Blockchain: Systems, Security and Applications

Dr. Yuzhe (Richard) Tang

Department of EECS, Syracuse University May 10, 2018

Outline

A. Introduction

B. What's Public Blockchain?

- External views
- Internal views

C. Blockchain Models, Problems and Applications

A. Introduction: Cryptocurrency

• Cryptocurrency in the field:

– BitCoin, Ethereum, Litecoin, etc.

Bitcoin Bitecoin ethereum

Cryptocurrency that is like US Dollars

- Support conventional money flows:
 - Create money in a mint
 - Circulate money among owners through transactions
- Security under threats:
 - Threat 1: Print fake money
 - Threat 2: Double spending (digital currency)

Cryptocurrency that is unlike US Dollars

- US dollar is fiat currency controlled by autorities
 - Issued and printed in gov. mint
 - Circulated with monitoring by Visa
- Authority may not be trustworthy

Cryptocurrency removes centralized authority.

5/10/18

Yuzhe Tang, Syracuse Univ.

Key Ideas of Cryptocurrency

- Get rid of authority by trust decentralization
 - Don't trust gov. and Visa, instead trust the entire population on planet.
- Make the network **open-membership** and transaction history **transparent**.
 - Transparency & open-membership helps network reach the planet scale.
- Automate the entire process with incentive compatibility.
 - Automation removes labor and reduces costs.
 - Pay people who help maintain the system.

Introduction: Cryptocurrency and Blockchain

- Blockchain is the place to record cryptocurrency transactions.
 - Blockchain is the ledger for Bitcoin
- Blockchain is the system materializing the above ideas.

Outline

A. Introduction

B. What's Public Blockchain?

- External views
- Internal views
- C. Blockchain Models, Problems and Applications

• Blockchain is ...

- Blockchain is ...
 - 1. A transaction storage system

- Blockchain is ...
 - 1. A transaction storage system
 - 2. A cryptocurrency mine
 - 3. A program-execution platform

- Blockchain is ...
 - 1. A transaction storage system
 - 2. A cryptocurrency mine
 - 3. A program-execution platform
 - 4. A consensus protocol
 - 5. A proof system
 - 6. Many other things

1. Blockchain as Transaction Storage

- Interface:
 - sendTransaction({from:account1, to:account2, value: amount})
 - getTransaction(txid)

- Scenario:
 - Get your first bitcoin through exchange/wallet service

Security of Transaction Storage

- Blockchain as transaction storage
 - Readable to the public (transparency)
 - Appendable by honest clients sending valid transactions
 - Once committed, cannot be modified (immutability)
- Transaction validity: No double spending

 After Alice pays Bob coinX, Alice can't spend coinX.

Internal of Transaction Storage

- Add-transaction flow
 - Recently sent txs broadcast and buffered in memory pools.
 - Pending txs are validated
 - Ensuring no double-spending
 - Append txs to Blockchain
 - Validated txs are grouped to blocks
 - Blocks are appended to the blockchain.

Yuzhe Tang, Syracuse Univ.

Internal of Transaction Storage

- Transactions form a DAG
 - Hash pointer: Represent spending relationship btwn txs
- Transaction DAG (100GB) is stored in the Blockchain network.
- Blocks (32 MB) are chained and replicated in the Blockchain network.
- Immutability is ensured by
 - Security of hash (collision resistance)
 - Blocks are replicated.

2. Blockchain as a Mine

- Like gold mine, the Blockchain will give valuables (in Bitcoins) to people who put efforts in.
- Scenarios: You purchase some hardware and run some (non-sense) computations
 - With some probability, your computation will be rewarded in BitCoin
 - The probability depends on how powerful your hardware is and how many others are competing

2. Blockchain as a Mine

- How likely it is to get BitCoin thru. mining?
 - How big is your budget?
 - Constant capital: buy machines, Variable capital: electricity consumption
 - Who you are up against (racing to win the reward)?
 - State-level miners, bitcoin farm, data centers

Yuzhe Tang, Syracuse Univ.

Security: Sybil Attack Resilience

- Open-membership network: anyone can join
- Honest majority miners: Security assumption
- Sybil attack
 - An individual can create a large number of miners to become and control the majority of network.
- Mining: Make it hard to do Sybil attack.
 - Having a miner win consumes resources.
 - Having many miners win consumes so many resources that an (adversarial) individual cannot afford.

3. Blockchain as Program-Execution Platform

- Programming interface: Smart contract
 - Smart-contract program is an executable running on the Blockchain network
 - Examples:

Ethereum Solidity

Solidity is designed to compile to coo for the Ethereum Virtual Machine.

Chaincode (Smart Contract)

3. Blockchain as Program-Execution Platform

- Common use of smart contract:
 - Decision-making logic (IFTTT)
 - When to send tx, who can spend the tx
 - General program (Turing complete language on chain)
- Application: Stock-exchange
 - Alice will trade 10 shares for \$10,000 when the stock price is below \$1000.
 - (BitCoin can represent both \$10K and shares as digital goods)

Virtual trusted third-party (with public state)

Yuzhe Tang, Syracuse Univ.

Acknowledge: Prof. Ari Juels

Security: Unstoppable Execution

- Security properties:
 - Autonomously executed, unstoppable
 - Transaction fairness:
 - If I paid you, to be fair, I need to receive your goods.
 - Replace the role of conventional banks in a supply chain.
- Internally, it is ensured by
 - Replicated execution
 - Honest majority

Outline

- A. Introduction
- B. What's Public Blockchain?
 - External views
 - Internal views
- C. Blockchain Models, Problems and Applications

Internal-Mechanism Overview

- 1. Blockchain is a P2P network of two layers
 - Clients send/read transactions
 - Miners maintain transaction storage
- 2. Miners run add-tx logic
 - 1. Broadcast pending txs Blockchain
 - 2. Validate txs
 - 3. Append validated txs to Blockchain

Outline

- A. Introduction
- B. What's Public Blockchain?
 - External views
 - Internal views

C. Blockchain Models, Problems and Applications

Alternative Blockchain Models

- Private/Permissioned blockchain
 - Quorum from JP Morgan Chase, Hyperledger from IBM
 - Runs in a consortium of miners (closed network)
- Privacy-preserving Blockchain
 - zCash/zeroCash: encrypted transactions
- They feature: closed-membership, private transactions, private contract state.

Big Problems of Blockchain Today

- **Energy** consumption by PoW
- Scalability
 - bounded by block size and mining rate.
- Computing power **centralization**
 - Mining pool
- **Cyber-crime** through cryptocurrency
- **Privacy** leakage thru. side channels

Blockchain Applications Beyond Bitcoins

- DNS servers
 - Blockstack
- Personal key managment
 - Keybase.io,
- Identity management
 - International travelling and Canadian border control
- Service discovery in VMWare
- Incentivized fitness
 - Fry Egg
- Streamlined incident reporting
 - BikeBlockchain

What's Next?

- Online Blockchain Labs at Syracuse Univ.:
 - <u>https://goo.gl/hFmfQc</u>
- SEED workshop in May, 2018 in Syracuse, NY
 - An education workshop for college and high-school teachers
 - <u>http://www.cis.syr.edu/~wedu/seed/workshop.html</u>
- Blockchain course
 - CIS 600 & FIN 600: Blockchain and Cryptocurrencies (in Fall, 2018, at SU)
 - http://tristartom.github.io/docs/syl-4600.pdf
 - Other online materials

Q/A

Thank you!

Contact:

Yuzhe (Richard) Tang Assistant Professor Dept. of EECS Syracuse University <u>ytang100@syr.edu</u> ecs.syr.edu/faculty/yuzhe