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Abstract—This work presents ChainFS, a middleware 
system that secures cloud storage services using a minimally 
trusted Blockchain. ChainFS hardens the cloud-storage 
security against forking attacks. The ChainFS middleware 
exposes a file-system interface to end users. Internally, 
ChainFS stores data files in the cloud and exports minimal 
and necessary functionalities to the Blockchain for key 
distribution and file operation logging. We implement the 
ChainFS system on Ethereum and S3FS and closely 
integrate it with FUSE clients and Amazon S3 cloud 
storage. We measure the system performance and 
demonstrate low overhead. 

I. INTRODUCTION  
Cloud security continues to raise concerns as new security 

applications (e.g., IoT clouds, healthcare clouds, etc) become 
popular and new attack incidents (e.g., data breaches) emerge. 
The root cause is that clients lack trust to the cloud as a third 
party. The trust problem adversely affects cloud adoption rate in 
emerging application domains. On the other hand, the 
Blockchain technology has recently been adopted for supporting 
the world’s first successful cryptocurrency, BitCoin [3], 
followed by many others, such as Ethereum [4], Litecoin [5], 
etc. Through the cryptocurrency applications, the Blockchain 
design has shown the great potential to behave as the first 
practical trusted third-party (TTP). 

In this work, we propose to use Blockchain as a trusted third 
party (TTP) to harden the security of cloud storage, and to 
defend forking attacks. Suppose the data stored on the cloud is 
end-to-end encrypted. The attack surface is reduced to and 
refocuses on the planes of key management and meta-data about 
encrypted data. A forking attack [10] is such that a malicious 



cloud server can present different views (of the same query) to 
different clients. Fork consistency states that an untrusted server 
can launch forking attacks but cannot evade detection by 
merging forks.  

Blockchain can be repurposed as a log of cloud-storage 
operations, a scheme inspired by Catena [11]. With Blockchain, 
it hardens the security of cloud storage, as it prevents forking 
attacks in the cloud file system. The prevention is due to the fact 
that forking file-system views is as hard as double-spending 
transactions in Blockchain.  

In our Blockchain-secured cloud storage, Blockchain is 
involved in securing A1) a key directory and A2) an operational 
log server. For A1), a public-key directory, as specified in the 
key transparency scheme [12], helps manage user identities in 
the cloud and is the foundation of establishing trust among users 
for data-sharing applications. Had such public-key directory 
served by an untrusted cloud, the directory cloud can fork 
directory views and present different public keys to different 
users regarding the same request to obtain Alice's public key. 
For A2), the operational log, as specified in the SUNDR 
protocol [10], records the client-server interactions when 
accessing a remote file system. A malicious storage server may 
launch a forking attack to present different views to different 
clients. Note that forking attack on encrypted file content is 
feasible, as a stale ciphertext block is still legitimate and can be 
decrypted by an intended client (see Sec.III.D for a detailed 
discussion). 

We build a system instantiating the design. Our 
implementation is based on the S3FS project [13], which hooks 
client file-system operations with Amazon S3 cloud storage 
using Filesystem in Userspace or FUSE [14], [15]. We 
systematically examine the fuse operations and extract state 
information relevant to possible forking attacks. We design 
Blockchain logging schemes for storing two states, a public key 
directory and a file operational history. The stateful Blockchain 
logging is implemented by the smart-contract states on 
Blockchain, and stateless logging is implemented by the 
transactional interface of Blockchain. Our implementation is 
functional on Ethereum. 

The contribution made in this paper includes the following: 



1. We apply the Catena scheme [11] in two cloud-storage 
contexts: key distribution and file-system operations. We 
consider both stateless log and stateful index.  

2. We implement a functional system and integrate it 
transparently with client-end Linux file systems, cloud-end 
Amazon S3 storage[1], and Ethereum Blockchain[4]. We 
demonstrate the performance overhead of ChainFS is low in 
practice. 

II. RELATED WORK 
Blockchain is a readable, append-only, and distributed 

storage system for storing the history of transactions (or ledger), 
which is materialized on an open-membership P2P network 
where peers are not required to register an account for joining 
the Blockchain network. The open-membership design is 
essential to large-scale deployment of Blockchain on the planet. 
Furthermore, this design is secured by a mining mechanism, 
where adding a transaction to Blockchain requires so-called 
mining, which is intensive computations that solve puzzles [16].  

In addition, Blockchain ensures no double spending 
transactions are included, that is, there are no two transactions 
that spend the same set of coins. This is realized by transaction 
validation work in Blockchain. 

Secure remote file systems: SUNDR [10] is a remote file 
system (in a one-server-multi-client setting) that ensures fork 
consistency to the clients. IPFS [17] is a P2P file system based 
on DHT. Storj [18] is a secure P2P file system by file encryption 
and authentication. In addition, Storj support [19] based on a 
Merkle tree design. CONIKS [12] is a key transparency scheme 
which maintains a public-key directory for secure messaging. 
To prevent forking attacks against the key directory, CONIKS 
requires identity providers to periodically publish the log of 
directory snapshot digested by a Merkle trie. The log is 
published to peer identity providers. The peer providers are 
untrusted but are assumed not to collude with the owner 
providers. 

Non-cryptocurrency applications of Blockchain: 
TPAD[32] supports the logging of cloud-client operations on 
Blockchain in a way to support data and query authenticity. 
ProvChain [34] stores the trace of cloud data operations on 
Blockchain in the hope of enhancing transparency for data 
auditability. ProvChain models the operation trace by 



provenance data and supports data validation. Work [35] models 
the block-withholding attack (a variant of self-mining attack) 
and analyzes the security of existing Blockchain systems. 
CloudPoS[36] is a proof-of-stake consensus protocol tailored for 
a client-cloud system running as the substrate of a private 
Blockchain. IncBM cloud storage [33] ensures the data 
freshness and authenticity by an authenticated data structure 
based on Merkle tree and Bloom filters. Other works support 
data indexing of cloud storage system [28] and P2P storage 
systems [29]–[31]. 

III. CHAINFS SYSTEM DESIGN 

A. System Overview 
 

 
 

Figure 1. Overview of system architecture (CA represents 
certificate authority) 

 
Overall, our system consists of three parties: a client, a server 

hosted by untrusted cloud, and a Blockchain. The client machine 
runs applications and operating systems for the end user; it 
manages user’s private files and stores these data securely in 
remote parties, through a FUSE [20] client. The system 
architecture is as illustrated in Figure 1. The FUSE client 
interacts remote parties in two planes: key management and data 
storage. 

On the key-management plane, a public-key directory stores 
the binding between public key and identity. With an external 
offline certificate authority, it also keeps the certificate for the 
key-identity binding signed by the authority.  

On the data plane, we consider the SUNDR protocol[10] 
which dictates two server components: a block store that stores 



the file contents and a consistency server which is an auditable 
log of RPC operations.  

Both SUNDR server and public-key directory are hosted by 
untrusted platforms, such as public cloud services. These servers 
can launch forking attacks to present different views to different 
clients. For instance, for the public-key directory, forking attack 
can manifest in a man-in-the-middle attack [21] where the 
untrusted directory can play the role of the man in the middle 
and attack by presenting a fake key of Alice to Bob, while 
presenting Alice's true public key to Alice. This can lead to the 
consequence that Bob get connected to a person who is not 
Alice. For SUNDR server, the untrusted consistency server can 
present to Alice a copy of global operational history to conceal 
from her consistency violation in her operation history, while 
presenting to Bob another copy of the history.  

In theory, with untrusted servers, fork consistency is the best 
one can achieve and it states that the untrusted server can launch 
a forking attack (i.e., it cannot be prevented without a trusted 
third party) which can, however, be detected given an external 
client-gossiping mechanism. 

The blockchain is used as a trusted third party to proactively 
detect or even prevent forking attacks. That is, the Blockchain, 
as a cryptocurrency ledger with the security of no double 
spending, can be repurposed as a witness scheme. In Blockchain 
witness, forking application views is made as hard as forking 
Blockchain. Due to the double-spending security, it prevents, 
not only detect, forking attacks at the application layer. In other 
words, the malicious server cannot record the two forks of a log 
in the Blockchain as the forks will be two double-spending 
transactions and Blockchain’s validity logic will invalidate at 
least one of them.  

B. Blockchain Witness for Operation Log 
In SUNDR [10], the consistency server maintains file-system 

operation history.  The history can be materialized as a log or a 
version structure (the vector of latest per-user versions). The 
untrusted consistency server can launch fork attacks by simply 
presenting client Alice one copy of the history and client Bob 
another copy of the history. SUNDR achieves fork consistency 
which makes forking attack detectable but does not prevents 
such attacks. 



To prevent forking attacks, we propose to store the dynamic 
SUNDR operation history in Blockchain. For instance, when 
Alice reads file foo from the block server, a new log entry is 
generated that binds with log index i the following operation 
<Alice,read,foo,foo’s content>. The log server sends a 
transaction encoding the new log entry and its index to the 
Blockchain.  

When generating the transaction, the sender is the full 
UTXO[16] (or unspent transaction output) of the previous 
transaction (i.e., corresponding to the log entry of index i-1), the 
receiver is the account address of the log server and the 
transacted coins are the full amount of UTXO from the sender 
“account” (minus the transaction fee). By this means, the UTXO 
of the transaction of log entry i-1 is fully spent, which is 
essential to the forking attack security as analyzed below. 

Alice finishing the read operation would then proceed to 
verify the operation is reflected in the Blockchain by checking 
three conditions: C1) whether transaction i is included in 
Blockchain, C2) whether transaction i spends the full UTXO of 
transaction i-1, C3) whether transaction i is signed by SUNDR 
consistency log. Alice then checks the three conditions for all 
transactions before transaction i. If all transactions satisfy the 
three conditions, Alice can be assured that the linear chain of 
transactions is the same chain that will be verified by all other 
clients. She then checks if the transactions semantically match 
her local view, that is, C4) if transaction i’s OP_RETURN 
matches with what she receives from the log server. In addition, 
she will check C5) if any operation before i is semantically 
consistent with operation i. For instance, if Bob queries the same 
file at position i-1 and the content he got is different from Alice, 
this may violate the fork consistency. After the five conditions, 
namely C1,...C5, are met, Alice can be convinced that the read 
result is globally consistent and there is no forking attack. The 
security analysis of this process is below. 

Suppose there is a successful forking attack that can bypass 
the client verification. This means the log server needs to return 
to Bob value X while return to Alice value Y (X � Y). If Alice
�s verification passes, the log that Alice sees must be that Bob 
and Alice have the same value, say value Y. In other words, 
Blockchain returns to Alice log entries Bob|Y,Alice|Y and 
returns to Bob log entry Bob|X. This is equivalent to say that in 
order to have a successful forking attack on the log, the 



Blockchain itself needs to be forked (at the time Alice requests 
the log and the time Bob requests), which is difficult. 

C. Blockchain Witness for Key Directory 
Key transparency schemes, such as CONIKS[12], maintain a 

dynamic key directory (subject to key insertions and 
revocations) with global consistency. The consistency is about 
prevention of forking attacks --- when a CONIKS client receives 
the request key bindings; it can be assured that the same key 
bindings are returned to other clients. To verify the consistency, 
CONIKS leverages a Merkle-trie authenticated data structure 
and publishes the root digest among all clients using a Gossiping 
protocol.  

We propose to leverage a Blockchain witness scheme to 
replace gossiping protocol in the CONIKS directory service.  

To set up the stage, there are three properties a CONIKS 
client are required to verify: D1) the digests are linearly chained, 
D2) non-equivocation among all CONIKS clients, D3) correct 
keys are included in the CONIKS bindings. The trail of a 
dynamic CONIKS directory consists of a series of directory 
snapshots, each digested by a Merkle trie, and the series of 
Merkle root digests.  

To map CONIKS to Blockchain that satisfies the three 
requirements, we propose the following scheme: Every time the 
CONIKS directory produces a digest (or STR), the digest is sent 
over to the Blockchain in a transaction. The format of the 
transaction is the following: sender and receiver are fixed to the 
account of CONIKS directory. The coin amount is the minimal 
transaction fee. The digest is embedded in the transaction in 
OP_RETURN [11], [16] field.  

When a client or a third-party wants to audit, she downloads 
the log of STRs from the Blockchain. She then goes through the 
chain and ensures the total order of STRs (C1).  

When a client wants to monitor, she downloads her bindings 
from CONIKS directory with Merkle proofs. She also 
downloads the STR log from the Blockchain, such that she can 
verify the authenticity of the CONIKS bindings. She then 
checks the equality of the CONIKS keys and her local keys. 



D. Security Analysis 
ChainFS leverages the Blockchain to add forking-attack 

resilience to an encrypted file system on the cloud. For both 
public key directory and file system operations, it maintains a 
linear log of application-specific entries, and maps the log to 
Blockchain.   

For forking attack in the public directory, the cloud presents 
different key-name bindings (of the same person) to different 
clients. For the client to accept the binding, recall that it checks 
the inclusion of the binding in the snapshot of the directory with 
digest as a log entry that is audited in the Blockchain. For two 
clients to accept two forked bindings, there must be two log 
entries audited in the Blockchain at the same day. In other 
words, the log in Blockchain must be forked, which is as hard 
as double spending the transaction in the Blockchain.  

For forking attack in the SUNDR operational log, the storage 
server can present two encrypted and different files to two 
different clients. These two events are recorded in these two 
clients’ local logs. Also, the cloud server will record its own 
version of global log to the Blockchain. During the log 
attestation and auditing, local logs will be compared against the 
global log to test if the local log is a subset of the global log, 
and optionally, if there is any violation of storage 
consistency[22]. For the forking attack to bypass detection, one 
needs to force Blockchain to fork itself. Forking blocks that are 
confirmed (e.g., after 6 times) is difficult in a public, large-scale 
Blockchain. 

IV. SYSYTEM IMPLEMENTATION 
A FUSE client exposes the internal of a file-system to the 

user space and allows to custom a file system in a transparent 
way. Concretely, there are two APIs, respectively at the syscall 
level (e.g., stats, write, etc.) and at the kernel level (e.g., lookup, 
etc.). 

Each Linux file is stored by data blocks (for storing its 
content) and by inode (for storing metadata). The metadata of a 
file includes modes (i.e., the permission list), the owner user, 
group user (roles) and access dates (e.g., modify date, create 
date, etc.). In addition to the persistent data, opening a file in 



Linux will create dynamic data in memory, such as file 
descriptor, which binds an open file with a process. 

We implement our system design based on the S3FS 
project[13], which allows a Linux user to mount a remote file 
system in an Amazon-S3 alike cloud. Briefly, S3FS overwrites 
the syscall FUSE APIs (e.g., stats, write, open, etc.) and redirect 
the file storage to the cloud --- Both inode and content are 
stored remotely. 

To build an authentication layer on S3FS, we first use a hash 
function to digest file content and then use an intra-file Merkle 
tree to digest the inode metadata and content hash. To manage 
files in a directory tree, we build an inter-file Merkle tree where 
each leaf is the root hash of an intra-file Merkle tree. 

We store the root hash of inter-file Merkle tree in Blockchain 
and keep the Merkle tree itself off-chain in the cloud. The off-
chain Merkle tree itself is stored as a shadow file on the 
Blockchain. 

For each read operation (e.g., stats or read), we verify the 
authenticity and membership of query result using the Merkle 
proof against the latest hash stored on Blockchain. For each 
write operation (e.g., write, chmod, chown), we first verify the 
result from the cloud using the Merkle proof and then update 
the local state with the new root hash generated before sending 
it to the Blockchain. 

In the setting of multiple clients, file-system operations are 
logged in a global state stored in Blockchain. Each client 
accessing a shared file would download the entire log chain to 
check following facts: F1) the operations/transactions in the log 
are linearly chained in a total order, F2) strong consistency (i.e., 
every read reflects the latest write in the total-order log) can be 
checked by iterating through the chain. Note that fork 
consistency is assured in these checks because the mapping 
scheme to transaction renders forking file-system operation log 
to be as hard as forking the Blockchain itself, as analyzed 
before. 

In our current implementation, the FUSE-blockchain 
interaction is realized by having an intermediary web-server 
process that relay the message from FUSE to the Blockchain. 
The FUSE client in ChainFS, upon sending requests to the 
remote cloud, would send a CURL [23] request to the web-



server process. The web server runs javascript that translates the 
received CURL request to a Geth request and relays the request 
to the Ethereum Blockchain. Implementing the hash function is 
based on the SHA256 algorithm. We note that our 
implementation may not be performance optimal as it relies on 
this web-server intermediary process. Nevertheless, we 
demonstrate the performance efficiency in our performance 
evaluation. 

V. PERFORMANCE 
In our experiment setup, we have three types of machines. 

First, we create an account on Amazon S3 AWS and run cloud 
instances. Second, we run our FUSE clients on a local machine. 
The client machine has the CPU of Intel(R) Xeon(R) CPU E5-
2680 v3 @ 2.50GHz and a 10-GB memory. Third, the 
Blockchain runs on three server machines with the following 
specification: Intel 8-core i7-6820HK CPU of 2.70GHz and 
8MB cache, 32 GB Ram, and 1TB Disk. 

File Create/Write Performance: In the experiments, we first 
use LFS [24] small file benchmark to generate 1000 small files 
with sizes varying from 1 KB to 100 KB. We use the Linux dd 
utility [25] for file generation and time measurement. We report 
the average time and standard deviation. Here, the files are 
generated using random contents such that the digests to put on 
Blockchain will change, and ChainFS will not have an unfair 
advantage.  

The performance result of the small-file experiment is 
presented in Figure 2. Comparing the ideal case that runs an 
S3FS without Blockchain, our ChainFS has up to 35% 
performance overhead (with 10 KB files). The overhead 
decreases as the files grow large. In particular, when the files 
are too small, the performance becomes unstable. Involving 
Blockchain does not increase much standard deviation, and we 
suspect this is due to that the original cloud connection has a 
certain degree of uncertainty.  

Following a similar procedure, we also conduct experiments 
with large files. We generate files with file size varying from 1 
MB to 1 GB. We measure the execution time and report metrics 
in a similar fashion to the small file case. The result is reported 
in Figure 3. The Blockchain overhead increases as the file 



grows large and reaches the maximal about 28% (at 1 GB file). 
In the large file setting, the system bottleneck is at transferring 
data across the Internet (e.g., between client machines and 
cloud).    

 
Figure 2. File write latency with small files 

 

 
Figure 3. File write latency with large files 

 



  
Figure 4. File read latency 

 
File Read Performance: We conduct an experiment to 

evaluate the read latency of ChainFS. In the experiment, the 
client machine first runs a script to create 100 files of variable 
sizes (from 1 KB to 100 KB). It then launches a series of Linux 
CAT commands to repeatedly read the files. In this experiment, 
we measure the time spent on the second stage (i.e., running 
CAT commands). We report the performance result in Figure 4. 
It can be seen that on average, ChainFS adds about 30% 
overhead to the regular read path of a cloud file system. As the 
file grows large, the overhead stays const. 

VI. CONCLUSION 

 This paper presents ChainFS, a multi-client file system in 
the cloud whose security is hardened by leveraging Blockchain. 
ChainFS prevents forking attacks by the hardness of double 
spending in the Blockchain. It systematically applies the 
security design to the system of an encrypted cloud storage, on 
the planes of key management and file operation log. We 
implement a functional prototype of ChainFS based on S3FS 
and Ethereum and demonstrate practical performance. ChainFS 
enables end users to securely shares data in the cloud.  
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