
ChainFS: Blockchain-Secured Cloud Storage

Qiwu Zou1, Yuzhe Tang1, Ju Chen1, Kai Li1,
Charles A. Kamhoua2, Kevin Kwiat3, Laurent Njilla3

1 Department of EECS, Syracuse University, New York
2 Army Research Lab, Adelphi, Maryland

3 Cyber Assurance Branch, Air Force Research Laboratory, Rome, New York

Abstract—This work presents ChainFS, a middleware
system that secures cloud storage services using a minimally
trusted Blockchain. ChainFS hardens the cloud-storage
security against forking attacks. The ChainFS middleware
exposes a file-system interface to end users. Internally,
ChainFS stores data files in the cloud and exports minimal
and necessary functionalities to the Blockchain for key
distribution and file operation logging. We implement the
ChainFS system on Ethereum and S3FS and closely
integrate it with FUSE clients and Amazon S3 cloud
storage. We measure the system performance and
demonstrate low overhead.

I. INTRODUCTION
Cloud security continues to raise concerns as new security

applications (e.g., IoT clouds, healthcare clouds, etc) become
popular and new attack incidents (e.g., data breaches) emerge.
The root cause is that clients lack trust to the cloud as a third
party. The trust problem adversely affects cloud adoption rate in
emerging application domains. On the other hand, the
Blockchain technology has recently been adopted for supporting
the world’s first successful cryptocurrency, BitCoin [3],
followed by many others, such as Ethereum [4], Litecoin [5],
etc. Through the cryptocurrency applications, the Blockchain
design has shown the great potential to behave as the first
practical trusted third-party (TTP).

In this work, we propose to use Blockchain as a trusted third
party (TTP) to harden the security of cloud storage, and to
defend forking attacks. Suppose the data stored on the cloud is
end-to-end encrypted. The attack surface is reduced to and
refocuses on the planes of key management and meta-data about
encrypted data. A forking attack [10] is such that a malicious

cloud server can present different views (of the same query) to
different clients. Fork consistency states that an untrusted server
can launch forking attacks but cannot evade detection by
merging forks.

Blockchain can be repurposed as a log of cloud-storage
operations, a scheme inspired by Catena [11]. With Blockchain,
it hardens the security of cloud storage, as it prevents forking
attacks in the cloud file system. The prevention is due to the fact
that forking file-system views is as hard as double-spending
transactions in Blockchain.

In our Blockchain-secured cloud storage, Blockchain is
involved in securing A1) a key directory and A2) an operational
log server. For A1), a public-key directory, as specified in the
key transparency scheme [12], helps manage user identities in
the cloud and is the foundation of establishing trust among users
for data-sharing applications. Had such public-key directory
served by an untrusted cloud, the directory cloud can fork
directory views and present different public keys to different
users regarding the same request to obtain Alice's public key.
For A2), the operational log, as specified in the SUNDR
protocol [10], records the client-server interactions when
accessing a remote file system. A malicious storage server may
launch a forking attack to present different views to different
clients. Note that forking attack on encrypted file content is
feasible, as a stale ciphertext block is still legitimate and can be
decrypted by an intended client (see Sec.III.D for a detailed
discussion).

We build a system instantiating the design. Our
implementation is based on the S3FS project [13], which hooks
client file-system operations with Amazon S3 cloud storage
using Filesystem in Userspace or FUSE [14], [15]. We
systematically examine the fuse operations and extract state
information relevant to possible forking attacks. We design
Blockchain logging schemes for storing two states, a public key
directory and a file operational history. The stateful Blockchain
logging is implemented by the smart-contract states on
Blockchain, and stateless logging is implemented by the
transactional interface of Blockchain. Our implementation is
functional on Ethereum.

The contribution made in this paper includes the following:

1. We apply the Catena scheme [11] in two cloud-storage
contexts: key distribution and file-system operations. We
consider both stateless log and stateful index.

2. We implement a functional system and integrate it
transparently with client-end Linux file systems, cloud-end
Amazon S3 storage[1], and Ethereum Blockchain[4]. We
demonstrate the performance overhead of ChainFS is low in
practice.

II. RELATED WORK
Blockchain is a readable, append-only, and distributed

storage system for storing the history of transactions (or ledger),
which is materialized on an open-membership P2P network
where peers are not required to register an account for joining
the Blockchain network. The open-membership design is
essential to large-scale deployment of Blockchain on the planet.
Furthermore, this design is secured by a mining mechanism,
where adding a transaction to Blockchain requires so-called
mining, which is intensive computations that solve puzzles [16].

In addition, Blockchain ensures no double spending
transactions are included, that is, there are no two transactions
that spend the same set of coins. This is realized by transaction
validation work in Blockchain.

Secure remote file systems: SUNDR [10] is a remote file
system (in a one-server-multi-client setting) that ensures fork
consistency to the clients. IPFS [17] is a P2P file system based
on DHT. Storj [18] is a secure P2P file system by file encryption
and authentication. In addition, Storj support [19] based on a
Merkle tree design. CONIKS [12] is a key transparency scheme
which maintains a public-key directory for secure messaging.
To prevent forking attacks against the key directory, CONIKS
requires identity providers to periodically publish the log of
directory snapshot digested by a Merkle trie. The log is
published to peer identity providers. The peer providers are
untrusted but are assumed not to collude with the owner
providers.

Non-cryptocurrency applications of Blockchain:
TPAD[32] supports the logging of cloud-client operations on
Blockchain in a way to support data and query authenticity.
ProvChain [34] stores the trace of cloud data operations on
Blockchain in the hope of enhancing transparency for data
auditability. ProvChain models the operation trace by

provenance data and supports data validation. Work [35] models
the block-withholding attack (a variant of self-mining attack)
and analyzes the security of existing Blockchain systems.
CloudPoS[36] is a proof-of-stake consensus protocol tailored for
a client-cloud system running as the substrate of a private
Blockchain. IncBM cloud storage [33] ensures the data
freshness and authenticity by an authenticated data structure
based on Merkle tree and Bloom filters. Other works support
data indexing of cloud storage system [28] and P2P storage
systems [29]–[31].

III. CHAINFS SYSTEM DESIGN

A. System Overview

Figure 1. Overview of system architecture (CA represents
certificate authority)

Overall, our system consists of three parties: a client, a server

hosted by untrusted cloud, and a Blockchain. The client machine
runs applications and operating systems for the end user; it
manages user’s private files and stores these data securely in
remote parties, through a FUSE [20] client. The system
architecture is as illustrated in Figure 1. The FUSE client
interacts remote parties in two planes: key management and data
storage.

On the key-management plane, a public-key directory stores
the binding between public key and identity. With an external
offline certificate authority, it also keeps the certificate for the
key-identity binding signed by the authority.

On the data plane, we consider the SUNDR protocol[10]
which dictates two server components: a block store that stores

the file contents and a consistency server which is an auditable
log of RPC operations.

Both SUNDR server and public-key directory are hosted by
untrusted platforms, such as public cloud services. These servers
can launch forking attacks to present different views to different
clients. For instance, for the public-key directory, forking attack
can manifest in a man-in-the-middle attack [21] where the
untrusted directory can play the role of the man in the middle
and attack by presenting a fake key of Alice to Bob, while
presenting Alice's true public key to Alice. This can lead to the
consequence that Bob get connected to a person who is not
Alice. For SUNDR server, the untrusted consistency server can
present to Alice a copy of global operational history to conceal
from her consistency violation in her operation history, while
presenting to Bob another copy of the history.

In theory, with untrusted servers, fork consistency is the best
one can achieve and it states that the untrusted server can launch
a forking attack (i.e., it cannot be prevented without a trusted
third party) which can, however, be detected given an external
client-gossiping mechanism.

The blockchain is used as a trusted third party to proactively
detect or even prevent forking attacks. That is, the Blockchain,
as a cryptocurrency ledger with the security of no double
spending, can be repurposed as a witness scheme. In Blockchain
witness, forking application views is made as hard as forking
Blockchain. Due to the double-spending security, it prevents,
not only detect, forking attacks at the application layer. In other
words, the malicious server cannot record the two forks of a log
in the Blockchain as the forks will be two double-spending
transactions and Blockchain’s validity logic will invalidate at
least one of them.

B. Blockchain Witness for Operation Log
In SUNDR [10], the consistency server maintains file-system

operation history. The history can be materialized as a log or a
version structure (the vector of latest per-user versions). The
untrusted consistency server can launch fork attacks by simply
presenting client Alice one copy of the history and client Bob
another copy of the history. SUNDR achieves fork consistency
which makes forking attack detectable but does not prevents
such attacks.

To prevent forking attacks, we propose to store the dynamic
SUNDR operation history in Blockchain. For instance, when
Alice reads file foo from the block server, a new log entry is
generated that binds with log index i the following operation
<Alice,read,foo,foo’s content>. The log server sends a
transaction encoding the new log entry and its index to the
Blockchain.

When generating the transaction, the sender is the full
UTXO[16] (or unspent transaction output) of the previous
transaction (i.e., corresponding to the log entry of index i-1), the
receiver is the account address of the log server and the
transacted coins are the full amount of UTXO from the sender
“account” (minus the transaction fee). By this means, the UTXO
of the transaction of log entry i-1 is fully spent, which is
essential to the forking attack security as analyzed below.

Alice finishing the read operation would then proceed to
verify the operation is reflected in the Blockchain by checking
three conditions: C1) whether transaction i is included in
Blockchain, C2) whether transaction i spends the full UTXO of
transaction i-1, C3) whether transaction i is signed by SUNDR
consistency log. Alice then checks the three conditions for all
transactions before transaction i. If all transactions satisfy the
three conditions, Alice can be assured that the linear chain of
transactions is the same chain that will be verified by all other
clients. She then checks if the transactions semantically match
her local view, that is, C4) if transaction i’s OP_RETURN
matches with what she receives from the log server. In addition,
she will check C5) if any operation before i is semantically
consistent with operation i. For instance, if Bob queries the same
file at position i-1 and the content he got is different from Alice,
this may violate the fork consistency. After the five conditions,
namely C1,...C5, are met, Alice can be convinced that the read
result is globally consistent and there is no forking attack. The
security analysis of this process is below.

Suppose there is a successful forking attack that can bypass
the client verification. This means the log server needs to return
to Bob value X while return to Alice value Y (X � Y). If Alice
�s verification passes, the log that Alice sees must be that Bob
and Alice have the same value, say value Y. In other words,
Blockchain returns to Alice log entries Bob|Y,Alice|Y and
returns to Bob log entry Bob|X. This is equivalent to say that in
order to have a successful forking attack on the log, the

Blockchain itself needs to be forked (at the time Alice requests
the log and the time Bob requests), which is difficult.

C. Blockchain Witness for Key Directory
Key transparency schemes, such as CONIKS[12], maintain a

dynamic key directory (subject to key insertions and
revocations) with global consistency. The consistency is about
prevention of forking attacks --- when a CONIKS client receives
the request key bindings; it can be assured that the same key
bindings are returned to other clients. To verify the consistency,
CONIKS leverages a Merkle-trie authenticated data structure
and publishes the root digest among all clients using a Gossiping
protocol.

We propose to leverage a Blockchain witness scheme to
replace gossiping protocol in the CONIKS directory service.

To set up the stage, there are three properties a CONIKS
client are required to verify: D1) the digests are linearly chained,
D2) non-equivocation among all CONIKS clients, D3) correct
keys are included in the CONIKS bindings. The trail of a
dynamic CONIKS directory consists of a series of directory
snapshots, each digested by a Merkle trie, and the series of
Merkle root digests.

To map CONIKS to Blockchain that satisfies the three
requirements, we propose the following scheme: Every time the
CONIKS directory produces a digest (or STR), the digest is sent
over to the Blockchain in a transaction. The format of the
transaction is the following: sender and receiver are fixed to the
account of CONIKS directory. The coin amount is the minimal
transaction fee. The digest is embedded in the transaction in
OP_RETURN [11], [16] field.

When a client or a third-party wants to audit, she downloads
the log of STRs from the Blockchain. She then goes through the
chain and ensures the total order of STRs (C1).

When a client wants to monitor, she downloads her bindings
from CONIKS directory with Merkle proofs. She also
downloads the STR log from the Blockchain, such that she can
verify the authenticity of the CONIKS bindings. She then
checks the equality of the CONIKS keys and her local keys.

D. Security Analysis
ChainFS leverages the Blockchain to add forking-attack

resilience to an encrypted file system on the cloud. For both
public key directory and file system operations, it maintains a
linear log of application-specific entries, and maps the log to
Blockchain.

For forking attack in the public directory, the cloud presents
different key-name bindings (of the same person) to different
clients. For the client to accept the binding, recall that it checks
the inclusion of the binding in the snapshot of the directory with
digest as a log entry that is audited in the Blockchain. For two
clients to accept two forked bindings, there must be two log
entries audited in the Blockchain at the same day. In other
words, the log in Blockchain must be forked, which is as hard
as double spending the transaction in the Blockchain.

For forking attack in the SUNDR operational log, the storage
server can present two encrypted and different files to two
different clients. These two events are recorded in these two
clients’ local logs. Also, the cloud server will record its own
version of global log to the Blockchain. During the log
attestation and auditing, local logs will be compared against the
global log to test if the local log is a subset of the global log,
and optionally, if there is any violation of storage
consistency[22]. For the forking attack to bypass detection, one
needs to force Blockchain to fork itself. Forking blocks that are
confirmed (e.g., after 6 times) is difficult in a public, large-scale
Blockchain.

IV. SYSYTEM IMPLEMENTATION
A FUSE client exposes the internal of a file-system to the

user space and allows to custom a file system in a transparent
way. Concretely, there are two APIs, respectively at the syscall
level (e.g., stats, write, etc.) and at the kernel level (e.g., lookup,
etc.).

Each Linux file is stored by data blocks (for storing its
content) and by inode (for storing metadata). The metadata of a
file includes modes (i.e., the permission list), the owner user,
group user (roles) and access dates (e.g., modify date, create
date, etc.). In addition to the persistent data, opening a file in

Linux will create dynamic data in memory, such as file
descriptor, which binds an open file with a process.

We implement our system design based on the S3FS
project[13], which allows a Linux user to mount a remote file
system in an Amazon-S3 alike cloud. Briefly, S3FS overwrites
the syscall FUSE APIs (e.g., stats, write, open, etc.) and redirect
the file storage to the cloud --- Both inode and content are
stored remotely.

To build an authentication layer on S3FS, we first use a hash
function to digest file content and then use an intra-file Merkle
tree to digest the inode metadata and content hash. To manage
files in a directory tree, we build an inter-file Merkle tree where
each leaf is the root hash of an intra-file Merkle tree.

We store the root hash of inter-file Merkle tree in Blockchain
and keep the Merkle tree itself off-chain in the cloud. The off-
chain Merkle tree itself is stored as a shadow file on the
Blockchain.

For each read operation (e.g., stats or read), we verify the
authenticity and membership of query result using the Merkle
proof against the latest hash stored on Blockchain. For each
write operation (e.g., write, chmod, chown), we first verify the
result from the cloud using the Merkle proof and then update
the local state with the new root hash generated before sending
it to the Blockchain.

In the setting of multiple clients, file-system operations are
logged in a global state stored in Blockchain. Each client
accessing a shared file would download the entire log chain to
check following facts: F1) the operations/transactions in the log
are linearly chained in a total order, F2) strong consistency (i.e.,
every read reflects the latest write in the total-order log) can be
checked by iterating through the chain. Note that fork
consistency is assured in these checks because the mapping
scheme to transaction renders forking file-system operation log
to be as hard as forking the Blockchain itself, as analyzed
before.

In our current implementation, the FUSE-blockchain
interaction is realized by having an intermediary web-server
process that relay the message from FUSE to the Blockchain.
The FUSE client in ChainFS, upon sending requests to the
remote cloud, would send a CURL [23] request to the web-

server process. The web server runs javascript that translates the
received CURL request to a Geth request and relays the request
to the Ethereum Blockchain. Implementing the hash function is
based on the SHA256 algorithm. We note that our
implementation may not be performance optimal as it relies on
this web-server intermediary process. Nevertheless, we
demonstrate the performance efficiency in our performance
evaluation.

V. PERFORMANCE
In our experiment setup, we have three types of machines.

First, we create an account on Amazon S3 AWS and run cloud
instances. Second, we run our FUSE clients on a local machine.
The client machine has the CPU of Intel(R) Xeon(R) CPU E5-
2680 v3 @ 2.50GHz and a 10-GB memory. Third, the
Blockchain runs on three server machines with the following
specification: Intel 8-core i7-6820HK CPU of 2.70GHz and
8MB cache, 32 GB Ram, and 1TB Disk.

File Create/Write Performance: In the experiments, we first
use LFS [24] small file benchmark to generate 1000 small files
with sizes varying from 1 KB to 100 KB. We use the Linux dd
utility [25] for file generation and time measurement. We report
the average time and standard deviation. Here, the files are
generated using random contents such that the digests to put on
Blockchain will change, and ChainFS will not have an unfair
advantage.

The performance result of the small-file experiment is
presented in Figure 2. Comparing the ideal case that runs an
S3FS without Blockchain, our ChainFS has up to 35%
performance overhead (with 10 KB files). The overhead
decreases as the files grow large. In particular, when the files
are too small, the performance becomes unstable. Involving
Blockchain does not increase much standard deviation, and we
suspect this is due to that the original cloud connection has a
certain degree of uncertainty.

Following a similar procedure, we also conduct experiments
with large files. We generate files with file size varying from 1
MB to 1 GB. We measure the execution time and report metrics
in a similar fashion to the small file case. The result is reported
in Figure 3. The Blockchain overhead increases as the file

grows large and reaches the maximal about 28% (at 1 GB file).
In the large file setting, the system bottleneck is at transferring
data across the Internet (e.g., between client machines and
cloud).

Figure 2. File write latency with small files

Figure 3. File write latency with large files

Figure 4. File read latency

File Read Performance: We conduct an experiment to

evaluate the read latency of ChainFS. In the experiment, the
client machine first runs a script to create 100 files of variable
sizes (from 1 KB to 100 KB). It then launches a series of Linux
CAT commands to repeatedly read the files. In this experiment,
we measure the time spent on the second stage (i.e., running
CAT commands). We report the performance result in Figure 4.
It can be seen that on average, ChainFS adds about 30%
overhead to the regular read path of a cloud file system. As the
file grows large, the overhead stays const.

VI. CONCLUSION

 This paper presents ChainFS, a multi-client file system in
the cloud whose security is hardened by leveraging Blockchain.
ChainFS prevents forking attacks by the hardness of double
spending in the Blockchain. It systematically applies the
security design to the system of an encrypted cloud storage, on
the planes of key management and file operation log. We
implement a functional prototype of ChainFS based on S3FS
and Ethereum and demonstrate practical performance. ChainFS
enables end users to securely shares data in the cloud.

REFERENCES

[1] “Amazon AWS.” [Online]. Available:
https://aws.amazon.com/.

[2] G. Developers, “Google cloud computing, hosting
services & apis.” 2015.

[3] “Bitcoin - Open source P2P money.” [Online].
Available: http://bitcoin.org. [Accessed: 29-Jan-2018].

[4] “Ethereum Project.” [Online]. Available:
http://www.ethereum.org. [Accessed: 29-Jan-2018].

[5] “Litecoin - Open source P2P digital currency.”
[Online]. Available: http://litecoin.org. [Accessed: 29-
Jan-2018].

[6] “Signal >> Home.” [Online]. Available:
https://signal.org. [Accessed: 31-Mar-2018].

[7] “WhatsApp,” WhatsApp.com. [Online]. Available:
https://www.whatsapp.com. [Accessed: 31-Mar-2018].

[8] “Keybase.” [Online]. Available: https://keybase.io/.
[Accessed: 31-Mar-2018].

[10] J. Li, M. N. Krohn, D. Mazieres, and D. E. Shasha,
“Secure Untrusted Data Repository (SUNDR),” in
OSDI, 2004, vol. 4, pp. 9–9.

[11] A. Tomescu and S. Devadas, “Catena: Efficient
Non-equivocation via Bitcoin,” in 2017 IEEE
Symposium on Security and Privacy (SP), 2017, pp.
393–409.

[12] M. S. Melara, A. Blankstein, J. Bonneau, E. W.
Felten, and M. J. Freedman, “CONIKS: Bringing Key
Transparency to End Users,” in USENIX Security
Symposium, 2015, vol. 2015, pp. 383–398.

[13] s3fs-fuse. Github.
[14] Wikipedia contributors, “Filesystem in Userspace,”

Wikipedia, The Free Encyclopedia, 14-Mar-2018.
[Online].

[15] libfuse. Github.
[16] A. Narayanan, J. Bonneau, E. W. Felten, A. Miller,

and S. Goldfeder, “Bitcoin and Cryptocurrency

Technology (manuscript). 2015,” Retrieved 8/6, 2015.
[17] P. Labs, “IPFS is the Distributed Web,” IPFS.

[Online]. Available: https://ipfs.io/. [Accessed: 25-Mar-
2018].

[18] “Storj - Decentralized Cloud Storage,” Storj -
Decentralized Cloud Storage. [Online]. Available:
https://storj.io/. [Accessed: 25-Mar-2018].

[19] A. Juels and B. S. Kaliski Jr., “Pors: Proofs of
Retrievability for Large Files,” in Proceedings of the
14th ACM Conference on Computer and
Communications Security, Alexandria, Virginia, USA,
2007, pp. 584–597.

[20] libfuse. Github.
[21] J. Bonneau, “EthIKS: Using Ethereum to Audit a

CONIKS Key Transparency Log,” in Financial
Cryptography and Data Security, 2016, pp. 95–105.

[22] B. H. Kim and D. Lie, “Caelus: Verifying the
Consistency of Cloud Services with Battery-Powered
Devices,” in 2015 IEEE Symposium on Security and
Privacy, 2015, pp. 880–896.

[23] “curl.” [Online]. Available: https://curl.haxx.se/.
[Accessed: 28-Mar-2018].

[24] M. Rosenblum and J. K. Ousterhout, “The Design
and Implementation of a Log-structured File System,”
ACM Trans. Comput. Syst., vol. 10, no. 1, pp. 26–52,
Feb. 1992.

[25] Wikipedia contributors, “dd (Unix),” Wikipedia,
The Free Encyclopedia, 24-Jan-2018. [Online].

 [28] Y. Tang, A. Iyengar, w. Tan, l. Fong, l. Liu, and b.
Palanisamy, “deferred lightweight indexing for log-
structured key-value stores,” in 2015 15th ieee/acm
international symposium on cluster, cloud and grid
computing, 2015, pp. 11–20.

[29] Yuzhe Tang, Jianliang Xu, shuigeng Zhou, wang-
chien lee, dingxiong deng, and yue wang, “a

lightweight multidimensional index for complex
queries over dhts,” ieee tranS. parallel distrib. sysT.,
vol. 22, no. 12, pp. 2046–2054.

[30] Y. Tang, J. Xu, S. Zhou, and w. C. lee, “m-light:
indexing multi-dimensional data over dhts,” in 2009
29th ieee international conference on distributed
computing systems, 2009, pp. 191–198.

[31] Y. Tang and S. Zhou, “lht: a low-maintenance
indexing scheme over dhts,” in 2008 the 28th
international conference on distributed computing
systems, 2008, pp. 141–151.

[32] Yuzhe (richard) Tang, Zihao xing, Cheng Xu, Ju
chen, Jianliang Xu, “lightweight blockchain logging for
data-intensive applications,” in trusted smart contracts
2018.

[33] Y. Tang, t. wang, L. Liu, X. hu, and J. jang,
“lightweight authentication of freshness in outsourced
key-value stores,” in proceedings of the 30th annual
computer security applications conference, new orleans,
louisiana, usa, 2014, pp. 176–185.

[34] X. liang, S. shetty, D. tosh, C. Kamhoua, k. Kwiat,
and L. njilla, “provchain: a blockchain-based data
provenance architecture in cloud environment with
enhanced privacy and availability,” in proceedings of
the 17th ieee/acm international symposium on cluster,
cloud and grid computing, madrid, spain, 2017, pp.
468–477.

[35] D. k. tosh, S. shetty, X. liang, C. a. Kamhoua, K. a.
Kwiat, and L. njilla, “security implications of
blockchain cloud with analysis of block withholding
attack,” in 2017 17th ieee/acm international symposium
on cluster, cloud and grid computing (ccgrid), 2017, pp.
458–467.

[36] Deepak kumar tosh, sachin shetty, peter foytik,
charles Kamhoua and laurent njilla, “cloudpos: a proof-

of-stake consensus design for blockchain,” in ieee cloud
2018.

