y transaction retrieval on Blockdeamon
Gas bid (Gwei) Retrieval delay (No at-

tack)
Retrieval delay
(DETER-Y)

0.1 20.39 ±3.86 ms >10800
0.2 15.27 ±4.47 ms >10800
0.4 51.84 ±27.47 ms 43990.0 ms
0.8 38.09 ±41.06 ms 26030.0 ms
1.6 14.64 ±4.64 ms 10200.0 ms
3.2 14.88 ±0.93 ms 7540.0 ms
6.4 15.56 ±10.25 ms 5400.0 ms

13.3 Victimize Gas Station Services
This experiment evaluates the DETER attacks’ e�ectiveness on
victim Gas station services. In the experiment setup, we launch
two Geth nodes on two identical machines and join them to the
mainnet. There is no direct connection between the two nodes. We
run the EthGasStation code [30] on the victim and normal nodes. In
our experiment, one node is used as the victim and the other is the
normal node for comparison purposes. We also mount an attacker
node in connection to the victim node and in synchronization with
the mainnet.

In each experiment, we turn on the Gas station simultaneously
on the two nodes. After a certain period of time (e.g., one hour), the
attacker node sends payloads to the victim node with the following
pro�les: the attack rate is one message per second for DETER-X,
0 per second for DETER-Y (no y2 message is sent), and two mes-
sages per block for DETER-Z. For each attack, we run a process
that lasts for 6 hours, during which the predicated Gas prices on
both victim and normal nodes are collected every 6 minutes. Note
that EthGasStation produces four di�erent kinds of predicted Gas
prices, codenamed by “Fastest”/“Fast”/“Standard”/“Safe Low,” which
respectively mean the predicted Gas price for the transaction to
be included in the next block/within two minutes/within �ve min-
utes/within thirty minutes. We show the most representative result
on “Standard” and “Fastest” Gas prices here.

The result of DETER-X on the Gas station is in Figure 14a. In
the 6-hour experiment period, the attack started from the second
hour and stopped in the end of �fth hour. When the attack begins,
the di�erence of predicted prices between the victim Gas station
and the normal Gas station starts increasing. The percentage of the
di�erence (di�erence/normal price) reaches 10% after 10 minutes
and varies from 10% to 40% as the attack goes on. The di�erence
returns to less than 5% after the attack ends. Since the design of
the Gas station considers history information to build the model
and make the prediction, it takes time for the di�erence to return
to less than 5%.

The result of DETER-Y on the Gas station is in Figure 14b. In the
6-hour experiment period, the attack started from the third hour
and stopped in the end of sixth hour. The DETER-Y caused more
damage to the Gas station than the DETER-X, with an average of
30% di�erence during the 3 hours. Since the only way to stop the
attack is to restart the node and delete the transaction data, we
didn’t test how the Gas station recovers after the attack ends.

P19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Timeline (hours)

0

10

20

30

40

50

Ga
s

pr
ic

e
di

ffe
re

nc
e

(p
er

ce
nt

) Attack
 begin

Attack
end

(a) Standard, DETER-X

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Timeline (hours)

0

20

40

60

80

100

Ga
s

pr
ic

e
di

ffe
re

nc
e

(p
er

ce
nt

) Attack
 begin

(b) Standard, DETER-Y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Timeline (hours)

0

20

40

60

80

100

Ga
s

pr
ic

e
di

ffe
re

nc
e

(p
er

ce
nt

) Attack
end

Attack
 begin

(c) Standard, DETER-Z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Timeline (hours)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ga
s

pr
ic

e
di

ffe
re

nc
e

(p
er

ce
nt

) Attack
end

Attack
 begin

(d) Fastest, DETER-Z

Figure 14: The di�erence of predicted price between the victim Gas station and normal Gas station.

The result of DETER-Z on the Gas station is in Figure 14c. In
the 6-hour experiment period, the attack started from the second
hour and stopped in the end of �fth hour. The di�erence caused by
DETER-Z is as great as that by DETER-Y. When the attack ends,
it takes about 30 minutes for the victim Gas station to recover to
normal.

13.4 More Results on Victimizing Mining Pools

Mining pool service

Backend
pool

Frontend
Account

sendTx

Blocks

RPC
nodeRPC

P2P msg
Peer
node

Miner client

Miner client

mainnet

Puzzle

Share

Figure 15: Mining pools in mainnet

Preliminary: Mining pools: In the core of a mining pool, the
pool sends to each participatingminer a easier version of themining
puzzle and receives from miners the solutions of the easier puzzles
(so-called shares) before paying the reward out to the miners. Today,
popular mining pools in practice grow into a complex, multi-layer
ecosystem, depicted in Figure 15, with augmented interfaces on
the frontend: 1) A RPC service interface to accept transactions
submitted from its transaction clients, and 2) a block-receiving P2P
interface through which the backend pool allows to be connected
as client neighbors and propagates recently found valid blocks
to the clients. These two interfaces are designed to facilitate the
transaction and block propagation relevant to the mining pool. For
instance, the most successful mining pool in Ethereum, namely
Sparkpool, has a frontend service network named Taichi network,
through which the backend pool receives transactions [35] and
propagates blocks [34].
DETER-Z on Ropsten & Rinkeby: In this attack, the attacker
node sends a message of L0 = 5120 pending transactions (z1) and a
message of L0 = 5120 future transactions (z2), upon the recipient of
each block. In each round, the two messages are sent to the selected
miners in parallel. Due to ethical concerns, we con�gure the attack
to last for 90 seconds (or 6 blocks) in Rinkeby and 120 seconds (or
10 blocks) in Ropsten.

The evaluation result on Rinkeby is presented in Figure 16b. The
result shows, before the attack starts (blocks #7947132-7947135),

around 5-15 transactions are included in each block and the con-
sumed block Gas is between 2.2% and 52.7%. During the attack
(blocks #7947136-7947141), 3 blocks (#7947137, #7947139, #7947140)
only include 1 transaction and only 0.2% block Gas is used, we
observed that it is our attack transactions were included in these
blocks. The other 3 blocks (#7947136, #7947138, #7947141) include
more than 1 transactions and 29.1%-51.4% block Gas is used. These
3 blocks were mined by a miner which is not selected as the victim.
In summary, the result shows our DETER-Z attack can preempt a
block by one of our attack transactions and exclude the inclusion
of other regular transactions. The cost of DETER-Z is 0.126 Ether
(0.021 * 6).

We report the evaluation result on Ropsten in Figure 17a. As can
be seen from the result, before the attack starts (blocks #9511168-
9511170), around 34 transactions are included at each block and
more than 31% of block Gas is consumed. During the attack (blocks
#9511171-9511180), 8 out of 10 blocks are preempted by one of our
attack transactions and the block Gas usage is below 0.26%. Our
attack failed at two blocks (blocks #9511173, #9511177) which were
mined by the miners that not under our attack, with one block
includes 0 transaction and the other block includes 79 transactions.

In summary, the evaluation results on the testnets show that
the attack transactions sent in DETER-Z can preempt 3 out 6 (8
out of 10) blocks in Rinkeby (Ropsten) and prevent other regular
transactions from being included into these a�ected blocks, leading
to a 50% (80%) success rate.
DETER-X on Rinkeby: Figure 17b presents the evaluation result
of DETER-X on Rinkeby. We send L0 = 5120 future transactions
with a Gas price of 1000 Gwei at the rate of 1 message per second.
The attack payload is sent to the selected top 5 miners in parallel
and lasts for 60 seconds (or 4 blocks). As the �gure shows, before the
attack starts (blocks #7827810-7827812), around 12-16 transactions
are included at each block and more than 8.9%-56.4% block Gas is
used. During the attack, 3 out of 4 blocks are mined by the victim
miners that under our attack, leading to a 75% success rate. In
these 3 blocks, less than 3 transactions are included at each block
and the block Gas usage is less than 2.4%. Our attack failed at one
block (#7827816) which includes 5 transactions. The evaluation
result on Rinkeby shows that our DETER-X can reduce the regular
transaction inclusion rate by 4 � 12⇥ and reduce the block Gas
usage by 4 � 200⇥.

P20

(a) Top miners in Rinkeby

Attack
begins

Attack
stops

(b) Screenshot from etherscan.io

Figure 16: DETER-Z top-5 miners in Rinkeby

Attack
begins

Attack
stops

(a) Screenshot from etherscan.io (DETER-Z top-4 miners in Ropsten)

Attack
begins

Attack
stops

(b) Screenshot from etherscan.io (DETER-X top-5 miners in Rinkeby)

Figure 17: DETER-X/Z attacks on miners in testnets

13.5 Result Summary
Beyond the miners/mining pools described in the maintext, other
critical Ethereum services that depend on the txpool can be DE-
TER victims, such as mining pools, transaction propagation, RPC
service, Gas station and other DApp services. We summarize the
attack strategies and evaluation results to victimize these additional
Ethereum services: 1) To block a node from propagating incoming
transactions, the attacker mounts DETER-Z attack. A local-node
evaluation shows that DETER-Z can prevents 87.6% of transactions
from being propagated. 2) A RPC service provides transaction relay
services for end users (the background on RPC will be described in
§ 2). By discovering nodes on the service backend and sending them
DETER-Z payloads, one can block transactions replayed through a
RPC service. Evaluation shows that DETER-Z on infura’ s nodes
on the Goerli testnet can in�nitely delay the relay/propagation of
transactions of Gas price lower than 1000 Gwei. 3) Gas station is
a service that reads from txpool and ledger the transactions’ Gas
prices to suggest a proper value of Gas price for incoming trans-
actions. Mounting DETER-X/Z on an Ethereum node running the
popular EthGasStation code [29], one can alter the predicted Gas
price by as much as 50%/100%.

14 MITIGATION SCHEMEM0 AND
EVALUATION SETUP

14.1 Mitigation SchemeM0

Table 11: Example of authorized searcher attack
Policy Admission Eviction

M0
No admission of future transaction

NANo admission of invalid transaction
No admission of tx of the same sender with
any txs in the pool

M1
NA No eviction of valid tx by future/invalid tx

No eviction of valid tx that transforms ex-
isting valid tx into future or invalid.

M0 adds three transaction-admission rules to an underlying
txpool:M0a) It does not admit any future transitions.M0b) It does
not admit any invalid transaction.M0c) It does not admit a transac-
tion that shares the same sender with another transaction currently
residing in the txpool.

Security analysis: A txpool under admission policyM0 is se-
cure against DETER attacks (that is, any DETER attack fails). Be-
cause of Theorem 14.1, there is no future or invalid transaction in
the txpool. A DETER attack that relies on populating future or
invalid transactions (respectively in DETER-X or DETER-Z) into
the txpool cannot succeed.

P21

T������ 14.1. Under admission policies M0, at any time, the
txpool does not contain any future transaction or an overdraft trans-
action.

P����. We �rst prove that under admission policy M0, at any
time, the txpool does not contain any future transaction. If at a
certain time, there is a future transaction in txpool underM0, the
future transaction must either be directly admitted to the txpool
or is admitted as a pending transaction and then is transformed
to a future transaction by eviction. The former case is directly
prohibited by the admission policy in M0. The latter case is also
impossible because to transform a transaction tx2 to a future one,
its predecessor transaction tx1, that is the transaction of the same
sender with tx2 but having the nonce smaller than that of tx2 by
one, needs to be evicted by the txpool. However,M0 prohibits two
transactions of the same sender, like tx1 and tx2, in the txpool.
Thus, the latter case does not hold.

We then prove that under admission policyM0, at any time, the
txpool does not contain any overdraft transaction. Because M0
prevents admitting overdraft transactions, if there has to be an
overdraft transaction in the txpool, it has to be transformed. That
is, such a transaction, say tx1, must not be an overdraft at the time of
admission and after being admitted to the txpool, it is transformed
into an overdraft by the inclusion/admission of another transaction,
say tx2, that spends the tx1’s balance. However, to do so, tx2 must
be from the same sender with tx1, which violatesM0. ⇤

Cost analysis: While schemeM0 is su�cient to mitigate DETER
attacks, it is not necessary. And this can cause excessive loss of
miners’ revenue. For instance, M0 prevents any transactions of
the same sender being admitted. However, it is possible that two
transactions of the same sender are valid transactions, and M0
rejecting them clearly makes the txpool lose the chance to collect
their fees. Besides,M0 prohibits any future or invalid transactions
upon admission, which is another overkill. The transaction state
upon admission is temporary and can be changed. For instance, a
future transaction at the time of admission, say tx2 of nonce n + 2,
can be transformed into a pending transaction if another transaction
tx1 of nonce n + 1 arrives at the same txpool. Thus declining such
a temporary future transaction leads to miners’ inability to collect
its transaction fee.

14.2 Evaluation Setup
14.2.1 Experiment Methodology & Setup. Macrobenchmark by
real transactions: To construct the macrobenchmark, we launch
a Geth node joining the mainnet in order to collect any transac-
tions that arrive at the node, no matter what transaction states
they are in. To do so, we statically instrumented the Geth client
to intercept arriving transactions prior to any admission checks.
After the launch of the Geth node, we wait three hours for the syn-
chronization process to �nish. We then start to 1) take the snapshot
of the txpool by recording all currently residing transactions, and
2) collect the received transactions in the next one hour. In the
one-hour period, we recorded a total of more than �ve hundred
thousand transaction.

In order to replay the collected transactions (as will be described),
we also record the amount of Gas each transaction consumes. This

is done by observing the produced block in the mainnet and record
the Gas of the collected transactions. It is possible that certain
transactions collected are not included in themainnet block. For this
kind of transactions, we just use their Gas limit (i.e., the maximal
amount of Gas allowed by the transaction sender) to simulate its
(otherwise) used Gas.

Tx
trace

Block
analyzer

Txpool
Simulator

Geth

ParityGeth

Besu Aleth

Replay
txs

Produce
blocks

Figure 18: Experiment platform: Transaction replay and
txpool simulation

Revenuemeasurement by replaying transactions: To evaluate
the miners’ revenue collected by a client, we employ the approach
of replaying transactions. That is, we drive the collected transac-
tions to a running client initialized with the initial txpool content,
and turn on the mining to observe the produced blocks and the
transactions included there. Technically, we replay each transaction
in the benchmark with the following modi�cations: 1) We replace
the transaction’s public key by the one generated by us, so that
we can know the private key and sign the modi�ed transaction. 2)
Given a transaction that invokes a smart contract, we modify the
transaction’s data �eld to make it invokes a designated smart con-
tract that we call GasSimulator. The function in GasSimulator takes
as argument a value � and runs a loop of SHA3 instructions such
that the function call actually consumes approximately � Gas. The
modi�ed transaction calls GasSimulator with argument � where
� is the amount of Gas consumed in the benchmark (e.g., in the
real Ethereum transaction as in macrobenchmark). The transaction-
replay engine and evaluation system are illustrated in Figure 18.

For fair transaction replay, our goal is to ensure that each mining
event occurs at the same position in the sequence of replayed trans-
actions on di�erent Ethereum clients. For instance, the proof-of-
work mining event that selects transactions from txpool right after
the i-th replayed transaction and removes the selected transactions
right after the j-th replayed transaction does the same on all di�er-
ent tested Ethereum clients (or our proposed mitigation schemes).
Ensuring this property is non-trivial, as di�erent Ethereum clients
produce blocks at di�erent rates even under the same mining di�-
culty. Instead of tuning di�culty directly (which we found is hard
to control), we empirically tune the rate in which transactions are
sent for replaying, so that the rate of transactions sent matches
the rate of mining on speci�c miners. With this, we ensure each
client produces the same number of blocks when replaying the
collected transactions in a benchmark (e.g., 248 blocks under the
macrobenchmark).

Implementing mitigation schemes: We implement mitiga-
tion schemes in a txpool simulator. Speci�cally, the simulator
receives transactions replayed from the benchmark and period-
ically pushes transactions to a downstream Geth node for mining.
The txpool simulator implements a simple unsorted array to store
transactions. When the downstream Geth node is about to mine,
the simulator selects a number of pending transactions, ordered by

P22

their Gas prices, whose total Gas is twice the Ethereum block limit.
Then the simulator sends this batch of transactions to the Geth
node which runs mining and produces one block. Upon observing
a newly produced block, the simulator pauses the mining, deletes
the transactions included in the block and then requests the Geth
to clear its own txpool. The simulator implements basic function-
ality such as transaction replacement (i.e., replacing an existing
transaction by an incoming transaction of the same sender but at
higher Gas price).

On top of the txpool simulator, we implement the twomitigation
schemesM0 andM1 by customizing the operations for transaction
admission (M0) and eviction (M1). Particularly, the eviction policy
inM1 enforces the following priority, that is, VH > VL > [FI]H >
[FI]L.

14.3 Additional Testnet Measurement Results
Geth percentage in Testnets: We also measure the versions of
Ethereum client software running on all nodes in the three testnet.
The purpose is to understand how many nodes run Geth in these
12After Parity 3.0, the software is renamed to OpenEthereum. In this paper, we still
use “Parity” to refer to both Parity with versions older than 3.0 and OpenEthereum.

Ethereum testnets, as our DETER is designedmainly for Geth clients.
To do so, we run a measurement Geth node, for about three days in
Oct, 2020 (three days for each one of the three testnets), to passively
let it connect to all nodes in a target testnet, say Ropsten. Node
M can know the client software running on its neighbor because
when establishing node connections, the Ethereum subprotocol’s
handshake phase requires the two nodes to exchange client version
information [51].

Table 12: Percentage of Geth nodes in three testnets
Testnet Geth Parity Others
Ropsten 92.5% 6.2% 1.3%
Rinkeby 98.7% 1% 0.3%
Goerli 94.2% 3.5% 2%

The results are in Table 12. For all three major testnets, most
nodes there run Geth client, that is, 92.5% for Ropsten, 98.7% for
Rinkeby and 94.2% for Goerli. By contrast, there are fewer than
7% nodes running Parity12, the second most popular Ethereum
clients. With this, we believe measuring the edges among Geth
clients capture most edges in an Ethereum testnet.

P23

