Blockchain: Systems, Security and Applications

Dr. Yuzhe (Richard) Tang

Department of EECS,
Syracuse University
May 10, 2018
Outline

A. Introduction

B. What’s Public Blockchain?
 – External views
 – Internal views

C. Blockchain Models, Problems and Applications
A. Introduction: Cryptocurrency

• Cryptocurrency in the field:
 – BitCoin, Ethereum, Litecoin, etc.
Cryptocurrency that is like US Dollars

• Support conventional money flows:
 – Create money in a **mint**
 – Circulate money among owners through **transactions**

• Security under threats:
 – Threat 1: Print fake money
 – Threat 2: Double spending (digital currency)
Cryptocurrency that is unlike US Dollars

• US dollar is fiat currency controlled by authorities
 – Issued and printed in gov. mint
 – Circulated with monitoring by Visa

• Authority may not be trustworthy

• Cryptocurrency removes centralized authority.
Key Ideas of Cryptocurrency

• Get rid of authority by trust decentralization
 – Don’t trust gov. and Visa, instead trust the entire population on planet.

• Make the network open-membership and transaction history transparent.
 – Transparency & open-membership helps network reach the planet scale.

• Automate the entire process with incentive compatibility.
 – Automation removes labor and reduces costs.
 – Pay people who help maintain the system.
Introduction: Cryptocurrency and Blockchain

• Blockchain is the place to record cryptocurrency transactions.
 – Blockchain is the ledger for Bitcoin

• Blockchain is the system materializing the above ideas.
Outline

A. Introduction

B. What’s Public Blockchain?
 - External views
 - Internal views

C. Blockchain Models, Problems and Applications
What’s Blockchain: Overview

• Blockchain is …
What’s Blockchain: Overview

• Blockchain is …

 1. A transaction storage system
What’s Blockchain: Overview

• Blockchain is …
 1. A transaction storage system
 2. A cryptocurrency mine
 3. A program-execution platform
What’s Blockchain: Overview

• Blockchain is …

1. A transaction storage system
2. A cryptocurrency mine
3. A program-execution platform
4. A consensus protocol
5. A proof system
6. Many other things
1. Blockchain as Transaction Storage

• Interface:
 – `sendTransaction({from:account1, to:account2, value: amount})`
 – `getTransaction(txid)`

• Scenario:
 – Get your first bitcoin through exchange/wallet service
Security of Transaction Storage

• Blockchain as transaction storage
 – Readable to the public (transparency)
 – Appendable by honest clients sending valid transactions
 – Once committed, cannot be modified (immutability)

• Transaction validity: No double spending
 – After Alice pays Bob coinX, Alice can’t spend coinX.
Internal of Transaction Storage

• Add-transaction flow
 – Recently sent txs broadcast and buffered in memory pools.
 – Pending txs are validated
 • Ensuring no double-spending
 – Append txs to Blockchain
 • Validated txs are grouped to blocks
 • Blocks are appended to the blockchain.
Internal of Transaction Storage

- Transactions form a DAG
 - Hash pointer: Represent spending relationship btw txs
- Transaction DAG (100GB) is stored in the Blockchain network.
- Blocks (32 MB) are chained and replicated in the Blockchain network.

- Immutability is ensured by
 - Security of hash (collision resistance)
 - Blocks are replicated.
2. Blockchain as a Mine

• Like gold mine, the Blockchain will give valuables (in Bitcoins) to people who put efforts in.

• Scenarios: You purchase some hardware and run some (non-sense) computations
 – With some probability, your computation will be rewarded in BitCoin
 – The probability depends on how powerful your hardware is and how many others are competing
2. Blockchain as a Mine

• How likely it is to get BitCoin thru. mining?
 – How big is your budget?
 • Constant capital: buy machines, Variable capital: electricity consumption
 – Who you are up against (racing to win the reward)?
 • State-level miners, bitcoin farm, data centers
Security: Sybil Attack Resilience

• Open-membership network: anyone can join
• Honest majority miners: Security assumption
• Sybil attack
 – An individual can create a large number of miners to become and control the majority of network.
• Mining: Make it hard to do Sybil attack.
 – Having a miner win consumes resources.
 – Having many miners win consumes so many resources that an (adversarial) individual cannot afford.
3. Blockchain as Program-Execution Platform

• Programming interface: **Smart contract**
 – Smart-contract program is an executable running on the Blockchain network
 – Examples:

![Ethereum Solidity](image)

![Bitcoin Script](image)

Chaincode (Smart Contract)
3. Blockchain as Program-Execution Platform

• Common use of smart contract:
 – Decision-making logic (IFTTT)
 • When to send tx, who can spend the tx
 – General program (Turing complete language on chain)

• Application: Stock-exchange
 – Alice will trade 10 shares for $10,000 when the stock price is below $1000.
 • (BitCoin can represent both $10K and shares as digital goods)
Security: Unstoppable Execution

• Security properties:
 – Autonomously executed, unstoppable
 – Transaction fairness:
 • If I paid you, to be fair, I need to receive your goods.
 • Replace the role of conventional banks in a supply chain.

• Internally, it is ensured by
 – Replicated execution
 – Honest majority
Outline

A. Introduction

B. What’s Public Blockchain?
 – External views
 – Internal views

C. Blockchain Models, Problems and Applications
Internal-Mechanism Overview

1. Blockchain is a P2P network of two layers
 – Clients send/read transactions
 – Miners maintain transaction storage

2. Miners run add-tx logic
 1. Broadcast pending txs
 2. Validate txs
 3. Append validated txs to Blockchain
Outline

A. Introduction

B. What’s Public Blockchain?
 – External views
 – Internal views

C. Blockchain Models, Problems and Applications
Alternative Blockchain Models

• Private/Permissioned blockchain
 – Quorum from JP Morgan Chase, Hyperledger from IBM
 – Runs in a consortium of miners (closed network)

• Privacy-preserving Blockchain
 – zCash/zeroCash: encrypted transactions

• They feature: closed-membership, private transactions, private contract state.
Big Problems of Blockchain Today

- **Energy** consumption by PoW

- **Scalability**
 - bounded by block size and mining rate.

- Computing power **centralization**
 - Mining pool

- **Cyber-crime** through cryptocurrency

- **Privacy** leakage thru. side channels
Blockchain Applications Beyond Bitcoins

- DNS servers
 - Blockstack
- Personal key management
 - Keybase.io,
- Identity management
 - International travelling and Canadian border control
- Service discovery in VMWare
- Incentivized fitness
 - Fry Egg
- Streamlined incident reporting
 - BikeBlockchain
What’s Next?

• Online Blockchain Labs at Syracuse Univ.:
 – https://goo.gl/hFmfQc

• SEED workshop in May, 2018 in Syracuse, NY
 – An education workshop for college and high-school teachers
 – http://www.cis.syr.edu/~wedu/seed/workshop.html

• Blockchain course
 – CIS 600 & FIN 600: Blockchain and Cryptocurrencies (in Fall, 2018, at SU)
 • http://tristartom.github.io/docs/syl-4600.pdf
 • Other online materials
Q/A

Thank you!

Contact:
Yuzhe (Richard) Tang
Assistant Professor
Dept. of EECS
Syracuse University
ytang100@syr.edu
ecs.syr.edu/faculty/yuzhe